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Abstract

Background: Dengue, a viral disease transmitted by Aedes mosquitoes, is an important public health concern
throughout Thailand. Climate variables are potential predictors of dengue transmission. Associations between
climate variables and dengue have usually been performed on large-scale first-level national administrative
divisions, i.e. provinces. Here we analyze data on a finer spatial resolution in one province, which is often more
relevant for effective disease control design. The objective of this study was to investigate the effect of seasonal
variations, monthly climate variability, and to identify local clusters of symptomatic disease at the sub-district level
based on reported dengue cases.

Methods: Data on dengue cases were retrieved from the national communicable disease surveillance system in
Thailand. Between 2006 and 2016, 15,167 cases were recorded in 199 sub-districts of Khon Kaen Province,
northeastern Thailand. Descriptive analyses included demographic characteristics and temporal patterns of disease
and climate variables. The association between monthly disease incidence and climate variations was analyzed at
the sub-district level using Bayesian Poisson spatial regression. A hotspot analysis was used to assess the spatial
patterns (clustered/dispersed/random) of dengue incidence.

Results: Dengue was predominant in the 5–14 year-old age group (51.1%). However, over time, dengue incidence
in the older age groups (> 15 years) gradually increased and was the most affected group in 2013. Dengue
outbreaks coincide with the rainy season. In the spatial regression model, maximum temperature was associated
with higher incidence. The hotspot analysis showed clustering of cases around the urbanized area of Khon Kaen
city and in rural areas in the southwestern portion of the province.

Conclusions: There was an increase in the number of reported dengue cases in older age groups over the study
period. Dengue incidence was highly seasonal and positively associated with maximum ambient temperature.
However, climatic variables did not explain all the spatial variation of dengue in the province. Further analyses are
needed to clarify the detailed effects of urbanization and other potential environmental risk factors. These results
provide useful information for ongoing prediction modeling and developing of dengue early warning systems to
guide vector control operations.
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Background
The annual global burden of dengue is estimated at 390

million infections, of which 96 million present clinically

[1]. Four closely related RNA viruses in the family

Flaviviridae (DENV1 to DENV4) are responsible for

dengue disease. They are transmitted by Aedes (primarily

subgenus Stegomyia) mosquitoes, particularly Aedes

aegypti (L.) and Aedes albopictus (Skuse) [2]. Dengue

has developed from a sporadically occurring disease to a

major and re-emerging global public health problem

over recent decades causing substantial economic

disruption and social burden in endemic areas in Asia,

Africa, and the Americas. There is no effective treatment

for dengue and vaccination, so far, offers only incom-

plete protection [3, 4]. Therefore, vector control remains

the most important means of prevention [5]. Effective

vaccine or not, vector control will remain the corner-

stone of dengue control for years to come [3].

Due to increasing incidence and rapid geographical

expansion, dengue is the most common vector-borne dis-

ease in Thailand [6]. From 2000 to 2011, the number of

reported cases varied from 20,000 to 140,000 cases each

year [7]. Both Ae. aegypti and Ae. albopictus are common

species and widely distributed in Thailand [8]. All four se-

rotypes co-circulated in each of the major outbreaks that

occurred in 1958, 1987, 1998, 2001, 2013, and 2015 [9–

14]. The highest incidence typically occurs in 13–24 year-

old age group with case clustering seen predominately in

urban areas [15]. Males represent the majority of reported

dengue cases in several Asian countries [16]. A study in

Singapore showed that men were more exposed to in-

fected mosquitoes than women, during daytime hours, at

the workplace or while travelling to and from work. A

forceful public health policy in Singapore [17] has greatly

reduced the number of mosquitoes in and around homes,

potentially rendering the larger male labor force more ex-

posed to mosquito bites during working hours [16, 18].

Other causes for these apparent gender differences could

be different health seeking behaviors or male-female dif-

ferences in disease severity [19]. In the Lao People’s

Democratic Republic male-female ratios in dengue cases

varied between years and provinces [16]. We are not

aware of similar spatio-temporal or socioeconomic differ-

ences in Thailand.

Thailand has adapted the dengue control strategy of the

World Health Organization (WHO) [2], which consists of

three main pillars: 1) patients diagnosed with dengue are

required to avoid mosquito bites to prevent dengue trans-

mission; 2) active community case detection of cases

which do not result in clinical consultation; and 3) vector

control, consisting of environmental management, source

reduction, and chemical interventions using insecticide

fogging against adult vectors and larvicides to control im-

mature stages in containers [20]. Follow-up interventions

are conducted by health officers or village health volun-

teers [20]. To determine the most appropriate and feasible

intervention or combination of interventions, health offi-

cers need to consider local environmental, resource, and

contextual factors that may influence effectiveness [21].

Climate variables are predictors of dengue infection [4,

22, 23]. Seasonal variation in climate shows a strong rela-

tionship with Ae. aegypti abundance and historical dengue

incidence [24]. Temperature affects population biology of

Aedes mosquitoes [25]. Higher temperatures increase lar-

val development [26] and rates of multiple feeding, but re-

duce mosquito size [27]. The extrinsic incubation period

declines as temperature rises, thus increasing the propor-

tion of infected vectors, and enhancing the transmission

potential of the vector [27–29].

As ambient temperature increases, so does dengue

epidemic potential, peaking at around 29 °C and then

decreases [29]. In subtropical and tropical regions such

as Thailand, with mean diel temperatures of 26 °C

(20 °C ≤ T ≤ 32 °C), an increase in diurnal temperature

range can enhance transmission [29]. An analysis of

data from Thailand (1978–1997) showed the incidence

of dengue hemorrhagic fever (DHF) was negatively as-

sociated with higher rainfall in the southern region of

the country, but positively associated with elevated am-

bient temperatures in the central and northern regions

[30]. Another study using provincial monthly dengue

data from 1983 to 2001 concluded that the relation-

ships between weather variables and dengue transmis-

sion are very complex in Thailand [31]. The study

found that transmission occurs within a specific

temperature range, but that changes in humidity within

this range can amplify the transmission potential with

80% of dengue cases occurring at a mean temperature

of between 27.0 and 29.5 °C and a mean relative humid-

ity of > 75%. They further found that large epidemics

begin earlier, develop faster and can be predicted at a

defined onset time. Non-linear modeling of more than

30 years (1982–2013) of monthly data by province in

Thailand showed that inter-annual variations in rainfall

and temperature with a lag time of one month can im-

prove the explanation of dengue relative risk compared

to a seasonal-spatial model [32]. The relationship be-

tween rainfall and dengue is complex, as it may create

abundant breeding sites for the vector [33], but can also

flush out sites if rain is too intense [33, 34]. Because

household water storage may increase in the dry sea-

son, the resulting breeding habitats may weaken, or

even reverse, the positive association between dengue

and rainfall [35–39].

Spatio-temporal analysis can detect clusters of dengue

disease and is useful for a better understanding of the

dynamics of disease dispersion. Analysis of spatial and

temporal variations is also useful in identifying high-risk
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locations and times of higher transmission risk, which are

important for disease surveillance and control [15, 40].

The above-mentioned research on climate and

dengue focused on larger spatiotemporal scales, such

as monthly dengue surveillance and climate records at

the provincial level [31, 41, 42]. The current study is

novel because it uses data on the lowest administra-

tive level, the sub-district, in one province to under-

stand fine-scale spatial dengue-climate relationships.

This is useful for developing more reliable prediction

models for future projections applied in early warning

and response systems, thus ultimately improving

timely control interventions.

We analyzed data on reported dengue cases in Khon

Kaen Province, northeastern Thailand collected between

2006 and 2016 to 1) describe demographic characteris-

tics and seasonal variations of dengue cases; 2)

determine the potential impact of climate variability on

dengue incidence; and 3) identify clusters of dengue

cases at the sub-district level.

Methods
Study area

The study was conducted in Khon Kaen Province, an

area of approximately 10,900 km2 (16°25′12″N to 16°42′

12″N and 102°49′48″E to 102°83′48″E). The province

has 26 districts, 199 sub-districts, and 2139 villages. In

2010, the population was 1,767,601, of which 387,279

people lived in Mueang District that includes the provin-

cial capital Khon Kaen (see Additional file 1). This prov-

ince was selected as the study area because dengue is

endemic with typical seasonal increases and occasional

outbreaks. The province is primarily rural with a few

large urban centers. Mueang District, the most densely

populated area in the province, is a regional center for

education, health, finance and commerce. The northern

and southern parts of the district, along the major

highway linking Bangkok with Lao People’s Democratic

Republic, are rapidly developing. The districts in the

northwestern and southeastern parts of the province are

rural and agricultural. Classification of urban and rural

areas depends on population density. An urban area is

defined as a municipality or town with a population

over 100,000 and a population density above 300 per-

sons per square kilometer [43]. The average minimum

and maximum seasonal temperatures are 16.7 °C

(December–January) and 36.4 °C (April–May). The

monthly minimum and maximum rainfall vary from

0mm (dry season: November–April) to 240 mm (wet

season: May–October).

Data collection

The Office of Disease Prevention and Control, Region 7

Khon Kaen (ODPC7), Department of Disease Control,

Ministry of Public Health, Thailand provided data on

the weekly number of reported dengue cases in Khon

Kaen Province from 1 January 2006 to 31 December

2016. Dengue is a notifiable disease based on the

National Communicable Disease Control Law, i.e., all

government and private hospitals, clinics and other

healthcare facilities must report all cases (confirmed and

suspected) to the local health authority within 24 h of

diagnosis [12]. Cases are recorded by degree of disease

severity into one of three categories (at peak of illness):

1) dengue fever (DF), 2) dengue hemorrhagic fever

(DHF), and 3) dengue shock syndrome (DSS), but the

serotype is not recorded (or typically known except

retrospectively). A patient is diagnosed with suspected

DF when the following criteria are met and signs and

symptoms are present: residence or recent travel to a

dengue endemic area, acute fever accompanied by any

two of the following: headache, myalgia, arthralgia, rash,

positive tourniquet test and leucopenia, with no evidence

of plasma leakage. DHF is recorded in patients with a

temperature ≥ 38 °C, petechiae, ecchymosis, or a positive

tourniquet test, thrombocytopenia (platelets < 100,000

cells/mm3), and evidence of plasma leakage. DSS, the

most severe disease manifestation, is defined as

having the same signs and symptoms as DHF, but

progressing to circulatory failure. The Provincial

Health Offices enter patient data into the standard-

ized Disease Surveillance Report (Report 506) for re-

cording communicable diseases in Thailand. The form

provides the patient’s age, gender, house address,

signs and symptoms, and date of medical consult-

ation. DHF and DSS are based on both clinical symp-

toms and laboratory tests (usually complete blood

count), and sometimes accompanied with a rapid

diagnostic test (RDT); whereas, DF is seldom based

on additional laboratory tests or by RDT.

Meteorological data from 1 January 2006 to 31

December 2016 were downloaded from the data library

of the International Research Institute for Climate and

Society [44], which contains specific climate data from

different sources, such as The National Centers for

Environmental Prediction (NCEP), Climate Forecast Sys-

tem Reanalysis (CFSR) [45], and Climate Hazards Group

InfraRed Precipitation with Station data (CHIRPS) global

rainfall datasets [46]. For each sub-district, daily temper-

atures (°C) were retrieved from NCEP and daily rainfall

(mm) from CHIRPS. These data generated the monthly

means used in the analysis (see Additional files 2 and 3).

The spatial resolution of rainfall is 0.05 × 0.05 degrees

(CHIRPS) and for temperature 0.2 × 0.2 degrees (NCEP

CFSR v2, https://rda.ucar.edu/datasets/ds094.1/). A

centroid was created for each sub-district. Rainfall and

temperature data for each sub-district was determined

based on the grid cell in which the centroid was located.

Phanitchat et al. BMC Infectious Diseases          (2019) 19:743 Page 3 of 12

https://rda.ucar.edu/datasets/ds094.1/


Analysis

Monthly data on dengue cases and climate (rainfall and

temperature) from the study period were combined to

visualize seasonal patterns and temporal trends. Dengue

incidence was calculated using the monthly number of

reported cases and sub-district population size in 2010

reflecting the mid-study denominator [47].

Bayesian Poisson regression models were used to

assess associations with the number of monthly cases in

199 sub-districts. Population was used as the denomin-

ator in the model (i.e. log-population as an offset). The

neighborhood relationship between the sub-districts

were defined using their adjacency matrix; ‘1’ for a pair

of sub-districts sharing a border, otherwise ‘0’. Hence

the following model was used:

Y ij ∼ Poisson μij

� �

log μij

� �

¼ log Pið Þ þ θij

θij ¼ αþ βkxijk þ uij;

where Yij is the observed mean number of cases for the

ith sub-district in jth month (i = 1, …,199; j = 1, …,12), Pi
is the sub-district population size, α is the intercept, and

βk is the regression coefficient for covariate k. For the

main model, the covariates (xk) were: population density

per square kilometer; gender (proportion of males

among the cases), mean age in years of the cases; mean

rainfall; and minimum and maximum temperature. As a

non-mechanistic way of measuring the seasonality of in-

cidence, a second set of covariates was obtained by re-

placing three meteorological variables by sine and cosine

terms with period 12months. Finally, uij is the random

effect that captures the spatio-temporal autocorrelation

in response data Yij, whose variance depends on the

adjacency matrix.

Conditional autoregressive (CAR) priors [48] structure

were used on uij and for (α, βk), non-informative normal

prior distributions was used. Flat and conjugate priors

were specified for uij using inverse gamma distributions

with shape and scale parameters equal to 0.001. Markov

chain Monte Carlo simulation was used to estimate the

model parameters, sampling 300,000 times, with the first

150,000 as the burn-in, and keeping the results from every

tenth iteration. The “ST.CARar” function of the R statis-

tical software package CARBayesST (www.r-project.org)

was used to fit the model. Convergence was assessed by

trace plots and checked by the convergence Z-score

diagnostic function [49]. The Watanabe-Akaike

Information Criterion (WAIC) was used as a measure

of goodness of fit [50].

Local Indicators of Spatial Association (LISA) were

used to identify significant hotspots, coldspots, and

outliers of dengue incidence at the sub-district level [51].

A hotspot is defined as an area that is surrounded by

other high incidence areas, i.e. incidence is higher than

the expected number given a random distribution of

cases (so called high-high cluster). A coldspot is defined

as an area surrounded by other low incidence areas

(low-low cluster). Hotspot detection can be useful, even

if the global pattern is not clustered. Moreover, case

clusters that occur randomly can also have an influence

on the spread of an infectious disease [52].

Results

General results

Dengue cases numbering 15,167 were reported over the

11-year period by all hospitals and clinics in Khon Kaen

Province. Of these, there were 7461 dengue fever cases

(49.2%) and 7706 severe dengue cases (50.8%), comprising

both DHF and DSS. The demographic characteristics of

patients are summarized in Table 1. Males represented

the majority of patients (8057; 53.1%). Ages ranged from

4months to 92 years old (median 13 years). The highest

number of patients was in the 5–14 year-old age group

(7758; 51.1%), followed by 15–29 years (5026; 33.1%) and

30–44 years (937; 6.2%). The proportion of older age

groups (> 15 years), increased from nearly 20% of all cases

in 2006 to more than 50% in 2016 (Fig. 1). The highest re-

corded disease incidence was in 2013, approximately 80

per 100,000 population (Fig. 2). Incidence was high during

the rainy season (May–September), with July having the

highest incidence (Fig. 3).

Table 1 Demographic characteristics of dengue reported cases
in Khon Kaen Province, Thailand, 2006–2016

Characteristics Number of cases Percentage (%)

Gender

Male 8057 53.1

Female 7110 46.9

Age group (years)

< 1 72 0.5

1–<5 857 5.7

5–<15 7758 51.1

15–<30 5026 33.1

30–<45 937 6.2

45–<60 391 2.6

> 60 126 0.8

Diagnosis

Dengue fever (DF) 7461 49.2

Dengue haemorrhagic fever (DHF) 7186 47.4

Dengue shock syndrome (DSS) 520 3.4
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Association between dengue cases and climatic factors

Mean rainfall and maximum temperature were positively

associated with dengue incidence, and minimum

temperature was negatively associated, in terms of their

point estimates (Table 2). However, among the three 95%

credible intervals (CIs), only the one for maximum

temperature excluded 1 (null effect). The rate ratio for

maximum temperature was 1.055, implying 5.5% (95% CI

0.9–11.5%) increase in cases with an increase of 1 °C per

month. The range of this variable was from 30.7 °C to

44.9 °C. The rate ratio for mean rainfall was 1.004, indicat-

ing that increasing rainfall by one unit (1 cm) per month

would increase dengue incidence by about 0.4%. The

Watanabe-Akaike Information Criterion (WAIC) for this

model was 10,028.75. For the model with two sinusoid

terms replacing the three meteorological variables, the

WAIC was very similar, at 10028.23. This sinusoid terms

had a peak to trough rate ratio of 5.8, and a peak in mid-

July, i.e. a roughly six-fold difference in fitted incidence

from mid-July to mid-January.

The mean dengue incidence was high in the central

northeastern sub-districts, around Khon Kaen city, and

in the southwestern sub-districts of the province (red

and orange in Fig. 4a). The distribution of the posterior

means of the random effects (from the CAR model with

meteorological variables) show some clustering, indicat-

ing that the variables in the model did not account fully

for the spatial variation in the data (Fig. 4b). Posterior

distribution plots are shown in Additional file 4. High

clusters were present around Khon Kaen city and the

southwestern portion of the province and low clusters

were present in the northwestern area (Fig. 5), from the

LISA analysis. When broken down by month, the

incidences show the same clustering patterns, especially

during July–August (Additional file 5).

Discussion

The majority (~ 90%) of patients were below the age of

30 years. The trend during the study period showed that

the proportion of dengue cases younger than 15 years

declined from almost 80% in 2006 to below 50% in 2016.

Dengue fever is generally more common in younger age

groups [53], although there is evidence showing increas-

ing incidence of more severe disease and outcomes

among older age groups [54]. Our observations are also

consistent with a population age shift, potentially influ-

enced by demographic changes, such as the birth and

death rates that show decreasing trends during 2011 and

2015 [55]. Thailand, in general, is undergoing a demo-

graphic transition where the proportion older adults are

gradually increasing with an increase in median age of

the general population. A higher proportion of adults

will also increase the number of immune individuals

(those with previous exposure to dengue virus) in the

population, which might theoretically decrease the risk

of dengue infection in younger people by providing

alternative blood sources for infectious mosquitoes [56].

This age shift has also been observed in other Asian

countries with a higher frequency of dengue cases

among people 15 years of age and older [16]. Increases

in disease incidence in older age groups may be

explained by an increase in secondary infections and

changes in circulating dengue virus serotypes [57], which

have been shown to be important risk factors for severe

clinical presentations [58–62].

Fig. 1 Age distribution of reported dengue cases (DF, DHF and DSS) in Khon Kaen Province, Thailand, 2006–2016
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There were clear seasonal patterns of dengue inci-

dence in Khon Kaen Province during the study

period. Dengue occurs throughout the rainy season,

with 73% of cases reported between May and Septem-

ber. Although maximum temperature was associated

with higher incidence (Table 2), the model with

meteorological covariates had similar performance (in

terms of the WAIC) to a non-mechanistic model,

which simply fitted a sinusoidal pattern with a period

of 12 months. In our study, a 1 cm increase in

monthly rainfall was associated with a 0.4% increase

in dengue incidence. In Timor Leste, results from

similar modeling analyses showed a far larger effect: a

47% increase in incidence per 1 mm increase in an-

nual rainfall [63]. Different climate patterns between

Timor Leste and Thailand might explain these differ-

ences. Rainfall can affect the availability of mosquito

larval habitats [34]. During rainy and dry periods of

the year, permanent water containers are common in

and around households; some located in toilet or

bathroom spaces providing continuous year round

mosquito production [35–39, 64]. Large water storage

jars and tanks are the most commonly used con-

tainers in Thailand [64]. A study correlating rainfall

A

B

C

D

E

F

Fig. 2 Monthly dengue incidence (a), dengue anomaly (b), rainfall (c), rainfall anomaly (d), temperature (e) and temperature anomaly (f) in Khon
Kaen Province, Thailand, 2006–2016. DF = dengue fever, DHF = dengue hemorrhagic fever, DSS = dengue shock syndrome
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and clinical dengue cases in Thailand from 2002 to

2003 also found that the dengue incidence was closely

related with rainfall [65].

Temperature is another primary environmental risk

factor for dengue transmission. Sea surface temperature

(SST) changes, generally related to periodic El Niño

Southern Oscillation effects, and air temperature, having

more direct short-term effects, have both been shown to

influence dengue incidence [63, 66]. Dengue incidence

increased by 19.4% with a 1 °C increase in SST and 2.6%

with a 1 °C increase in weekly maximum temperature in

the Texas-Mexico border region [66]. Another study

found that a 1 °C monthly increase in mean ambient

temperature, dengue incidence increased by 0.7% [63].

In our study, the rate ratio for maximum temperature

was 1.055 per °C, within the range from 30.7 °C to

44.9 °C. Higher temperatures enhance viral replication in

A

B

Fig. 3 Mean monthly dengue incidence per 100,000 persons (a) and monthly average of rainfall (bar) and temperature (line) (b) in Khon Kaen
Province, Thailand, 2006–2016

Table 2 Point estimates and 95% credible interval of the
Bayesian Poisson regression model on number of all monthly
dengue cases (DF, DHF and DSS) and covariates in Khon Kaen
Province, Thailand, 2006–2016

Parameter Rate ratios

Median 2.5% 97.5%

Mean monthly rainfall (cm) 1.004 0.990 1.017

Maximum temperature (°C) 1.055 1.009 1.115

Minimum temperature (°C) 0.958 0.927 1.024

Age (years) 0.990 0.985 0.994

Gender (proportion femalea) 0.933 0.854 1.020

Density (thousands of people per km2) 0.925 0.827 1.047
aHence the rate ratio is for 100% female case composition relative to 100%

male case composition
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the vector mosquito in a shorter amount of time and

thus increase transmission potential of dengue viruses. A

study of the extrinsic incubation period (EIP) of dengue

serotype 2 in Aedes albopictus found that the virus

remained in the midgut at 18 °C but could disseminate

and invade the salivary glands at temperatures between

23 °C and 32 °C [67], thereby showing higher tempera-

tures produce a shorter EIP and greater transmission po-

tential. The strong and consistent relationships between

climate, particularly rainfall and temperature, and the

number of dengue cases have been used to develop

prediction models to implement more timely dengue

control measures [68, 69]. Relationships between dengue

transmission and climatic variables have been examined

in numerous studies, as shown above, but the question

remains how to use such relationships in predicting

impending outbreaks and applying effective interven-

tions in time to avert them. User-friendly tools, such as

the operational guide on Early Warning and Response

System developed with support from the WHO/TDR

and the European Union [70], are needed and will be

tested in forthcoming work in Khon Kaen Province.

The highest dengue incidence seen in this study oc-

curred in two areas of the province: around Khon Kaen

Mueang District in the northeast, and in Manchakhiri

and Khokphochai districts in the southwest. Mueang

District includes the provincial capital and has the

highest human population density, and in general, more

conducive to dengue transmission. Manchakhiri and

Khokphochai districts have lower population densities,

but are, from our observations, seemingly similar to

other districts in the province, i.e. vector species are

present, larval habitats are plentiful, with a susceptible

human population; therefore there must be other yet un-

explored factors that support high dengue transmission

in these two districts.

Although dengue incidence is influenced by rainfall

and temperature, in our data there is no apparent spatial

clustering of cases associated with the spatial variability

in these environmental parameters. Rather, other factors

such as urbanization are likely causes of the observed

clustering effect [71]. However, population density,

which was included in the regression model as a meas-

ure of urbanization, was not independently associated

with dengue incidence. The residual spatial variation

visible in Fig. 4b suggests that variables beyond those

included in the spatial regression model are needed to

explain differences in incidence between urban and rural

subdistricts. Moreover, hotspots in more rural areas of

southwestern Khon Kaen Province, further corroborate

Fig. 4 Mean dengue prevalence by sub-district (a) and spatial distribution of the posterior means of random effects for dengue (b) in Khon Kaen
Province, Thailand, 2006–2016
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the influence of factors other than urbanization driving

transmission. We do not know of any specific reasons

for why these rural areas should have elevated dengue

prevalence. One speculation could be that the lakes and

swamps that are common in this area may provide suit-

able humidity for mosquitoes to thrive, but this was not

studied here. Large changes in population size over time

will affect outcomes. However, during 2000 and 2015,

the average annual population growth rate in Thailand

was less than 0.5% [72], which might not have affected

the results substantially. Rural-urban migration is com-

mon in Thailand, with people drawn by, for example,

better education, job opportunities, health facilities,

standard of living, and wages [73]. Human movement is

also an important factor in the dynamics of dengue

transmission [74]. Adults are more likely to have greater

mobility than younger age groups; therefore, to under-

stand the circulation of the virus information on recent

travel history and working conditions (location, time of

work, etc.) is required. Elsewhere in Thailand, greater

vulnerability to dengue infection has been observed in

villages situated closer to urban centers [75]. Such neigh-

boring effects are related to similarities in human behav-

ior, development infrastructure, and ecological

surroundings. Moreover, similar lifestyles and social in-

teractions between neighboring areas are evident

Fig. 5 High and low clustering of dengue incidence in Khon Kaen Province, Thailand, 2006–2016
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between villages that share social and religious centers

such as schools, temples, mosques and community halls

[75]. Hence, the results presented here are generalizable

to most of northern Thailand, Laos, and Cambodia, and

potentially Vietnam and Myanmar as well, under similar

epidemiological settings.

Data collected from national surveillance systems

come with inherent limitations, including underreport-

ing and misreporting of symptomatic cases as well as

the absence of subclinical and asymptomatic infec-

tions [76]. Moreover, dengue cases are seldom labora-

tory confirmed or identified to serotype. Another

limitation of this study is inaccuracy, albeit minor, of

the population denominators within sub-districts, as

these were taken as fixed values from a single census

(2010). Lastly, the possibility of travel-related infections

was not determined in this study, which would provide

potential misclassification bias. Nationally, the import-

ance of travel-related dengue would vary by locality

based on mobility. Obviously, we cannot exclude the

possibility that some dengue infections were acquired

outside the study area, thus potentially affecting the

analysis and conclusions. However, if the general travel

patterns had not changed significantly over the 11-year

observation period, the dengue disease trends reported

in this study would remain valid.

Conclusion
We examined the epidemiology of dengue in Khon Kaen

Province, Thailand between 2006 and 2016. There was

an increase in older age groups reporting symptomatic

dengue. Symptomatic dengue disease in people > 15

years of age is now more common than in children in

this province, an observation that has been seen in other

Asian countries. This study used monthly sub-district

level data to show that rainfall and temperature have sig-

nificant effects on dengue transmission in the province.

Spatial clustering of cases is partly associated with urban

areas closer to Khon Kaen city and rural areas in the

southwest of the province. However, the current analysis

was not able to detect a close proxy factor to quantify a

relationship between urbanization and dengue incidence.

The data set awaits further analysis for temporal pat-

terns of infection for use in disease prediction modeling

and developing dengue early warning systems to guide

vector control operations.
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