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[1] An analysis of droughts in mainland Portugal based on monthly precipitation data,
from September 1910 to October 2004, in 144 rain gages distributed uniformly over
the country is presented. The drought events were characterized by means of the
Standardized Precipitation Index (SPI) applied to different time scales (1, 6, and
12 consecutive months and 6 months from April to September and 12 months from
October to September). To assess spatial and temporal patterns of droughts, a principal
component analysis (PCA) and K-means clustering (KMC) were applied to the SPI series.
In this way, three different and spatially well-defined regions with different temporal
evolution of droughts were identified (north, central, and south regions of Portugal). A
spectral analysis of the SPI patterns obtained with principal component analysis and
clusters analysis, using the fast Fourier transform algorithm (FFT), showed that there is a
manifest 3.6-year cycle in the SPI pattern in the south of Portugal and evident 2.4-year
and 13.4-year cycles in the north of Portugal. The observation of the drought periods
supports the occurrence of more frequent cycles of dry events in the south (droughts from
moderate to extreme approximately every 3.6 years) than in the north (droughts from
severe to extreme approximately every 13.4 years). These results suggest a much stronger
immediate influence of the NAO in the south than in the north of Portugal, although these
relations remain a challenging task.
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1. Introduction

[2] Droughts are still among the least understood extreme
weather events affecting large worldwide areas and having
serious impacts on society, environment, and economy.
Droughts are complex natural hazards that distress significant
areas of the world every year, though with different severi-
ties. In Europe the drought of 2003 affected 19 countries
with a total estimated cost that exceeded 11.6 billion Euros
(http://www.euraqua.org). The costs estimated for Portugal
during the 2005 drought were 285 million Euros, with half
of this amount related to losses from the hydroelectric
power production sector; many other sectors such as agri-
culture, forestry, and water supply also suffered severe
losses. According to the Portuguese Water Institute, in
2005, 80% of the country experienced the worst drought
in 60 years (http://www.eumetsat.int/Home/Main/Media/
News/005280?l=en). In the southern part, which is also
the driest part, agriculture represents the main activity
sector, so high correlation must be expected between
drought occurrence and agricultural outputs.

[3] Shortage of water poses a great threat to nature,
quality of life, and economy. Increasing water demands
lead to confiicts among competing water users that are most
pronounced during drought periods [Hisdal and Tallaksen,
2003]. The study of the climate variability may contribute to
a more correct management of such extreme climatic
occurrences. Recently, there has been debate on the appar-
ent increase, regarding the event frequency and the affected
area, of droughts and on the possible physical causes of
such circumstance. In the Mediterranean basin, if precipi-
tation decrease pointed out by the climate change models
[Bates et al., 2008] is confirmed, the consequences would
be severe in terms of the progressive scarcity of surface
water due to the high demand for agricultural, industrial,
and tourist activities and of the intensification of erosion and
desertification processes [López-Bermúdez and Sánchez,
1997; New et al., 2002; Vicente-Serrano et al., 2004].
[4] To assess the drought occurrence in mainland Portugal

and to understand the historical and recent climatic vari-
ability, it is worthwhile to study the long-term time series of
precipitation regarding their nonhomogeneous climatic and
hydrological conditions. For very restricted areas, some
authors have analyzed the drought phenomenon by com-
paring results from well-known scientific indices, such as
the Standardized Precipitation Index (SPI) and the Palmer
Drought Severity Index (PDSI) [Paulo and Pereira, 2006;
Domingos, 2006], by studying the intensity and frequency
of drought events [Pires, 2003], and by predicting drought
categories [Moreira et al., 2006, Paulo and Pereira, 2007,
2008].
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[5] One of the main goals of the present study was to
identify spatial patterns of droughts in Portugal, a small
western European country (area of 89015 km2) character-
ized by strong precipitation variability (both in time and in
space), using principal components analysis (PCA) and
nonhierarchical clusters, which are two different methods
often utilized to identify homogenous climatic regions. By
applying the two methods the authors intended to see if both
produced equivalent results or if one of them was preferable,
thus providing guidelines for future studies for Portugal.
[6] The analysis was based on 94 years of precipitation

data, from 1910–1911 to 2003–2004 (hydrologic years
starting 1 October), in 144 rain gages uniformly distributed
over the country. With such an extent in terms of the
number and distribution of the rain gages and of the length
of the recording period, this study is the first to be
conducted in Portugal and it is the first time that the spatial
distribution of drought temporal patterns is made through-
out the country based on comprehensive data. The precip-
itation records were directly collected from the database of
the Portuguese Water Institute which is the national author-
ity responsible for the hydrologic data collection and
validation, namely regarding the removal of the nonhomo-
geneities due to measuring errors. To assess the multiscale

drought occurrences, the Standardized Precipitation Index
(SPI) (T. B. McKee et al., The relationship of drought
frequency and duration to time scales, paper presented at
8th Conference on Applied Climatology, American Meteo-
rology Society, Boston, 1993) was applied to the precipita-
tion series.
[7] In the Iberian Peninsula some studies have been made

mainly to identify spatial and temporal patterns in climatic
and meteorological data. Authors such as Corte-Real et al.
[1998] and Romero et al. [1999] used PCA for classification
of precipitation variability or atmospheric circulation pat-
terns, respectively; others like Rasilla [2002] and Esteban et
al. [2005] used an algorithm that combined clusters analysis
and PCA for the same purpose. Vicente-Serrano et al.
[2004] used PCA for the study of droughts in the Valencia
region (eastern Spain). In Portugal, some authors tried to
ascertain the spatial historical distribution of the meteoro-
logical drought patterns [Santos, 1983; Henriques and
Santos, 1999; Santos et al., 2001; Paulo et al., 2003] but
based on a very coarse spatial resolution and without
achieving results for the whole country.
[8] The characterization of the temporal variability of the

droughts can be very useful for an adequate water resources
management. For this reason, this study also aims to find
the temporal patterns of the droughts within each region
identified by the spatial classification. For that purpose, the
temporal evolution of the significant PCA components and
of the SPI values in each cluster was accomplished. Also the
identification of cycles of dry and wet events in those
temporal patterns was carried out based on the fast Fourier
transform and spectral analysis [Fleming et al., 2002].

2. Study Area and Data

[9] Portugal is located on the western part of the Iberian
Peninsula and is influenced by the Atlantic and Mediterra-
nean climatic zones. The mean annual precipitation varies
from more than 2800 mm, in the northwestern region, to
less than 400 mm, in the southern region, following a
complex spatial pattern (N–S/E–W) (Figure 1), in close
connection with the relief, far beyond the most determinant
factor of the precipitation pattern.
[10] Though a decrease in the precipitation is generally

pointed out for mainland Portugal, the results from the
general circulation models (GCM) applied to different
climate scenarios denote substantial differences meaning
that there is a considerable uncertainty regarding the future
projections of the precipitation [Santos and Miranda, 2008].
One of the most extensive analysis of the spatial and
temporal patterns of precipitation in Portugal was developed
by J. F. Santos and M. M. Portela (Quantificação de
tendências em séries de precipitação mensal e anual em
Portugal Continental, paper presented at Seminário Ibero-
Americano sobre Sistemas de Abastecimento Urbano
SEREA, Lisbon, Portugal, 2008) based on 94 years (from
October 1910 to September 2004) of monthly precipitation
records in 144 rain gages regularly distributed throughout
the country. The monthly precipitation samples had a few
gaps that were filled by applying linear regression, which is
a common reconstruction technique of hydrologic time
series [Vicente-Serrano, 2006a]. The analysis of Santos
and Portela (presented paper, 2008) showed that most of
the trends denoted by the monthly and annual series were

Figure 1. Mean annual precipitation in Portugal mainland.
The dots represent the location of the 144 rain gages utilized
in the drought analysis.
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statistically meaningless, explained by the natural temporal
variability of the precipitation. A pronounced and general-
ized decrease in the precipitation was only detected in
March. However, the high spatial heterogeneity of the
precipitation makes it difficult to establish an overall pat-
tern. The same precipitation data was used in this paper to
analyze droughts based on the Standardized Precipitation
Index (SPI) [Guttman, 1999; McKee et al., presented paper,
1993].

2.1. Drought Index Calculation

[11] As previous mentioned, in the present paper the
Standardized Precipitation Index (SPI), originally developed
by McKee et al. (presented paper, 1993) was adopted to
assess the drought in mainland Portugal. The SPI, which has
become the most popular drought index during the last
2 decades [Vicente-Serrano, 2006a], has several advantages,
such as (1) great flexibility, as it can be applied at different
time scales [Edwards and McKee, 1997]; (2) less complex-
ity, comparatively to other indexes, as it requires relatively
simple and well set calculations [Guttman, 1998, 1999];
(3) adaptability to hydroclimatologic variables besides
precipitation [Seiler et al., 2002; Vicente-Serrano and
López-Moreno, 2005; López-Moreno et al., 2009]; and
(4) suitability to spatial representation, allowing comparison
between areas within the same region, as it is a normalized
index [Hayes et al., 1999; Lloyd-Hughes and Saunders,
2002; Vicente-Serrano, 2006a, 2006b; Bordi et al., 2004;
Loukas and Vasiliades, 2004].
[12] The SPI calculated at 1 month is mainly a meteoro-

logical drought index [Hayes et al., 1999], at time scales
between 3 and 6 months it can be considered an agricultural
drought index [Hayes et al., 1999; Yamoah et al., 2000], and
at time scales between 6 and 12 months it is considered a
hydrological drought index [Hayes et al., 1999; Komuscu,
1999; Vicente-Serrano, 2006a], becoming useful for moni-
toring the surface water resources [Vicente-Serrano and
López-Moreno, 2005].
[13] To ascertain the variability of both spatial and

temporal patterns for different types of droughts, in the
analysis carried out for mainland Portugal the SPI was used
at different time scales, namely at 1 (SPI1), 6 (SPI6), and
12 (SPI12) consecutive months; at 6 months of the dry season
(April to September, SPI6Apr-Sep); and at 12 months of the
hydrologic year (October to September, SPI12Oct-Sep). SPI1,
SPI6, and SPI12 account for the subannual variability of
droughts and SPI6Apr-Sep and SPI12Oct-Sep account for the
interannual variability.
[14] Originally, McKee et al. (presented paper, 1993)

adjusted a Gamma distribution function to the precipitation

series to compute the SPI index. Afterward, other authors
tested several distributions based on different time scales
and concluded that the Pearson type III distribution ensured
the best fit. This circumstance can be explained by the
higher flexibility of the Pearson type III distribution given
by its three parameters in comparison with the Gamma
distribution with only two parameters [Guttman, 1999;
Ntale and Gan, 2003; Vicente-Serrano, 2006a]. A Pearson
III distributed random variable x is written as

f xð Þ ¼ 1

a G bð Þ
x� g
a

� �b�1
e�

x�g
að Þ ð1Þ

where a, b, and g are shape, scale, and origin parameters,
respectively, for values of x such that x > 0. The term G(b) is
the Gamma function of b. In the applications carried out
x denotes precipitation and the parameters of the Pearson
type III distribution were estimated using the L-moments
method. According to Sankarasubramanian and Srinivasan
[1999], the L-moments method has advantages regarding
the conventional moments, especially when the size of the
sample increases, and with highly biased distributions.
[15] To compute the SPI series, the detailed formulation

provided by Vicente-Serrano [2005, 2006b] was followed.
The drought categories adopted the SPI limits proposed by
Agnew [2000], shown in Table 1.
[16] The spatial and temporal characterization of the

droughts was accomplished by means of principal compo-
nent analysis (PCA) and nonhierarchical cluster analysis. To
ascertain the drought patterns, both procedures were applied
to the SPI series, as many other authors have done success-
fully for the same purpose [Klugman, 1978; Karl and
Koscielny, 1982; Stahl and Demuth, 1999; Bonaccorso et
al., 2003; Vicente-Serrano et al., 2004].

2.2. Principal Components Analysis

[17] The principal component analysis (PCA) is a com-
mon way of identifying patterns in climatic data and
expressing the data in such a way as to highlight their
similarities and differences [Smith, 2002]. Others [Lins,
1985; Tipping and Bishop, 1999; Jolliffe, 2002; Singh et
al., 2009; Kahya et al., 2008a, 2008b] define the PCA
method as a technique applied to multivariate analysis for
dimensionality reduction, emphasizing patterns on data and
relations between variables and between variables and
observations. The original intercorrelated variables could
be reduced to a small number of new linearly uncorrelated
ones that explain most of the total variance [Rencher, 1998;
Bonaccorso et al., 2003]. Some aspects in the use of PCA
could be found, such as (1) PCAs are not affected by the
lack of independency in the original variables; (2) normality
is desirable but not essential; and (3) only an excessive
number of zeros could cause problems, which in the
applications envisaged is not a concern [Hair et al.,
2005]. As stated by Kalayci and Kahya [2006], the PCA
method does not require normalized data sets as long as the
data are not excessively skewed; since SPI is a normalized
variable, following the calculation procedure, there were no
needs to previously transform data, nevertheless some
normality assessment has been made previously to the
PCA application.

Table 1. Drought Categories According to the SPI Valuesa

Nonexceedance Probability SPI Drought Category

0.05 >1.65 extremely wet
0.10 >1.28 severely wet
0.20 >0.84 moderately wet
0.60 >�0.84 and <0.84 normal
0.20 <�0.84 moderate drought
0.10 <�1.28 severe drought
0.05 <�1.65 extreme drought

aValues are from Agnew [2000].

W03503 SANTOS ET AL.: VARIABILITY OF DROUGHTS IN PORTUGAL

3 of 13

W03503



[18] Considering k variables in a given time period i, Xi,1,
Xi,2, . . ., Xi,k, k principle components (PCs) are produced for
the same time period, Yi,1, Yi,2, . . ., Yi,k, using linear
combinations of the first ones, according to:

Yi;1 ¼ a11Xi;1 þ a12Xi;2 þ . . .þ a1kXi;k

Yi;2 ¼ a21Xi;1 þ a22Xi;2 þ . . .þ a2kXi;k

. . .

Yi;k ¼ ak1Xi;1 þ ak2Xi;2 þ . . .þ akkXi;k

:

8>>>>>>>><
>>>>>>>>:

ð2Þ

[19] In the applications developed the variables Xi,k refer
to SPI series, k is equal to the number of rain gages (144)
and i represents the length of SPI series in each rain gage.
For SPI1, SPI6, and SPI12, i varies from 1 to 94 � 12 =
1128, 1 to 94 � 12–5 = 1123, and 1 to 94 � 12–11 = 1117,
respectively, and both for SPI6Apr-Sep and SPI12Oct-Sep from
1 to 94.
[20] In the previous combinations the Y values are

orthogonal and uncorrelated variables, such that Yi,1
explains most of the variance, Yi,2 explains the reminiscent
amount of variance, and so on. The coefficients of the linear
combinations are called ‘‘loadings’’ and represent the
weights of the original variables in the PCs.
[21] PCs extraction could be based on variance/covariance

or correlation matrix of data with {a11, a12, . . ., a1k} being
the first eigenvector and {ak1, ak2, . . ., akk} being the
eigenvector of k order. Each eigenvector includes the
coefficients of the k principal component.
[22] Finally, the amount of variance explained by the first

PC is called the first eigenvalue, l1, the second is l2, so that
l1 � l2 � l3 � l4 . . . lk, since each eigenvalue represents
the fraction of the total variance in the original data and
explained by each component [Bordi and Sutera, 2001] so
that this proportion can be calculated as lj/

P
lj. The analysis

of the results of PCs can be focused on the eigenvalues, on
the correlations between PCs and the original variables
(factor loadings), or on the observation coordinates in the
PC (factor scores). In this paper, only the correlations
between the original data (SPI series) and the PCs were
used for classification purposes (that is, for choosing the
main PCs). Those correlations are stored in the factorial
matrix.
[23] To achieve more stable spatial patterns, a rotation of

the principal components with the Varimax procedure was
applied. This procedure provides a clearer division between
components, preserves their orthogonality, and produces
more physically explainable patterns [Richman, 1986;
Vicente-Serrano et al., 2004]. Kahya et al. [2008a, 2008b]
referred that the rotation simplifies the spatial structure by
isolating regions with similar temporal variations, being the
Varimax procedure the most common orthogonal method to
improve the creation of regions of maximum correlation
between the variables and the components. The patterns
defined in this way are referred as rotated principal compo-
nents (RPCs).

2.3. Nonhierarchical Cluster Analysis

[24] The Cluster analysis technique, similarly to the PCA
method, was chosen for its ability to divide the data set into

homogeneous and distinct groups having members with
similar characteristics [Shukla et al., 2000; Pulido-Calvo
et al., 2006]. Cluster analysis is a generic term for a variety
of statistical methods that can be used to evaluate the
similarity of individual objects in a set. A simple example
would be gathering a set of pebbles of different size, shape,
and color from a stream shore and sorting similar pebbles
into the same pile. This is an example of physical cluster
analysis. Statistical methods of cluster analysis achieve this
mathematically. The objects in such statistical methods are
data rather than real objects (e.g., pebbles).
[25] Using the calculated SPI data, the rain gages should

be grouped homogeneously so that similar SPI variations at
different time scales will be assigned to the same group,
while different variations will be grouped separately. A
mathematical criterion to calculate the classification and to
judge the quality of the classification must be used. This
question can be addressed by the K-means clustering
(KMC) method which can reassign each observation to a
different cluster with the nearest centroid [Rhee et al.,
2008]. Gong and Richman [1995] noted that nonhierarchi-
cal methods, such as the K-means algorithm, outperformed
hierarchical methods (the Ward’s method and the average
linkage method) when tested with precipitation data.
[26] In general, the K-means method will produce exactly

K different clusters of greatest possible distinction, with
the goal to (1) minimize variability within clusters and
(2) maximize variability between clusters. K-means cluster-
ing tries to move cases in and out of groups (clusters) to get
the most significant ANOVA results. As result of a K-means
clustering analysis, the means for each cluster on each time
scale (for example, at SPI6Apr-Sep there were 94 values) are
examined to assess how distinct the K clusters are. In this
paper, the means for each cluster of all dimensions
characterize a mean SPI pattern. Ideally, very different
means for most, if not all, dimensions used in the analysis
are obtained.
[27] The analysis requires that the number of groups or

clusters be established beforehand. This aspect is considered
as one of the major unresolved issues in the cluster analysis
since the number of groups is not known a priori [Kahya et
al., 2008a, 2008b]. For this reason in this study, the test was
repeated, forming different groups, according to the spatial
classification obtained with the PCA method, in order to
determine which classification best suited the problem
objective or would provide the clearest interpretation of
the results. Other authors such as Stooksbury and Michaels
[1991], DeGaetano [1996], and Rhee et al. [2008] have also
determined the appropriate number of clusters according to
the results of other data classification techniques. To eval-
uate the appropriateness of the classification, the Euclidean
distances between clusters was examined [Daniel, 1990;
Webster and Oliver, 1990; Hair et al., 2005].

2.4. Spectral Analysis: Fast Fourier Transform

[28] Spectrum analysis is concerned with the recognition
of cyclical patterns in the data. The purpose of the analysis
is to decompose a complex time series with cyclical
components into a few underlying sinusoidal (sine and
cosine) functions of particular wavelengths. In essence,
performing spectrum analysis on a time series is like putting
the series through a prism in order to identify the wave-
lengths and importance of underlying cyclical components.
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As a result of a successful analysis, one might uncover just a
few recurring cycles of different lengths in the time series of
interest [Fleming et al., 2002].
[29] In this paper, the fast Fourier transform algorithm, or

FFT, was used to identify periodicities in the time series of
the SPI patterns obtained with the cluster analysis and the
PCA method. For the time series analysis, spectral methods,
such as the Fourier transform, have been widely imple-
mented. Reviews on the theoretical aspects of Fourier
transform are abundant in the literature [Lo et al., 1975;
Park, 1998; Pasquini et al., 2006; Gutiérrez-Estrada and
Pulido-Calvo, 2007]. Since these are discrete time series the
sampling frequency has been established between 0.0 and
0.5 in order to avoid the rebound effects of the frequencies
(aliasing) [Bloomfield, 1976]. The FFT provides a pair of
values for every wave frequency (Fourier coefficients),
which are considered as a complex number with a cosinu-
soidal component (real part) and a sinusoidal one (imaginary
part). Both values can be combined for the periodogram
calculation which is a plot of energy versus frequency
[Park, 1998; Küçük et al., 2009].

3. Results

3.1. Principal Components Analysis: Spatial
Variability of Droughts

[30] On the basis of 94 years of monthly precipitation
in the 144 rain gages schematically located in Figure 1,
144 series of Standard Precipitation Indexes were obtained
for each time scale. As previously mentioned, the length of
each SPI series is equal to 94 � 12 = 1128, 94 � 12–5 =
1123, 94 � 12–11 = 1117, for the time scales of 1, 6, and
12 continuous months (SPI1, SPI6, and SPI12, respectively)
and equal to 94 when referred to the 6 months of the dry
semester (SPI6Apr-Sep from April to September) or to the
12 months of the hydrologic year (SPI12Oct-Sep from
October to September). For each time scale, the 144 series
of the SPI are comparable as they represent normalized
values, according to the SPI underlying concept.

[31] Regarding the PCA and taking into account the
variance explained by each rotated component, three main
patterns or RPCs, F1, F2, and F3, were identified. These
three patterns explain about 75% of the total variance in the
original SPI series, for the SPI at 1, 6, and 12 months, and
about 70% for the SPI at 6 months from April to September
and for the SPI at 12 months from October to September
(Figure 2).
[32] The spatial extent of the first three component series

(components F1, F2, and F3) was characterized by mapping
the values of the factorial matrix. As previous mentioned,
for a given time scale this matrix contains the correlations
between each component (F1, F2, or F3) and the SPI series
at the 144 rain gages. For that purpose the Kriging spatial
interpolation method [Oliver and Webster, 1990] available
on Surfer version 8.01 (http://www.goldensoftware.com/
products/surfer/surfer.shtml) was utilized (Figure 3). The
results achieved are represented in Figure 3 along with the
limits of the main Portuguese watersheds.
[33] Figure 3 shows that between the first two compo-

nents, F1 and F2, the regions with significant correlation
(higher than 0.7) do not overlap, being clearly spatially
disjunctive. For all the SPI time scales, the first component
highlights an area located in the south of Portugal and it
explains between 30% and 37% of total variance (Figure 2).
This is the component that explains the largest area within
mainland Portugal when comparing with the others RPCs.
In some rain gages, the correlations among the values of this
component and of the SPI series were higher than 0.8 which
means a clear individualized pattern.
[34] The second component, F2, explains around 30% of

the total variance for SPI1, SPI6, and SPI6Apr-Oct, being less
important for SPI12 and SPI12Oct-Sep, with less variance
explained than the component three (F3 of Figure 2).
Nevertheless, it is overwhelming that F2 is mainly repre-
sentative of the northwestern part of Portugal (Figure 3). For
SPI6 and SPI12 this second component relates negatively
with the SPI series. In general terms, the third component
F3 highlights a central region which confines with the
regions identified by F1 and F2, and it relates negatively

Figure 2. Percentage of variance explained by first three components of PCA, F1, F2, and F3.
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Figure 3. Spatial distribution of the values of the matrix correlation. Components F1 and F2 of SPI at
1, 6, and 12 consecutive months (SPI1, SPI6, and SPI12, respectively); at 6 months from April to
September (SPI6Apr-Sep); and at 12 months from October to September (SPI12Oct-Sep) (asterisks indicate
negative correlations).
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with the original series in the case of SPI6, SPI12, and
SPI12Oct-Sep.
[35] The previous results indicated that with the three

main components F1, F2, and F3 a spatial classification is
achieved, with two well-defined regions, one located in the
north and the other in the south of Portugal and with an
intermediate region that promotes the transition from the
wet north to the arid and semiarid south. The spatial
classification was similar for all the time scales used.
[36] It should be stressed that from a hydrological point

of view the two previous regions are quite different: the
north and especially the northwestern region has much more
water along with a very regular regime; toward south, the
water availability decreases progressively (as denoted by
Figure 1) and the regime becomes more and more irregular
with more than 75% of the precipitation occurring during a
few months of the wet semester.

3.2. Nonhierarchical Cluster Analysis: Spatial
Variability of Droughts

[37] For all the SPI series (SPI1, SPI6, SPI12, SPI6Apr-Sep,
and SPI12Oct-Sep), the spatial grouping obtained with the
cluster analysis was similar to the one given by the PCA.
For example, Figure 4 shows the spatial distribution of the
clusters formed with the SPI6Apr-Sep series considering two,
three, and four classification groups.
[38] To evaluate the appropriateness of the classifications,

the Euclidean distances between clusters were examined.

These distances for the clusters analysis with two, three, and
four groups are shown in Table 2 for the SPI6Apr-Sep series.
These results show that the best grouping is with three
clusters.
[39] Note that clusters 1 (southern rain gages) and 2

(northern rain gages) were relatively more close (Euclidean
distance = 0.67) in the classification with two groups in
comparison with clusters 1 (northern rain gages) and 3
(southern rain gages) (Euclidean distance = 0.88) in the
classification with three groups. So, three different regions
that are well-defined spatially (north, central, and south
regions) can be considered (Figure 4b). Despite the fact that,
compared to the PCA, there is a central region clearly
delimited (Cluster 2), the spatial classification that resulted
from the cluster analysis is similar to the one obtained with
the PCA method (Figure 3), which suggests that both
methods can be used to identify spatial areas with different
temporal patterns.
[40] The classification with four groups was rejected

because the clusters 2 and 3 (northern rain gages)
(Figure 4c), which conform approximately the cluster 1
on the analysis with three groups (Figure 4b), presented
Euclidean distances more close to the cluster 4 (southern
rain gages) of the analysis with four groups in comparison
with the classification with three groups (Table 2). So, in
Figure 4c the Euclidean distances between cluster 2 (northern
rain gages) and 4 (southern rain gages) was 0.72 and
between 3 (northern rain gages) and 4 (southern rain gages)

Figure 4. SPI6Apr-Sep series. Comparison of clusters analysis with (a) two, (b) three, and (c) four
classification groups.
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was 0.14, while in Figure 4b the Euclidean distance between
cluster 1 (northern rain gages) and 3 (southern rain gages)
was 0.88.

3.3. Temporal Pattern and Areal Evolution
of Droughts

[41] The seasonal SPI6Apr-Sep series were chosen for this
analysis as they reflect the driest period in Portugal, from
the middle of spring to the end of summer, when droughts
are most critical as they affect the agriculture sector which is
in Portugal the foremost water consuming sector. Also, the
spatial classification that resulted from the PCA, Figure 3,
showed that both subannual (SPI1, SPI6, and SPI12) or
interannual (SPI6Apr-Sep, SPI12Oct-Sep) time scales of SPI led
to similar patterns which makes valid to continue the
analysis based on one of those scales.
[42] The temporal evolution of the components F1 and F2

of the PCA and of cluster 3 and 1 for three classification
groups is shown in Figure 5. Figure 5 shows that the

southern part of Portugal (component F1 and cluster 3)
suffered several extreme droughts, starting in the beginning
of the 1920s, mid 1930s, 1940s, 1950s, and mid 1970s.
Some of those droughts were particularly severe as they
were prolonged in time such as the one in the mid 1950s. In
the northwestern part of Portugal (component F2 and
cluster 1), although fewer drought events were detected,
two extreme droughts are quite clear: one in the mid 1930s
and the other in the beginning of the 1990s. The first
episode was short and the second one more prolonged in
time.
[43] The results for each area, when comparing both

methods (PCA and cluster analysis), are quite similar. In
fact the Pearson correlation coefficient between PCA-F1
and cluster 3 was 0.964 and between PCA-F2 and cluster 1
was 0.938, with these high values clearly expressing the
proximity of the results.
[44] The differences between the northwestern and south-

ern areas can be related with the water availability and
temporal variability, the former region having more water
and a regular hydrologic regime, as previously mentioned.
[45] According to PCA and once more for SPI6Apr-Sep,

Figure 6 shows the areas of Figure 3 with correlations
higher than 0.7. For each one of those areas the percentages
of area affected by moderate, severe, and extreme drought
(according to the SPI categories of Table 1) were computed.
For that purpose an influence area was assign to each rain
gage by applying the Thiessen polygon method [Vicente-
Serrano et al., 2004] using Arcgis 9.3. The area attributed to
a specified drought category was given by the cumulative
areas of the rain gages with values of SPI6Apr-Sep within the
limits that define such drought category. The results
achieved are presented in Figure 7.
[46] Figure 7 shows that in general terms, the southern

part of Portugal (F1) is more affected by drought events
than the northwestern part (F2). From 1910 to 2004 the

Table 2. SPI6Apr-Sep Series
a

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Two Classification Groups
Cluster 1 0 0.449914
Cluster 2 0.670756 0

Three Classification Groups
Cluster 1 0 0.221728 0.778282
Cluster 2 0.470880 0 0.351966
Cluster 3 0.882203 0.593267 0

Four Classification Groups
Cluster 1 0 0.207486 0.655584 0.934866
Cluster 2 0.455507 0 0.289587 0.524088
Cluster 3 0.809681 0.538133 0 0.019968
Cluster 4 0.966885 0.723939 0.141311 0

aEuclidean distances between clusters for analysis with two, three and
four classification groups (distances below diagonal and squared distances
above diagonal).

Figure 5. Temporal evolution of components F1 and F2 of the PCA analysis for data series SPI6Apr-Sep
and means of each cluster for analysis with three classification groups.
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number of events affecting more than 50% of the area was
17 in south and 12 in the north. From 1910 to 1930, 20% of
the southern region was frequently affected by droughts of
moderate category, whereas the rest of the period experi-
enced less drought events but with episodes with very high

intensity, especially in mid 1950s where the drought affected
the entire southern region (100%) and even had reflexes in
the northern region. In this last region a 3-year isolated
episode took place from 1988 to 1990, being that the 1989
drought affected the whole area (100%). The most wide-
spread extreme droughts occurred in the southern region
with 69% and 73% of area affected in 1944 and 1954,
respectively, and in the northern region with 43% in 1954
and 1989.

3.4. Frequency Estimation With Spectral Analysis

[47] The fast Fourier transform technique, or FFT, has
been used to analyze the cyclical behavior of the SPI
patterns obtained with the PCA for the southern and northern
areas of Portugal (F1 and F2, respectively, Figure 3) and with
the equivalent clusters obtained with the cluster classifica-
tion selected (three classification groups, Figure 4b).
Figure 8 shows the periodogram plots of the SPI6Apr-Sep
patterns. In the cluster 3 and PCA-F1 (southern area,
Figure 4b) there is one clear peak in the periodogram plot.
In the cluster 1 and PCA-F2 (northern area, Figure 4b) there
are two clear peaks in the periodogram plot.
[48] The frequency is the number of cycles per unit time

(where each observation is treated as one unit of time). Thus
in the cluster 3 and PCA-F1 the peak frequency of 0.28
corresponds to a period (the number of units of time
necessary to complete one full cycle) of 3.6 years. Since
each value of the SPI6Apr–Sep is computed in an annual
basis, the results suggest that there is a strong 3.6-year cycle
in such SPI index in the southern area. This cyclical behavior
can be observed in Figure 5 (PCA-F1 and cluster 3) where
between 1953 and 1976 peaks representing drought occur-
rences occur approximately every 3.6 years.
[49] In the cluster 1 and PCA-F2, the peak frequency of

0.07 corresponds to a period of 13.4 years (a clear peak in
both spectral analyses) and the frequency of 0.41 to a period
of 2.4 years (a clearer peak in spectral analysis of cluster 1).
These results suggest that there are a frequent 2.4-year and

Figure 6. SPI6Apr-Sep. Areas of Figure 3 with correlations
higher than 0.7.

Figure 7. SPI6Apr-Sep series. Temporal evolution of the percentage of area affected by different drought
categories. Two main components of PCA (F1 and F2).
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13.4-year cycles in the SPI index in the overall northern
area. In Figure 5 (PCA-F2 and cluster 1), drought events
from severe to extreme are observed approximately each
13.4 years. In 1925 one severe drought was observed that
was repeated with higher intensity in 1937 (extreme
drought), this is to say, approximately 12–13 years later.
The following drought peak (severe drought) occurred in
1949, which suggests again the long-time cycle obtained.
Also the short-time cycle of 2.4 years can be observed at
some time periods (Figure 5), as for example, the severe
droughts of 1949 and 1951 or the moderate droughts of
1969 and 1972. Figure 8 shows once more that the results
provided by the PCA and by the cluster analysis are similar,
denoting that only one of those methods needs to be applied
to characterize the droughts in Portugal.

4. Discussion and Conclusions

[50] As stated by Wilhite and Svoboda [2000], the first
step for managing drought risk assessment in a given region
should be dividing the region into subregions according to
spatial drought variability. In this paper the spatial pattern
for the droughts in mainland Portugal is presented. Also
some features related with the temporal periodicity of
droughts were obtained. The characterization thus achieved
can provide guidance for drought risk assessment for exam-
ple, by highlighting the regions more prone to droughts,
where additional storage capacity is required for drought
protection.

[51] The drought events were characterized by means of
the Standardized Precipitation Index (SPI) applied to dif-
ferent time scales (1, 6, and 12 consecutive months and
6 months from April to September and 12 months from
September to October). For that purpose 94 years (from
October 1910 to September 2003) of monthly precipitation
in 144 Portuguese rain gages were used. To identify the
spatial patterns of the SPI series, principal component
analysis (PCA) and nonhierarchical cluster analysis (KMC)
were applied.
[52] The study showed that for the different times scales,

both methods resulted in an equivalent areal zoning, with
three regions with different behaviors: the north, the center,
and the south of Portugal. This three regions are consistent
with the precipitation spatial distribution in Portugal main-
land, which in general terms decrease from north to south
[Santos, 1983; Corte-Real et al., 1998; Santos and Portela,
presented paper, 2008], with the central mountainous region
representing the transition between the wet north and the
progressively dry south. As the precipitation decreases the
hydrological regime becomes more irregular [Portela and
Quintela, 2006] and consequently more prone to droughts.
[53] The similarity of the results achieved by PCA and

the KMC analysis were an indicative that both methods can
be used for drought classification purposes, regarding
spatial and temporal pattern analysis. However, the not so
clear procedure of evaluating the optimum number of
clusters based on the Euclidean distances reinforces the
idea that the loadings produced by PCAs provide a more

Figure 8. Spectral analysis of SPI6Apr-Sep patterns (left) obtained with the PCA considering groups F1
(south) and F2 (northwestern); (right) two main classification groups (cluster 1 and 3) for KMC.
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clear and simple method to recognize distinct temporal
patterns.
[54] Previous studies have shown that during positive

phases of the North Atlantic Oscillation (NAO), negative
SPI averages (indicative of drought conditions) are recorded
in southern Europe, whereas the opposite trends occur
during negative phases [Trigo et al., 2002; López-Moreno
and Vicente-Serrano, 2008]. In general, this trend is
observed in the SPI patterns obtained in this study. Accord-
ing to López-Moreno and Vicente-Serrano [2008], for
example, the years 1920, 1957, 1961, and 1990 were
identified as having positive phases of the NAO and in
our work these years have showed strong negative SPI
values when short, medium, and long time scales (1, 6, and
12 months) were considered.
[55] Spectral analysis (energy versus frequency) was

particularly useful to detect periodical signals in the SPI
time series patterns. The spectral analysis derived from the
PCA and the KMC results by applying fast Fourier
Transform algorithm were equivalent denoting more fre-
quent cycles of dry events in the southern region (droughts
from moderate to extreme approximately every 3.6 years)
than in the northern region (droughts from severe to extreme
approximately every 13.4 years). The drought short-time
periodicity observed in the southern region might be asso-
ciated with the immediate and significant influence of the
North Atlantic Oscillation (NAO) on the precipitation
regimes in the Atlantic and Mediterranean sectors [López-
Moreno et al., 2007; López-Moreno and Vicente-Serrano,
2008; Küçük et al., 2009]. Thus Polonskii et al. [2004] and
Küçük et al. [2009] found that the spectra of the NAO index
contain significant peaks corresponding to periods of 2–4
and 6–10 years. However, explaining relations between the
NAO and the periodicity of more than 10 years, detected in
the northern region, remains a challenging task that should
include the study of the interaction of other regional
phenomenons such as the soil moisture oscillation [Sims
et al., 2002; Abbot and Emanuel, 2007].
[56] It may be noted that the conclusions of the spectral

analysis need to be reinforced through the research of the
process of energy variations in terms of when the drought
events occur (energy versus time frequency) which could be
developed in future works using the wavelet transform
analysis [Küçük et al., 2009]. Thus inferences related with
the connection among frequency peaks and effective cycle
drought patterns in the data and with the translation of
such drought cycles into occurrence probabilities could be
obtained. Likewise, additional research needs to be carried
regarding the physical mechanisms that explain the results
achieved in connection to other local factors, such as the
parameters that control temporal changes in the influence of
the NAO phases on Portugal droughts or the analysis of other
global teleconnection patterns (ENSO and east Atlantic-west
Russia, EAWR).
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