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Abstract
Lijiang River is an essential drinking water source and natural scenery in the Guilin City. For the �rst time, implications of rainstorm were taken into
consideration by investigating spatial and temporal variation of dissolved heavy metals (HMs) in the Lijiang River water. A total of 68 water samples were
collected during low �ow (normal) season and high �ow (rainstorm) season from 34 sampling sites. Dissolved HMs including Cr, Mn, Co, Cu, Zn, As, Cd, Sb,
and Pb were found to meet the respective drinking water standards, while higher concentration was observed after the rainstorm season, except for Cr.
Multivariate statistical analysis showed Co, Cu, Cr, Zn, Sb, and Pb in normal season are mainly controlled by anthropogenic sources. Furthermore, higher
concentration of Mn, Cu, Cd, Pb, Co and Zn during the high �ow season is attributed to rainstorm. The water quality index (WQI) showed good grades, and
comparatively lower in rainstorm season. The results of health risk assessment revealed that HMs in Lijiang River pose limited health risk, however, As poses
potential health risk during rainstorm season. It is suggested to adopt preventive measures in mining activities and industrial waste-water discharge at the
river’s upstream and downstream.

1. Introduction
The quality of water has signi�cant impacts on human health and the ecological environment. Natural processes such as weathering, erosion, hydrological,
climatic changes, volcanic activities, and landscape characteristics could be to the main factors of water quality deterioration (Ai et al., 2015; Meng et al.,
2016). Besides, extensive technological developments coupled with a growing population have led to an increased demand for water, which in turn may bring
about a decline in the quality and quantity of water resources globally. Anthropogenic impacts such as coal combustion, industrial or agricultural wastes,
sewage discharge, mining, and transportation are among the manmade causes of rivers water pollution (Rakotondrabe et al., 2018; Villa-Achupallas et al.,
2018; Wang et al., 2017). Taking into account the amount of freshwater per capita in China (80% sourced from the rivers) which is 1/3 of the global average,
making it top priority issue to focus on.

HMs in both dissolved and suspended phases are known as the most harmful types in aquatic environment among various of pollutants (Shotyk et al., 2017).
Although certain trace elements in limited concentration are indispensable for organisms, they pose threats to human or ecological security when exceed
safety thresholds (Chowdhury et al., 2016). HMs such as As, Cd, Cr, Cu, Pb, Hg, Ni, Zn which can cause cancer, minamata, bone pain, and other illnesses are
listed as the priority toxic pollutants (Strady et al., 2017). According to the health risk index, arsenic is considered the most signi�cant pollutant for non-
carcinogenic and carcinogenic problems and is a major contributor to chronic risk (Shahab et al., 2019; Zeng et al., 2015). It was reported that about
6.8 million people in Bangladesh lived in high dosage of As (Chakraborti et al., 2010). The researches in Brazil also illustrated that Cr, Mn, and Ni pose non-
carcinogenic risks (Ferreira et al., 2020). Therefore, HMs level in drinking water resource should be clari�ed for the sake of public health safety.

The investigation of distribution, source identi�cation, and health risk assessment of dissolved HMs in the rivers of China have been carried out previously
(Wang et al., 2017; Xiao et al., 2019; Zhao et al., 2018). However, more attentions should be paid on the rivers in karst areas. Karst aquifers have special
structures, geological backgrounds, hydrodynamic conditions, and hydro-chemical characteristics (Zhang et al., 2014), which may affect the migration and
transformation of pollutants into the water. The Lijiang River is a typical karst river which the bedrock is characterized by the pure and thick carbonate strata
(Xu et al., 2016). Due to agricultural, industrial and leisure activities, concentration of HMs in the sediments of Lijiang River are much higher than background
and standard level (Xiao et al., 2021; Xu et al., 2016). Due to recent development trend in China, this relatively small watershed being one of the top tourist
destinations, is hosting nearly 100 million travelers annually (Shahab et al., 2020). Recent urbanization has caused environmental challenges such as road
dust HMs sourced from fuel consumption (Shahab et al., 2020). These are on top of the usual industrial, residential, and agricultural contaminants that are
daily entering the river without treatment.

Lijiang River is the main source of drinking water for the millions citizens in the Guilin city (Xiao et al., 2021). As rainy and humid monsoon is common climate
in Guilin all the year, rainstorms could signi�cantly affect the quality of Lijiang water. Rainstorm runoff is one of the key drivers on the rivers’ water quality
deterioration, carries and releases contaminants from the point and non-point sources to the consumable waterbodies (Ma et al., 2015). Reports of HMs in
Lijiang basin are alarming (Wu et al., 2020; Xiao et al., 2021; Xu et al., 2016), hence, it is essential particularly to investigate the in�uence of rainstorm in the
study area. To the best of our knowledge, this is the �rst time to take the climate conditions into account in studying the dissolved HMs of Lijiang River water.
In this study, a total of 68water samples along the Lijiang River were collected systematically, to analyze nine dissolved HMs (ie: Cr, Mn, Co, Cu, Zn, As, Cd, Sb,
and Pb). The aims are: (1) to investigate the spatial and temporal distribution characteristics and identify the sources of dissolved HMs in the Lijiang River
water; (2) to evaluate the water quality and health risks of dissolved HMs in Lijiang River in different �ow seasons through the water quality index and health
risk assessment; and (3) to discuss the effects of rainstorm on the dissolved HMs and aquatic environment of the study area.

2. Materials And Methods
2.1. Study area

The Lijiang River (109°45'–110°56'E, 24°38'–25°55'N) �ows from the north toward the south of Guangxi province in southern part of China (Fig. 1). As one of
eight tributaries of the Pearl River (or the Zhujiang River), Lijiang River is approximately 164 kilometers in length and originates from Maoer Mountains in hilly
areas of Xing'an County that locates in the north of Guangxi province. The Lijiang River passes through the Guilin city from Lingchuan County to the
Yangshuo County. At the downstream in Pingle County, it connects with Guijiang River and further joints to the Pearl River. The subtropical climate of the study
area has monsoon-like weather. The average annual precipitation and temperature of the Lijiang basin is ~ 1890.4 mm and ~ 19.2°C (Xiao et al., 2021).Lijiang
River is situated in the typical karst area characterized by the pure and thick carbonate strata (Xu et al., 2016).Karst aquifers have special structures,
geological backgrounds, hydrodynamic conditions, and hydro-chemical characteristics (Zhang et al., 2014), which may bring higher risk of pollutants going
into the water. Due to the increase of anthropogenic activities (tourism, mining and industrial), HMs in Lijiang aquatic environment accumulated higher than
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the background values (Xiao et al., 2021; Xu et al., 2016). As the signi�cant drinking water source for local resident, it is essential to pay more attentions on the
water quality of Lijiang River.

2.2. Sample collection and analysis
A total of 68water samples were collected from 34 sites throughout the Lijiang River in two hydrologic periods. Sample Collection was carried out during May
(low �ow season) and August (high �ow season) after the rainstorm in 2019 (Fig. 1). Each collected water sample was poured into a pre-cleaned polyethylene
bottle and acidi�ed with 1 mol/L HNO3. After sealing and labeling the bottles, the water samples were stored in a dark refrigerator at 4°C. Prior to measuring
the concentrations of Cr, Mn, Co, Cu, Zn, As, Cd, Sb, and Pb, the water samples were �ltered with 0.45µm polycarbonate membrane, and then analyzed by an
inductively coupled plasma mass spectrometry (Nexion 350×; Perkin Elmer Ltd., USA). Standard materials (GSB 04-1767-2004) and blank samples were set
for quality control. The detection limits were ≤ 10 ng/L and the recoveries ranged between 93 and 105%.

2.3. Water quality index
The water quality index (WQI) is used to evaluate the quality of aquatic environment in this work. It reveals the impact of different parameters in the water
samples. The WQI is calculated according to the equation as below (Wang et al., 2017):

WQI = Σ [(Wi× (Ci / Si)] × 100 (1)

Where Wi is the weight of water parameter i which displays the relative importance of parameter i among all the water parameters for drinking purposes, it is
calculated according to the factor loading of parameter i and the eigenvalues from the PCA results (Table S2). Ci is the measured concentration of HM i in
samples. Si is the guideline value of HM i in the Chinese drinking water standards (GB 5749 − 2006). According to the value of WQI, the water quality of
aquatic environment can be classi�ed into �ve categories (Xiao et al., 2019), ie: 0 ≤ WQI < 50 suggests the water quality is excellent; 50 ≤ WQI < 100 suggests
is good; 100 ≤ WQI < 200 is poor; 200 ≤ WQI < 300 is very poor; WQI ≥ 300 suggests the water is undrinkable.
2.4. Health risk assessment

The health risk assessment method was applied to quantify health risks (carcinogenic and non-carcinogenic) due to different exposure routes from HMs. In
the health risk assessment model, the direct hand-mouth ingestion intake and dermal contact intake are usually considered as the two main exposure
pathways for HMs in aquatic environment (Xiao et al., 2019). The exposure average daily dose for direct ingestion (ADDing) and dermal absorption (ADDder)
can be evaluated using the following equations (Chai et al., 2021):

ADDing= (Cw× IR × EF × ED) / (BW × AT) (2)

ADDder= (Cw × SA × Kp × ET × EF × ED× 10− 3) / (BW × AT) (3)

Where Cw is the mean concentration of each HM in the water sample (µg/L). The explanation and values of the IR, EF, ED, BW, AT and ET are showed in Table
S1. The values of these parameters are referenced from US EPA (2002) and Wang et al. (2017). Kp is the dermal permeability coe�cient of compound in water
(cm/h, as presented in Table 3).
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Table 3
Reference dose (RfD), hazard quotient (HQ) and hazard Index (HI) for dissolved heavy metals in Lijiang River water.

Elements Kp
c RfDing RfDder Adult Children

HQing

normal
rainstorm

HQder

normal
rainstorm

HI

normal
rainstorm

HQing

normal
rainstorm

HQder

normal
rainstorm

HI

normal
rainstorm

Cr 1* 1×10− 

3

3 0.075 1.48E-
02

2.28E-
03

3.09E-
03

4.77E-
04

1.79E-
02

2.76E-
03

2.21E-
02

3.41E-
03

9.11E-
03

1.41E-
03

3.12E-
02

4.82E-
03

Mn 1* 1×10− 

3

24 0.96 2.74E-
02

4.04E-
02

3.57E-
03

5.27E-
03

3.09E-
02

4.57E-
02

4.08E-
02

6.03E-
02

1.05E-
02

1.56E-
02

5.14E-
02

7.59E-
02

Co 1* 4×10− 

4

0.3 0.06 1.19E-
02

1.14E-
01

1.24E-
04

1.19E-
03

1.20E-
02

1.15E-
01

1.77E-
02

1.70E-
01

3.66E-
04

3.52E-
03

1.81E-
02

1.74E-
01

Cu 2* 1×10− 

3

40 8 4.52E-
04

6.03E-
04

1.18E-
05

1.57E-
05

4.64E-
04

6.18E-
04

6.75E-
04

9.00E-
04

3.48E-
05

4.64E-
05

7.10E-
04

9.47E-
04

Zn 1* 6×10− 

4

300 60 1.35E-
03

1.94E-
02

2.12E-
05

3.04E-
04

1.37E-
03

1.97E-
02

2.02E-
03

2.90E-
02

6.25E-
05

8.97E-
04

2.08E-
03

2.99E-
02

As 2* 1×10− 

3

0.3 14 1.03E-
01

1.05E-
01

1.15E-
05

1.17E-
05

1.03E-
01

1.05E-
01

1.54E-
01

1.57E-
01

3.41E-
05

3.47E-
05

1.54E-
01

1.57E-
01

Cd 1* 1×10− 

3

0.5 0.025 1.10E-
03

5.48E-
03

1.14E-
04

5.72E-
04

1.21E-
03

6.05E-
03

1.64E-
03

8.18E-
03

3.38E-
04

1.69E-
03

1.97E-
03

9.87E-
03

Sb 3* 1×10− 

3

0.4 0.008 1.23E-
02

1.71E-
02

3.22E-
03

4.47E-
03

1.55E-
02

2.16E-
02

1.84E-
02

2.56E-
02

9.49E-
03

1.32E-
02

2.79E-
02

3.88E-
02

Pb 1* 1×10− 

3

1.4 0.42 9.78E-
04

2.88E-
02

1.70E-
05

5.01E-
04

9.95E-
04

2.93E-
02

1.46E-
03

4.30E-
02

5.02E-
05

1.48E-
03

1.51E-
03

4.44E-
02

1*Wang et al. 2017; 2* Xiao et al. 2019; 3* De Miguel et al. 2007.

Normal font: health risk in normal season; Bold italics: health risk in rainstorm season.

 

The hazard quotient (HQ) and hazard index (HI) shows the potential non-carcinogenic risks of HMs. These methods are developed according to the
individual’s possibility; due to exposure to a certain-dosage of contaminants (Alidadi et al., 2019). The HQ is, in fact, the ratio of the exposure dose (ADD) as
compared to the reference, while HI is the accumulated HQs for each element. When the value of HQ or HI ≥ 1, the non-carcinogenic risk or adverse effects on
human health should be considered; seriously, while for the values ≤ 1, the hazard is negligible. The HQ and HI obtained via using the below equations:

HQ = ADD / RfD (4)

HI = Σ (HQing + HQder) (5)

Where RfD is the reference dose (µg·kg− 1·d− 1), RfDing and RfDder are shown in the Table 3.

2.5. Multivariate and geostatistical analysis
In order to compare the spatial differences of 34 stations at different levels and identify the source of HMs, software including Origin2017, SPSS 19.0 and
Microsoft Excel 2010were applied to perform statistical analyses. The analysis of variance (ANOVA) were used to analyze the signi�cant variation of HMs
concentration among different sampling sites. Pearson coe�cients were determined by SPSS 19.0whichquantify the correlations among HMs. Principal
Component Analysis (PCA) was adopted to investigate associations between the sampling sites and HM loads (Li et al., 2011; Ribeiro et al., 2018). ArcGIS
10.5 was employed to provide spatial distribution maps of HMs along the river. Inverse distance weighting method (IDW) was applied to estimate the value of
non-sampling points by calculating the weighted average value of observed data from surrounding area (Teegavarapu and Chandramouli, 2005), which is
widely used in hydro-chemistry.

3. Results And Discussion
3.1. Concentration of dissolved HMs in Lijiang River water

The concentration of dissolved HMs in Lijiang River water during normal and rainstorm seasons are compared with drinking water standards (China, USEPA,
and WHO) and listed in Table 1. The average pH and temperature of Lijiang River water sample was 8.31 and 26.0°C. The coe�cient of variation (CV) for
dissolved HMs in normal and rainstorm seasons ranged from 23.46 to 320 and 25.87 to 117.8, respectively, indicating that the distribution of HM
concentration in Lijiang River water is disturbed by human activities. The ANOVA analysis results indicated that the concentrations of HMs except for As in
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normal and rainstorm seasons were signi�cantly different (p < 0.05%, ANOVA), which revealed rainstorm had an impact on the concentration of HMs in the
water of Lijiang River.

Table 1
Concentration of dissolved heavy metals in Lijiang River, China (n = 34).

Elements

(µg/L)

Normal season Rainstorm season One-
way
ANOVA
analysis
3

Guidelines for
Drinking Water

min max mean median SD 1 CV 2 min max mean median SD 1 CV 2 China
4

WHO
5

US
PE
6

Cr 0.02 2.72 1.62 1.66 0.38 23.46 0.15 0.48 0.25 0.23 0.07 27.86 0.000 50 50 10

Mn 2.26 59.80 23.96 20.78 10.75 44.87 20.32 83.14 35.39 30.3 16.44 46.45 0.001 100 400 na

Co 0.02 0.22 0.13 0.12 0.039 30 0.28 3.06 1.25 1.18 0.63 50.38 0.000 1000 na na

Cu 0.10 1.10 0.66 0.64 0.16 24.24 0.53 2.21 0.88 0.75 0.36 40.83 0.002 1000 2000 na

Zn 5.14 51.47 14.81 14.48 8.13 54.89 91.01 331.4 212.6 216.9 73.31 34.48 0.000 1000 3000 na

As 0.17 2.91 1.13 1.08 0.40 35.40 0.69 8.81 1.15 0.93 1.36 117.8 0.935 10 10 10

Cd 0.00 0.06 0.02 0.02 0.017 85 0.05 0.18 0.10 0.09 0.03 36.16 0.000 5 3 5

Sb 0.00 0.30 0.18 0.18 0.067 37.22 0.14 0.50 0.25 0.24 0.06 25.87 0.000 5 20 6

Pb 0.00 0.68 0.05 0.00 0.16 320 0.56 4.02 1.47 1.07 0.89 60.47 0.000 10 10 na

1 SD: standard deviation; 2 CV: the coe�cient of variation (%); 3 ANOVA single factor p-value; 4 Chinese Ministry of Health (China 2002); 5 WHO (the World
Health Organization); 6 the United States Environmental Protection Agency (EPA 2004).

 

The average concentration of HMs in the normal season water samples were orderly as Mn (23.96 µg/L) > Zn (14.81 µg/L) > Cr (1.62 µg/L) > As (1.13 µg/L) > 
Cu (0.66 µg/L) > Sb (0.18 µg/L) > Co (0.13 µg/L) > Pb (0.05µg/L) > Cd (0.02 µg/L). Whereas in rainstorm season the trend was: Zn (212.6µg/L) > Mn (35.39
µg/L) > Pb (1.47 µg/L) > Co (1.25 µg/L) > As (1.15 µg/L) > Cu (0.88 µg/L) > Sb (0.25 µg/L) > Cr (0.25 µg/L) > Cd (0.10 µg/L). Mn and Zn are consistently the
most abundant metals in water samples during both periods, while Cd was the lowest. Although there were �uctuations in concentration of HMs; but were all
within the drinking water standard limits in both normal and rainstorm seasons. It is found that the concentration of Pb, Zn, Co, Cd, Mn, Sb, and Cu increased
in rainstorm water samples, especially for Pb, Zn, and Co, which 10 times higher than normal season. However, Cr decreased in rainstorm season, which
probably due to the dilution effect (Olı́as et al., 2004).

According to Table S3, HMs in Lijiang River water was compared with other rivers. Comparison shows that concentration of Mn, Co and Zn in Lijiang River is
much higher than the world average background value, while Cr, Cu and Cd values were in the similar level (Klavinš et al., 2000). Although Pb at Lijiang River in
normal season was lower than the world background value, but it increased signi�cantly in the rainstorm season which was 7 times of the world background
(Klavinš et al., 2000). Compared with other rivers in China, Cr, Cu, As and Sb are generally lower in Lijiang River (Li and Zhang, 2009; Wang et al., 2017; Wu et
al., 2009; Zeng et al., 2019; Zeng et al., 2015), which suggests a better quality of Lijiang water. However, high level of Zn in the rainstorm season of Lijiang
River and Huaihe River (Wang et al., 2017) indicates that the water maybe polluted by Zn. The Co concentration was similar in the Zhujiang River during low
�ow and high �ow seasons (Zeng et al., 2019), while Co increased 10 times in the rainstorm season of Lijiang River. In general, concentration of Cr, Mn, Co, Cu,
As, Cd, Sb, and Pb in the water of Catalan River (Carafa et al., 2011), Douro River estuary (Ribeiro et al., 2018), and Calore River (Zuzolo et al., 2017) are higher
than the Lijiang River water. Although Zn is much lower in Catalan River, but it keeps the similar level for the other three rivers.
3.2. Spatial and temporal distribution of dissolved HMs

Spatial and temporal distribution of dissolved HMs in Lijiang River were shown in Fig. 2. According to the variation characteristics of Cr, Mn, Co, Cu, Zn, As, Cd,
Sb, and Pb in the normal season of Lijiang River, the HMs were divided into three groups. Cr, Cu, Zn, Co, and Sb belong to the �rst group, which concentrations
increased successively from upstream to downstream. The distribution of Cr, Cu, Zn, Co, and Sb in Lijiang River may be affected by human activities, which is
similar to the Han River (Li and Zhang, 2009). The second group were constituted by Mn, As, and Cd. High concentrations of Mn, As, and Cd were distributed
uniformly in the upstream and middle reaches, and lower in the downstream areas. It probably due to exposure to dissolved parent rocks and minerals as well
as agricultural sources (Chen et al., 2020). Pb as the only element in the third group was lower in the upstream and downstream areas, but higher in the middle
reaches. This indicates that the mining industry and agricultural activities in the middle of the river may have a greater-impact on Pb, but the dilution of the
river leads to the decrease of concentration in the downstream areas (Li et al., 2009).

The categorization during the rainstorm season could be as follow. In the �rst group, distribution of Cr and Cd are more dispersed with high concentrations in
the whole river. It suggests that the HMs may come from the mixture of natural and man-made sources. Mn, Cu, Sb, and Pb in the second group were the
lowest at the upstream areas, while high concentrations were mainly distributed in the middle and down streams. It is similar to the results of normal season,
which HMs maybe in�uenced by dense human activities in the central areas. The third group including Co, Zn, and As which the concentration decreased
gradually from upstream to downstream.
3.3. Source identi�cation of dissolved HMs
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The correlation and interaction of 9 dissolved HMs in two �ow seasons in the Lijiang River Basin via Pearson correlation matrix is shown in Table S4. In
normal season, Mn is signi�cantly positively correlated with Co (0.658), Cu (0.483) and As (0.385). And the HMs are positively correlated in pairs, such as Co-
Cu (0.701), Cu-As (0.554) and Co-As (0.420). Cd exhibited signi�cant positive correlations with Cu (0.429) and Co (0.368). The results indicated its contribution
from similar geochemical phenomenon. Cr was signi�cantly positively correlated with Zn (0.670), Sb (0.505) and Cu (0.446). Pb was weakly positively
correlated with Co (0.434), Cu (0.373) and Cd (0.389). It suggested that the HMs may have similar sources in accordance (Xu et al., 2019). In rainstorm
season, Cr and Sb (0.503), Cu and Mn (0.714), are positively correlated remarkably. Zn is positively correlated with Cd (0.656) and Co (0.511), while Co is not
correlated with Cd, indicating that Co and Cd may come from different sources in the rainstorm season. There was a signi�cant positive correlation between
Cd and Pb (0.678), which may due to the release of Cd and Pb from sediments or rocks caused by the rainstorm. As shown weakly correlation with other HMs
suggesting it comes from independent source.

The PCA of heavy metals in normal (N) and rainstorm (R) seasons resulted in three and four principal components (PCs), accounting for 69.85% and 75.84%
of the total variance, respectively (PC, eigenvalue > 1), as shown in Table 2 and Figure S1. Aligned with previous studies conducted PCA of HMs in multiple
water system changes was attributed to different variables (Rakotondrabe et al., 2018; Xiao et al., 2019). The principal components in the normal season
(PC1N, PC2N, and PC3N) accounted the total variance of 37.46%, 20.68%, and 11.71%, respectively. The results showed that PC1N had high load (> 0.75) on Co
(0.820) and Cu (0.891), moderate load (0.75 ~ 0.5) of Mn (0.604) and As (0.698), and weak load (0.5 ~ 0.3) for Cd (0.454), which was similar with the
correlation results. In addition, PC2N positively explained by the high load of Cr (0.746), Zn (0.693), and Sb (0.507), whereas PC3N was positively explained by
high load of Pb (0.754). In rainstorm season, the PC1R, PC2R, PC3R, and PCR explained total variance of 27.71%, 21.60%, 15.18%, and 11.35%, respectively.
PC1Rhad high load on Cd (0.796) and Pb (0.797), but moderate load of Mn (0.683) and Cu (0.589). Furthermore, PC2R was moderately loaded with Zn (0.698)
and Co (0.648). Cr (0.673) and Sb (0.605) were moderately loaded by the PC3R. PC4R had weak loading on As (0.388).

Table 2
Principal component analysis for heavy metals

Elements Normal season   Rainstorm season

PC1 PC2 PC3   PC1 PC2 PC3 PC4

Cr 0.551 0.746 -0.064   0.223 -0.457 0.673 0.243

Mn 0.604 -0.391 -0.381   0.683 -0.365 -0.495 0.224

Co 0.820 -0.271 -0.003   0.224 0.648 0.015 0.554

Cu 0.891 -0.065 -0.034   0.589 -0.408 -0.409 0.379

Zn 0.265 0.693 0.311   0.497 0.698 0.318 0.110

As 0.698 0.025 -0.395   -0.202 0.175 0.041 0.388

Cd 0.454 -0.544 0.286   0.796 0.412 0.163 -0.264

Sb 0.492 0.507 -0.003   0.151 -0.557 0.605 0.192

Pb 0.482 -0.202 0.754   0.797 -0.136 0.069 -0.439

Eigenvalues 3.373 1.862 1.053   2.494 1.944 1.366 1.022

% variance 37.46 20.68 11.71   27.71 21.60 15.18 11.35

Cumulative variance 37.46 58.14 69.85   27.71 49.31 64.49 75.84

 
Based on the grouping of PC1N and PC1R, the accumulation of Mn, Co, Cu and Cd in Lijiang River water in normal season is mainly from industrial emissions
and urban pollution as well as natural erosion, while Mn, Cu, Cd and Pb in rainstorm season are the same. The concentration of Co and Cu in PC1N is higher in
the downstream, which may be the result of river scouring or the discharge of industrial waste water in the midstream. It was suggested that Co in surface
water was mainly due to natural weathering of the rocks and subsequent soil action (Meng et al., 2016). In addition to the natural source of Co, ceramic, glass,
paint, pigment, enamel, and electroplating may also increase the amount of Co in water. Cu concentration in water might cause by human activities such as
metal smelting (Emenike et al., 2020). The concentration of other metals in PC1N is mainly concentrated in the upper and middle reaches. In general, Mn, As
and Cd in the environment may come from rock weathering and river washing (Bai et al., 2019). Compared with the PC1N, the concentration of Mn, Cu, Cd and
Pb of PC1R is higher, and they are mainly distributed in the middle and lower stream of the river. It is possible that heavy metals from the sediment were
released into the water due to rainstorm, with the same as evidenced by One-way ANOVA analysis (Tables 1). The presence of Pb in water may be attributed to
the use of Pb-acid batteries, industrial emissions and vehicle exhaust (Shahab et al., 2020).

Cr is positively correlated with Zn and Sb in PC2N, which suggests that these heavy metal elements have similar sources. Moreover, the concentration of these
elements is mainly concentrated in the lower reaches of rivers. In the middle reaches of the Lijiang River, tourism activities are intensive, and the adjacent
industrial areas include electronic chemical materials and electrical appliances and Yingcai Science and Technology Park of Guilin National High-tech Zone.
Some studies have shown that Cr compounds from human activities are discharged into coastal rivers and cause pollution (Chen et al., 2020; Rasool et al.,
2016). However, there was no correlation between Zn and Sb. Zn in water mostly comes from industrial wastewater and agricultural activities (Kuang et al.,
2016), while Sb is mainly derived from manufacturing processes such as mining, metal smelting, urban activities such as automobile exhaust, and waste
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incineration (Li and Zhang, 2009). It suggests the likely sources of Zn and Sb come from agricultural and industrial activities, respectively. The concentration
of Zn and Co in rainstorm season is mainly concentrated in the upper and middle reaches, which indicates that PC2R may be controlled by natural sources.
The concentration of the HMs in rainstorm season is higher than that in normal season, possibly due to weathering and erosion caused by �oods, which are
natural causes. In addition to the natural source of Co, ceramic, glass, paint, pigment, enamel, and electroplating may also increase the amount of Co in water.

PC3N has only a high load on Pb. The presence of Pb in water may be derived from human activities, as mentioned, indicating that the PC3N belongs to the
second human source, which result is similar to the Xiangjiang River (Zeng et al., 2015).The variation concentration of Cr and Sb in rainstorm season (PC3R)
suggested they were in�uenced by human activities, including industrial wastewater, energy production, etc. The concentrations of As in PC4R were higher in
rainstorm season compared to normal. However, ANOVA analysis showed that rainstorm may have no signi�cant association with the increase of As
concentration. Mining activities and the use of pesticides may lead to arsenic pollution in water bodies (Zhang et al., 2019). Therefore, we conclude that the
source of As may be anthropogenic factors in rainstorm season.
3.4. WQI and health risk assessment

The WQI values of water samples from different sites were shown in Fig. 3. In the present study, WQI in normal and rainstorm seasons were ranged from 0.50 
~ 7.96 and 6.17 ~ 20.82, respectively. Therefore, Lijiang River water quality can be categorized as good (WQI value less than 50) and suitable for drinking.
However, the WQI values in rainstorm season were obviously higher than the normal season, which indicates rainstorm promoted more HMs into the Lijiang
River. During the rainstorm season, the fast-moving current may wash the contaminated soil and riverbed into the water (Jiang et al., 2017). The increased
turbulent �ow can also re-suspend the settled contaminants and HMs from the sediment and discharge them to the river. In Fig. 3, the WQI values of most
upstream and midstream samples are higher than the average value in normal season, while in the rainstorm season, midstream and downstream samples
are higher. It also demonstrates that heavy rains and scouring can affect river water quality, at least in terms of heavy metals. Based on the source
identi�cation analysis, the main factors of HMs in midstream and downstream were Mn, Cu, Cd, Pb and Sb. However, the WQI values of some sites in the
midstream and downstream during normal season were lower than the average, but in rainstorm season were above the average. This �nding suggests that
dense human activities in the middle and lower reaches have a greater impact on water quality, which is similar with the results of interpolation. Therefore, we
suggest that the decision-makers should pay attention to the prevention and control measures in these areas of the Lijiang River, including agricultural
activities, industrial waste-water discharge and mining activities.

As shown in Table 3, the HQingestion, HQdermal, and HIs values, for adults and children, of all heavy metals are < 1, indicating that the HMs (oral ingestion and
skin absorption) in the Lijiang River are all below the hazard levels and have very-limited health effects. The values of HQing, HQder, and HIs in Lijiang River
water increased during rainstorm reason, except for Cr, which indicates that the HMs in river due to heavy rainfall or human activities may lead to increasing
health risks. As illustrated in Fig. 4, the HQing, HQder, and HIs values for children are higher than adults, which suggest children suffer greater risk from the
exposure of HMs. The proportion of health risks for HMs in Lijiang River water is: HI for Children (29.96 ~ 32.15) > HQing for children (21.15 ~ 29.96) > HI for
adults (17.89 ~ 20.04) > HQing for adults (14.45 ~ 20.04) > HQder for children (0.01 ~ 1095) > HQder for adults (0 ~ 3.7). It shows that direct intake is the main
exposure route. At some sampling sites with the maximal concentrations, the HIs of As for adults and children is 0.805 and 1.202, respectively, which are
relatively close to 1, during the rainstorm season. Therefore, we conclude that As might have potential non-carcinogenic risk to human health, especially
during rainstorm season. It also reported high risks associated with As in other rivers (Emenike et al., 2020; Villa-Achupallas et al., 2018). Despite the potential
risks, the results revealed that public health were not obviously affected by dissolved HMs in Lijiang River water in the current situation, agreed with the
outcomes of WQI.

4. Conclusions
In this study, temporal and spatial distribution of dissolved HMs (Cr, Mn, Co, Cu, Zn, As, Cd, Sb, and Pb) in the water of Lijiang River from normal and rainstorm
seasons were evaluated. According to the results, Zn and Mn were the most su�cient metals in both normal and rainstorm seasons. HMs concentrations in
Lijiang water were under the guideline limits of China, the WHO, and the EPA. Results showed that the HMs concentrations increased during the rainstorm
season, except for Cr. Spatial and temporal distribution illustrated higher concentration of Co, Cu, Cr, Zn, Sb, and Pb in the middle and lower streams during
normal season, which might be affected by mining, industrial, and agricultural activities. Moreover, Mn, Cu, Sb, and Pb came from the natural and man-made
mixture sources in rainstorm season. It revealed that the increasing of Mn, Cu, Cd, Pb, Co and Zn during the high �ow season should be caused by rainstorm
scour. In general, the water quality was categorized as good-grade and can be used for drinking. However, it decreased to lower grades during the rainstorm
season. Health risk assessment indicated most of the HMs in Lijiang River water were with limited health impacts, but As could be potential risks for public
safety.
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Figures

Figure 1

Spatial distributions of dissolved heavy metals in Lijiang River water. a) normal season; b) rainstorm season. Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of
any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 2

Spatial distributions of dissolved heavy metals in Lijiang River water. a) normal season; b) rainstorm season. Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of
any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 3

Water quality index (WQI) values of Lijiang River water. The blue line presents the median value of normal season, the red line presents the median value
rainstorm season.

Figure 4

Pie chart of health risk assessment in Lijiang River water. a) normal season; b) rainstorm season.

Supplementary Files



Page 13/13

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementaryMaterial.doc

https://assets.researchsquare.com/files/rs-332750/v1/5d25814d55710f6eda2eac54.doc



