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ABSTRACT. The extent and seasonality of nutrient limitation of Posidonia oceanica ( L . )  Delile in the 
Costa Brava littoral (NW Mediterranean) in 5 meadows was investigated by means of repeated nutri- 
ent additions along a year cycle. Nutrient additions had a modest effect on leaf growth. The response 
to fertilization varied considerably among meadows, with those meadows consistently maintaining low 
(300 PM dissolved inorganic nitrogen and 9 pM soluble reactive phosphorus) dissolved inorganic nutri- 
ent concentrations in sediment pore waters showing the greatest response to fertlhzation. The season- 
ality of the growth response to fertilization was consistent with calculated nutrient deficiencies, which 
were greatest in late spring and summer. Nutrient deficiency was alleviated in the fall, partially due to 
reduced growth, but also to nutrient reclamation from old leaves, wh~ch  represented 20% and 18% of 
the annual nitrogen and phosphorus incorporation, respectively. The relative deficiency of nitrogen 
and phosphorus differed among sites, with the highest response found in P-deficient meadows Nutn- 
ent limitation of p oceanica meadows was greatest in late spring and summer, but differed greatly in 
magnitude and nature (nitrogen vs phosphorus) depending on local nutrient regimes. 
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INTRODUCTION 

Seagrass growth and production are often limited by 
nutrients, both in tropical and temperate systems (Har- 
lin & Thorne-Miller 1981, Orth & Moore 1986, Denni- 
son 1987, Short 1987, Powell et  al. 1989, Short et  al. 
1990, Perez et  al. 1991, 1994, Fourqurean 1992, 
Fourqurean et  al. 1992). The role of nutrients in con- 
trolling seagrass growth has been evaluated through 
the assessment of the nutritional status of their tissues 
(e.g.  Duarte 1990, Fourqurean et al. 1992), the analysis 
of nutrient budgets (e.g. Patriquin 1972, Bulthuis & 
Woelkering 1981, Pedersen & Borum 1993), models 
(Zimmerman et  al. 1987), and nutrient addition experi- 
ments (e.g. Powell e t  al. 1989, Short et  al. 1990, Perez 
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et  al. 1991). The most conclusive evidence is provided 
by in s i tu  nutrient additions; however, most studies 
have been conducted during short summer periods 
only and hence cannot elucidate the extent of seasonal 
variation In nutrient limitation. 

Yet, available evidence points to the existence of 
seasonality in the extent of nutrient limitation in tem- 
perate seagrass ecosystems. The nutrient supply nec- 
essary to sustain rapid seagrass growth may not be 
available in spring and summer, yielding nutrient-lim- 
ited midsummer seagrass growth, as observed in dif- 
ferent Atlantic (Orth 1977, Harlin & Thorne-Miller 
1981), Mediterranean (Perez et al. 1991, 1994) and 
Caribbean (Powell et al. 1989, Short et al. 1990) sea- 
grass specles. Nutrient limitation is probably alleviated 
in winter, when slower seagrass growth reduces nutri- 
ent  demands (Pedersen & Borum 1993), although there 
are  insufficient data as yet to test this hypothesis. 
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Nutrient storage may be important in winter, when 
nutrient supply may exceed demands (cf. Pedersen & 
Borum 1993), allowing nutrient retranslocation to be 
a n  important component of the annual nutrient budget 
(Patriquin 1972, Borum et al. 1989, Perez-Llorens & 
Niell 1989, Hemminga et al. 1991. Pedersen & Borum 
1992). 

Posidonia oceanica (L.) Delile is the dominant sea- 
grass species in the Mediterranean (Den Hartog 1970) 
where it often grows under nutrient concentrations 
(e.g.  Lopez et al. 1995) low enough to limit other sea- 
grass species (Cymodocea nodosa; Perez et al. 1991, 
1994). The seasonal growth pattern of P. oceanica 
appears to be controlled mainly by light and tempera- 
ture, although there is indirect evidence of possible 
nutrient limitation, particularly in nutrient-poor mead- 
ows (Alcoverro et al. 1995). P. oceanica tissues have 
high nutrient concentrations in winter which decline 
subsequently with increasing plant growth towards 
summer (Alcoverro et al. 1995), suggesting seasonality 
of nutrient limitation. 

Here we present the test of 2 hypotheses concerning 
nutrient limitation, (1) the existence of an overall 
nutrient l~mitation of Posidonia oceanica growth in 
meadows in the Costa Brava, NW Mediterranean, and 
(2) the increase in the extent of nutrient limitation 
from winter to summer, and an analysis of the spatial 
(i.e. among meadows) variability of such limitation and 
a preliminary budget of nutrient dynamics of the plant 
summarizing its various elements (i.e, requirements, 
deficiency, internal vs external sources) to support the 
experimental results. 

METHODS 

Study sites. The experimental nutrient addition was 
conducted in 5 monospecific Posidonia oceanica mead- 
ows along the NE coast of Spain. Three of the sites 
(Port Lligat, Giverola and shallow Medes) were located 
towards the up-slope limit of the meadows (-5.0 m), 
and the rest (deep Medes and Blanes) were closer to 
the deep limit (-13.0 m). A parallel work performed on 
the same sites and during the same period (Alcoverro 
et al. 1995, Lopez et al. 1995) showed a seagrass 
growth pattern with a maximum in spring (May-June) 
and a minimum in late summer (August-September). 
Leaf nutrient concentrations also showed a consistent 
seasonality, with an increase during winter and a 
decline in late summer (Alcoverro et al. 1995). Nutrient 
concentrations in sediment pore water were very low 
(<2 pM phosphate, < l00  pM ammonium) from spring 
to summer, with substantial differences among mead- 
ows. The highest concentrations were found at the 
deep Medes and Port Lligat stations and the lowest 

concentrations at Blanes and Giverola (Lopez et al. 
1995). The sediments of Port Lligat and deep/shallow 
Medes had the h~ghest  concentrations of organic mat- 
ter (65.27 * 40.0, 42.02 & 16.8 and 41.83 -+ 7.1 mg OM 
cm-3) and the lowest redox potential (-88 -+ 56, 98 * 23, 
74 * 16 mV) while the sediments in Giverola and 
Blanes presented low organic matter (25.94 * 5.75, 
19.26 * 9.07 mg OM cm-3) and high redox potential 
(630 * 50 mV, no data on redox potential from the 
Blanes site). 

Nutrient addition experiments. At each one of the 
5 sites, two 1 m2 experimental plots were established, 
one used as a control and the other enriched at inter- 
vals of about 40 d during a year (i.e. 8 to 11 sampling 
events depending on the station, from October 1990 to 
January 1992). At each sampling time the sediments at 
the treatment plots were enriched by inserting 30 
slow-release complete fertilizer sticks (commercial 
sticks manufactured by AMOSA, Spain), representing 
a load of about 6.5 g N and 1 g P m-' each time. This 
ensured a N:P atomic supply of 14, which is close to the 
apparent requirements for balanced seagrass growth 
(Duarte 1990). Ten shoots per plot were marked on 
each visit to estimate leaf growth using the method of 
Romero (1989) which is a modified Zieman (1974) 
method. All leaves within a shoot were marked 
together by punching 2 parallel holes just above the 
ligula of the outermost leaf with a hypodermic needle. 
The shoots marked in the previous visit were collected 
and transported to the laboratory within 2 to 3 h after 
collection. 

Harvested shoots were rinsed and epiphytes were 
removed with a razor blade. Elongation and total 
length of each leaf were measured to the nearest mm 
and the leaf material was then dried at 70°C and 
weighed to obtain the growth and biomass of each 
shoot. Subsamples of young tissue (the growing new 
leaf tissue), old tissue (the oldest leaf in the shoots), 
intermediate leaves, and sheaths were used for N,  P, 
and C analysis. 

No efforts were made to estimate belowground 
growth, because the slow growth of Posidonia ocean- 
ica rhizomes (approx. 1 to 2 cm yr-'; Pergent et al. 
1989) precludes detection of growth responses to fertil- 
izers during the experimental term (1 yr). 

Total carbon and nitrogen were determined using a 
Carlo-Erba NA1500 CHN Analyzer and phosphorus 
was determined after wet acid digestion by inductively 
coupled plasma atomic emission spectrometric (ICP- 
AES) techniques (Mateo & Sabate 1993). 

The loss rate of leaf biomass (LB, g dry wt shoot-' 
mo-l) was calculated as 

where B, and B,,, are the average shoot biomass (g dry 
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- = 

wt shoot-') at the beginning and at the end of 
a month respectively and P is the production 
during this period (g dry wt shoot-' mo-l). 

Nutrient requirements were calculated as  
the product of nutrient-sufficient seagrass 
leaf production, using growth rates, and the 
nutrient concentrations of fel-tilized plants. 
Nutrient incorporation (net amount) associ- 
ated with growth was calculated as the prod- 
uct of leaf production and the nutrient con- 
centrations in fully grown control leaves. 
Nutrient retranslocation from photosynthetic 
material was determined following Pedersen 
& Borum (1993) as the difference at time t i n  
the nutrient concentration between total 
leaves and old leaves multiplied by the 
monthly biomass lost (LB,,,). Nutrient defi- 
ciency was calculated as the difference 
between nutrient requirements and incorpo- 
ration. 

The significance of the response to nutri- 
ent addition at each month and station was 
obtained using a Wilcoxon matched pair test 
with unreplicated treatments (each value is 
represented by the averaged data of 10 repli- 
cate shoots) for each station and month to 
estimate the within-site, within-month and 
total overall growth effects. 

For each site and at each sampling inter- 
val, differences between control and fertil- 
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plot and sampling, to test diffeiences be- 
tween control and fertilized plots, we also 
used the Wilcoxon matched pair test within each site 
(wlthin-site effect) and using data from all sites (overall 
effect) 

RESULTS AND DISCUSSION 

Nut]-ient additions enhanced shoot elongation, but 
only at some sites and at some sampling events (p  = 
0.006, Fig. 1). The response to fertilization varied 
greatly among meadows. Within-site overall response 
(i.e. differences among control and fertilized) was only 
found a t  Blanes and Giverola (Fig. l a ,  b; Wilcoxon, p = 

0.017 and p = 0.011, respectively); at these 2 sites, 
annual growth was incremented by nutrient addition 
by 40%) and 30%,  respectively (control vs fertilized). In 
contrast, plants at the other 3 stations did not show a 
significant growth (or size) increment on an annual 
basis (Wilcoxon, p > 0.05). Yet, leaf growth in fertilized 

plots of shallow Medes was higher than in control plots 
in early summer (April-July Flg Id ) ,  w h e ~ e a s  no sig- 
nificant growth increase was observed at any time of 
the year for plants a t  deep Medes and Port Lligat 
(Fig l c ,  e )  

The variability among sltes in the extent of the 
annual growth increment appears to depend more on 
the nutrient concentrations in the pore watei than on 
the leaf nutrient concentrations The differences in 
growth response among meadows was well predicted 
by the number of sampling events with sediment pore 
water nutrlent concentrations below median values, 
which were 300 I.IM dissolved inorganic nit] ogen (DIN) 
and 9 p M  soluble reactive phosphorus (SRP) There 
were strong corlelations between the number of sam- 
pllng events with SRP and DIN concentrations in pore 
water below these median values and the response of 
the plants at the different meadows to fertilization (as 
increase in annual growth relative to control R = 0 86 
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Annual growth response ( ~ r n ~ s h o o t ~ ~ y ' ~ )  

Fig. 2. Posidonia oceanica Relationship between the fraction 
of the time (as the percent of the number of sampling events) 
with pore water nutrient concentrations below the overall 
median values (300 pM dissolved inorganic nitrogen, DIN, 
and 9 PM soluble reactive phosphorus, SRP) and the increase 
in annual growth follow~ng fertilizat~on (fertilized minus con- 
trol). Sites: Blanes (BL), Giverola (GI), deep Medes (DME), 

shallow Medes (SME), Port Lligat (PLL) 

for DIN, p c 0.05; R = 0.99 for SRP, p < 0.01; Fig. 2a, b).  
Thus, relatively long periods under low nutrient con- 
centration are probably the cause of reduced growth. 

Major differences between control and fertilized 
plots were found in late spring-summer (Fig. 1). This 
finding corresponds with low summer nutrient con- 
centrations in the interstitial waters, which decrease 
below 100 pM for ammonium and 1 pM for phos- 
phate, values which are considered to be limiting for 
seagrass growth (Fourqurean 1992). This seasonal 
response suggests a shift from growth control by light 
and temperature during winter to nutrient-limited 
summer growth (Fig. If), which is consistent with 
results for other temperate seagrass species (e.g. 
Cymodocea nodosa, Perez et al. 1991; Zostera marina, 
Orth 1977. Harlin & Thorne-Miller 1981, Short 1987. 
Murray et al. 1992, Pedersen & Borum 1993; Hetero- 
zostera tasmanica, Bulthuis & Woelkerling 1981, Bul- 
thuis et al. 1992). Nutrient-limited seagrass growth in 
summer results from increased nutrient demand by 
the seagrasses (Pedersen & Borum 1993; see below), 
low nutrient availability and competition for nutrients 
with other organisms, mainly bacteria (cf. Lopez et al. 
1995). 
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Fig. 3. Posldonia oceanica. Seasonal changes in the nitrogen 
concentration in leaves from control (0 )  and fertilized ( 0 )  plots 
at the 5 sites studied. Differences between control and tert~l- 
ized plots were significant at Port Lligat (p = 0.002) and weakly 
significant at Giverola (p = 0.09) and shallow Medes (p = 0.081 
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retranslocation represented 20% and 18% of the 
annual nitrogen and phosphorus incorporation, re- 
spectively, similar to values found by Pedersen & 
Borum (1992). Our estimates assume nutrient leaching 
to be negligible, a fact which has not been demon- 
strated for Posidonia oceanica but has been for other 
seagrasses (Borum et al. 1989, Pedersen & Borum 
1992). P. oceanica has massive rhizomes that can play 
a major role in nutrient economy by means of storage 
and retranslocation. Seasonal variation in nutrient con- 
centration in the rhizome is substantial (Pirc & Wollen- 
weber 1988), which, added to the high biomass of the 
P. oceanica rhizomes, will potentially be an  important 
source of nutrients. Accordingly, the fraction of the P. 
oceanica nutrient demand that can be met by internal 
supply is probably much higher than the 18 to 20% we 
report, which only represents leaf retranslocation. 

The leaf concentrations of nitrogen and phosphorus 
appeared strongly correlated. The seasonal pattern of 
leaf concentrations of both nutrients are similar (R = 
0.73, p c 0.001). Seasonal patterns of nutrient defi- 
ciency were also similar for both elements (R = 0.84, p < 
0.01), and no differential retranslocation occurred (cor- 
relation between nitrogen and phosphorus retrans- 
location: R = 0.99, p < 0.001). The relative deficiency of 
both elements differed among sites (Fig. 5). Relative to 

The nitrogen concentration in leaves 0.16 

of fertilized plants also increased in re- 
sponse to nutrient additions; an overall 0.12 - 

effect was found (data from all sites 0.08 - 
pooled, p = 0.002), although within-site 
nitrogen increase in leaves was only 0.04 - 
significant for Port Lligat (p = 0.01) and 
weakly significant for shallow Medes O o O  

and Giverola (p  = 0.08 and p = 0.09, re- L 0.04 - 
spectively) (Fig. 3). In contl-ast, carbon 0,03 

of response of phosphorus tissue con- 0.08 - e f 

centration to fertilization is in contrast 
0,06 - N-retranslocation P-retrans~ocar~on 0.003 

with the increment observed in nitro- 
gen concentration, as reported in the 0.002 

past in another enrichment experiment 
(Burkholder et al. 1994). 

The nutrient concentration in leaves 
of control plants was low at Blanes and S O N D J F M A M J J A S O N O J S O N D J F M A M J J A S O N D J  

Giverola, where the response to fertil- 1990 1991 1990 1991 

''ation was and was high in Fig. 4.  Posidonia oceania. Seasonal pattern of leaf nitrogen and phosphorus 
deep Medes, where no response was dynamics: (a,  b) N and P incorporation and requirements; (c, d )  N and P defi- 
detected (Fig. 3). But, at the Port Lligat ciency; (e, f )  N and P retranslocation (m, control; 0, fertilized). Data represent 

site, leaf nutrient concentration was average values (*SE) for the 5 stations studied 

low (particularly for nitrogen; Fig. 3) 
while sediment nutrient concentra- 
tions were relatively high (Lopez et al. 1995), and no 
growth response to nutrient additions was observed 
(Fig. 3). This paradox suggest that the low tissue N 
concentrations in plants at Port Lligat derives from 
internal constraints on nitrogen use, rather than low 
external availability. This may be associated with the 
low redox potential of Port Lligat sediments (-88 mV 
on average), compared with the rest of the stations, 
which may interfere with nitrogen assimilation in roots 
(Pregnall et al. 1987, Zimmerman et al. 1987). 

Total net nitrogen incorporation by seagrass ranged 
between 0.13 mg shoot-' d-' in April-May and 0.03 mg 
shoot-' d-l in October. Phosphorus incorporation was 
also greatest in spring (0.011 mg shoot-' d-' in April- 
May) and lowest (0.002 mg shoot-' d-') in October 
(Fig. 4a, b).  Nitrogen and phosphorus requirements 
were highest in summer (Fig. 4a, b).  Thus, nutrient 
deficiency was maximal in summer, ranging between 0 
and 0.038 mg shoot-' d-' for nitrogen and between 0 
and 0.0016 mg shoot-' d-' for phosphorus (Fig. 4c, d). 

Nitrogen and phosphorus retranslocation from old 
leaves was substantial from July to December, with a 
maximum of 0.055 mg shoot-' d-' for nitrogen and 
0.0025 mg shoot-' d-' for phosphorus (Fig. 4e, f ) ,  ob- 
served during September-October when biomass 
losses are greatest (Alcoverro et al. 1995). Leaf nutrient 
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Medes), which is alleviated in late summer by reduced 
growth rates (and thus nutrient demands) and nutrient 
reclamation from old leaves. Nevertheless, a high vari- 
ability exists over this general pattern; for example, 
other (unknown) factors can override the role of nutri- 
ents (as probably occurs at  Port Lllgat), or plant growth 
may be  permanently light limited in plants growing 
near the population depth limit (deep Medes). 

Our analysis also shows that nutrient deficiency of 
NW Mediterranean Posidonia oceanica meadows may 
involve both N and P, and suggests growth responses 
to nutrient additions to be greater for P-deficient 
plants. 
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