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retrieval, and modeling of as-built building
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Abstract

Background: As-built building information, including building geometry and features, is useful in multiple building

assessment and management tasks. However, the current process for capturing, retrieving, and modeling such

information is labor-intensive and time-consuming.

Methods: In order to address these issues, this paper investigates the potentials of fusing visual and spatial data for

automatically capturing, retrieving, and modeling as-built building geometry and features. An overall fusion-based

framework has been proposed. Under the framework, pairs of 3D point clouds are progressively registered through

the RGB-D (Red, Green, Blue plus Depth) mapping. Meanwhile, building elements are recognized based on their

visual patterns. The recognition results can be used to label the 3D points, which could facilitate the modeling of

building elements.

Results: So far, two pilot studies have been performed. The results show that a high degree of automation could

be achieved for the registration of building scenes captured from different scans and the recognition of building

elements with the proposed framework.

Conclusions: The fusion of spatial and visual data could significantly facilitate the current process of retrieving,

modeling, and visualizing as-built information.
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Introduction
Three dimensional (3D) as-built building information re-

cords existing conditions of buildings, including their

geometry and actual details of architectural, structural,

and mechanical, electrical, and plumbing (MEP) elements

(Institute for BIM in Canada IBC 2011). Therefore, such

information is useful in multiple building assessment and

management tasks. For example, as-built building in-

formation could be used to identify and quantify the devi-

ations between design and construction, which could

significantly reduce the amount of rework during the con-

struction phase of a project (Liu et al. 2012). Also, the use

of as-built building information could facilitate the coord-

ination of the MEP designs, when renovating and retrofit-

ting existing old buildings. This facilitation was expected

to reduce almost 60% of the MEP field-to-finish workflow

(ClearEdge3D 2012).

Although as-built building information is useful, the

current process for capturing, retreiving, and modeling

such information requires a lot of manual, time-consuming

work. This labor-intensive and time-consuming nature in-

creases the cost of using as-built building information in

practice. As a result, it was not a value adding task for most

general contractors and has not been widely used in the

vast majority of construction and renovation/retrofit pro-

jects (Brilakis et al. 2011), unless the time and cost of the

current process for capturing, retrieving, and modeling as-

built building information could be significantly reduced,

and the as-built building information could be constantly

updated and closely reviewed (Pettee, 2005).

In order to automate the current manual process for

capturing, retrieving, and modeling as-built building in-

formation, several research studies have been initiated.
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Most of them were built upon the remote sensing data

captured by laser scanners or digital cameras. For ex-

ample, (Okorn et al. 2010) presented an idea of creating

as-built floor plans in a building by projecting the 3D

point clouds captured by a laser scanner. (Fathi and

Brilakis 2012) relied on the color images captured by

digital cameras to model as-built conditions of metal roof

panels. (Geiger et al. 2011) proposed an approach to build

3D as-built maps from a series of high-resolution stereo

video sequences.

The sole reliance on one type of sensing data makes

existing studies have inherent limitations. For example,

when capturing, retrieving, and modeling 3D as-built build-

ing information in the building indoor environments,

(Furukawa et al. 2009) noted that the prevalence of texture-

poor walls, floors, and ceilings in the environments may fail

those studies built upon the images or video frames cap-

tured by digital cameras. Also, (Adan et al. 2011) reported

that a 3D laser scanner had to be set up at hundreds of lo-

cations in order to complete the scan of 40 rooms.

Compared with existing research studies, this paper

investigates the potential of fusing two different types of

sensing data (i.e. color images and depth images) to cap-

ture, retrieve, and model 3D as-built building informa-

tion. The focus has been placed on building geometry

and features. An overall fusion-based framework has

been proposed in the paper. Under the framework, 3D

point clouds are progressively registered through the

RGB-D (Red, Green, Blue plus Depth) mapping, and

building elements in the point clouds are recognized

based on their visual patterns for 3D as-built modeling.

So far, two pilot studies have been performed to show

that a high degree of automation could be achieved with

the proposed framework for capturing, retrieving, and

modeling as-built building information.

Background
The benefits of using 3D as-built building information

have been well acknowledged by researchers and profes-

sionals in the architecture, engineering, and construction

(AEC) industry. Meanwhile, the process for capturing,

retrieving, and modeling such information has been

identified as labor-intensive (Tang et al. 2010). Typically,

the process starts with the collection of as-built building

conditions using remote sensing devices, such as laser

scanners or digital cameras. Then, the sensing data col-

lected from multiple locations are registered (i.e. building

scenes registration), and building elements in the sensing

data are recognized (i.e. building elements recognition).

This way, the semantic or high-level building geometric

information in the sensing data could be used for domain

related problem solving.

So far, a lot of manual work has been involved in the

registration of building scenes and the recogniton of

building elements. In order to address this issue, multiple

research methods have been initiated. Based on the type

of the sensing data they work on, the methods can be clas-

sified into three main categories. The methods in the first

category were built upon the 3D point clouds directly cap-

tured by the devices, such as terrestrial laser scanners.

The methods in the second category relied on the color

images or videos taken by digital cameras or cam-

corders. Recently, the methods with the use of RGB-D data

(i.e. pairs of color and depth images) have been proposed

with the development of RGB-D cameras (e.g. Microsoft®.

Kinect). Below are the details of these methods.

Point cloud based methods

In the point cloud based methods, terrestrial laser scan-

ners are commonly used to capture the detailed as-built

building conditions. One laser scan may collect millions

of 3D points in minutes. Using this rich information,

(Okorn et al. 2010) proposed an idea of creating as-built

building floor plans by projecting the collected 3D

points onto a vertical (z-) axis and a ground (x-y) plane.

The projection results could indicate which points can

be grouped. This way, the floor plans were created

(Okorn et al. 2010). In addition to the generation of

floor plans, (Xiong and Huber 2010) employed the con-

ditional random fields to model building elements from

3D points, but their work was limited to those building

elements with planar patches, such as walls and ceilings.

The openings on the walls or ceilings could be further

located by checking the distribution density of the points

around the openings (Ripperda and Brenner, 2009) or

using a support vector machine (SVM) classifier (Adan

and Huber, 2011).

Although the detailed as-built building information

can be captured with laser scanners, the scanners are

heavy and not portable. Typically, at least two crews are

needed to use one laser scanner to collect as-built condi-

tions (Foltz, 2000). This non-portable nature makes laser

scanners unconvenient to use, especially when capturing,

retrieving, and modeling the as-built information in the

building indoor environments. (Adan et al. 2011) men-

tioned that a laser scanner had to be set up at 225 differ-

ent locations in order to scan 40 rooms, which was

approximately 5.6 locations per room.

Also, the 3D points collected by laser scanners only

record the spatial as-built building conditions, which

limits the capability to recognize building elements.

Existing recognition methods mainly relied on the points

spatial features, which can be described globally or lo-

cally (Stiene et al. 2006). Global descriptors (Wang et al.

2007; Kazhdan et al. 2003) captured all the geometrical

characteristics of a desired object. Therefore, they are dis-

criminative but not robust to cluttered scenes (Patterson

et al. 2008). Local descriptors (Shan et al. 2006; Huber
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et al. 2004) improved the recognition robustness, but they

were computationally complex (Bosche and Haas 2008).

Both global and local descriptors cannot recognize build-

ing elements with different materials. For example, it is

difficult for the methods to differentiate between a con-

crete column and a wooden column just based on their

3D points, if both of them have the same shape and size.

Color based methods

The methods in the second category target on the visual

data (i.e. color images or videos) from digital cameras

or camcorders as an affordable and portable alternative

for as-built modeling. So far, several critical techniques

have been created. (Snavely et al. 2006) explored the possi-

bility to create a 3D sparse point cloud from a collec-

tion of digital color images (i.e. structure-from-motion).

(Furukawa and Ponce 2010) developed a multi-view stereo

matching framework, which can generate an accurate,

dense, and robust point clouds from stereo color images.

In the work of (Durrant-Whyte and Bailey 2006), a robot

was used to build a 3D map within an unknown environ-

ment while at the same time keeping track of its current

locations (i.e. simultaneous localization and mapping).

Based on these techniques, many image/videos based

methods for capturing, retrieving, and modeling 3D as-

built building information have been proposed, and

the 3D reconstruction of the built environments has be-

come possible. For example, the 3D models of built envi-

ronments with high visual quality can be automatically

derived even from single facade images of arbitrary resolu-

tions (Müller et al. 2007). Also, (Pollefeys et al. 2008) used

the videos from a moving vehicle to model the urban

environments.

Compared with 3D point clouds, there are multiple

recognition cues that can be extracted from images or

videos, including color, texture, shape, and local invari-

ant visual features. (Neto et al. 2002) used color values

to recognize structural elements in digital images, while

(Brilakis et al. 2006) presented the concept of “material

signatures” to retrieve construction materials, such as

concrete, steel, wood, etc. (Zhu and Brilakis 2010) com-

bined two recogniton cues (shape and material) to locate

concrete column surfaces. Although many recognition

methods have been developed, the robust recognition of

buildings elements has not been achieved yet. One main

limitation lies in the fact that the recognition results

from images or videos are limited to two-dimensional

(2D) space. Therefore, it is difficult to directly use the

recognition results for capturing, retrieving, and model-

ing 3D as-built building information.

In addition, digital cameras or camcorders are easy and

convenient to use in building environments with multiple

interior partitions. However, most existing image/videos

based methods for capturing, retrieving, and modeling 3D

as-built building information heavily relied on the ex-

traction of visual features from images or video frames.

Building environments are commonly prevalent with

texture-poor walls, floors, and ceilings. This may fail the

procedures of these methods, unless the scene-specific

constraints for the environments are pre-created manually

(Furukawa et al. 2009).

RGB-D based methods

Point cloud based methods and color based methods re-

lied on one type of sensing data for capturing, retrieving,

and modeling as-built building conditions. As a result,

they have inherent limitations associated with the type

of the sensing data they work on. Specifically, the point

cloud based methods can accurately retrieve the detailed

as-built building conditions, but the data capturing

process is time-consuming. Most laser scanners are not

portable and the setup of a laser scanner also takes time

(Foltz, 2000). In addition, the recognition of building

elements from the point clouds solely relied on their

spatial features. Compared with the point cloud based

methods, the recognition of building elements from

color images or videos can be performed using multiple

recognition cues, which could increase the recognition

accuracy. The main limitation of the color based

methods lies in their modeling robustness. Most color

based methods may fail when building scenes have

texture-poor elements. Table 1 summarizes the compari-

son results between the methods in these two categories.

The emergence of RGB-D cameras provides another

idea to capture, retrieve, and model 3D as-built building

information. The RGB-D cameras are novel sensing sys-

tems, which can capture pairs of mid-resolution color

and depth images almost in real time. One example of

the RGB-D cameras is Microsoft® Kinect. The resolution

of the Kinect is up to 640 × 480, which is equivalent to

the capture of 307,200 3D points per frame. Also, its

sensing rate is up to 30 frames-per-second (FPS) sensing

rate, which means almost 1 million points could be cap-

tured by the Kinect in one second. Considering these

characteristics, (Rafibakhsh et al. 2012) once concluded

that the RGB-D cameras, such as Kinect, have great

potential for spatial sensing and modeling applications

at construction sites. So far, several research studies

(Weerasinghe et al. 2012; Escorcia et al. 2012) have been

proposed. However, most of them focused on the recog-

nition and tracking of construction workers, when the

positions of the RGB-D cameras are fixed. To the au-

thors’ knowledge, none of existing research studies has

been focused on modeling as-built building information.

In addition to the research studies in the AEC domain,

researchers in computer vision also investigated the use

of RGB-D cameras. For example, (Henry et al. 2010) and

(Fioraio and Konolige 2011) examined how a dense 3D
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map of building environments can be generated with

RGB-D cameras (i.e. RGB-D mapping). More impres-

sively, (Izadi et al. 2011) showed that the rapid and detailed

reconstruction of building indoor scenes can be achieved;

however, their work is currently limited to the reconstruc-

tion of a relatively small building scene (3 m cube) (Roth

and Vona 2012).

Objective and scope

Although the preliminary results from existing RGB-D

based methods are promising, the full potentials of the

fusion of the spatial and visual data have not been well

investigated for capturing, retrieving, and modeling as-

built building information. The objective of this paper is

to fill this gap, and the focus is placed on how to auto-

mate the current process for capturing, retrieving, and

modeling as-built building geometry and features. Spe-

cifically, an overall fusion-based framework for captur-

ing, retrieving, and modeling as-built building geometry

and features has been proposed. The framework mainly

includes two parts: 1) 3D scenes registration and 2) 3D

building elements recognition. First, the 3D point clouds

captured from different scans are progressively regis-

tered through the RGB-D mapping. Then, the building

elements in the 3D point clouds are recognized based

on their visual patterns. The potential and effectiveness

of the framework have been tested with two pilot stud-

ies. In the studies, the issues such as the accuracy and

automation for 3D scene registration and elements rec-

ognition have been evaluated. Although the pilot studies

use the RGB-D camera, Microsoft® Kinect, as the sensing

device, it is worth noting that the fusion-based idea be-

hind the proposed framework is also applicable for other

stand-alone or combined sensing devices as long as the

sensing devices could provide pairs of color and depth

images with the one-on-one correspondence.

Methods

As illustrated in Figure 1, the proposed fusion-based

framework mainly includes two parts, 3D scene registra-

tion and 3D building elements recognition. The scene

registration refers to the merge and alignment of the

point clouds from multiple scans into one single point

cloud under a pre-defined global coordinate system. The

registration is always necessary in the process of captur-

ing, retrieving, and modeling as-built building informa-

tion, since one scan typically cannot capture all as-built

conditions in a building environment. Here, the global co-

ordinate system is defined as the coordinate system used

by the point cloud in the first scan. The point clouds in

other scans are aligned to the cloud in the first scan. The

idea behind the RGB-D mapping (Henry et al. 2010) has

been adopted to achieve the registration purpose. First,

the visual feature detectors are used to determine the po-

sitions of the features in the color images. The features are

distinctively described with feature descriptors. Then, the

common features in consecutive color images. Based on

the matching results, the pairs of 3D matching points can

be determined by referring to the locations of the matched

feature positions in the color images and their corre-

sponding depth values. This way, the point clouds in the

scans could be progressively registered.

A point cloud includes a set of 3D points with known

coordinates. The coordinates indicate the positions of

the points in the building environments without any se-

mantic or high-level geometric as-built building infor-

mation. In order to retrieve this information, building

elements in the environments need to be recognized

from the point cloud. This way, the geometries and di-

mensions of the elements can be estimated and modeled

correspondingly. However, the direct recognition of the

building elements from the point cloud has proven diffi-

cult, especially when the detailed prior information is

not available (Bosche and Haas 2008). Therefore, the vis-

ual features of building elements has been exploited

here. Under the workflow of building elements recogni-

tion, the elements are first recognized in the color im-

ages based on their unique visual patterns. The patterns

include the topological configurations of the elements’

contour and texture features. For example, concrete col-

umns in buildings are dominated by long near-vertical

lines (contour features) at sides and concrete surfaces

(texture feature) in the middle, no matter they are rect-

angular or circular. Therefore, they can be located by

searching such cues in the color images. When building

elements are recognized from the color images, the rec-

ognition results could be used to classify the 3D points,

so that the points belonging to the same building

elements could be grouped and modeled separately.

Results

So far, two pilot studies have been performed to show the

effectiveness of the proposed framework. In the studies,

the sensing data collected by the Microsoft®. Kinect have

Table 1 Comparison of point cloud based methods and color based methods

Criteria Point cloud based methods Color based methods

Sensing Data Properties Accurate and detailed Not accurate and detailed

Scene Registration Point clouds distance Visual features matching

Building Elements Recognition One recognition cue only (spatial feature) Multiple recognition cues (color, texture, shape, etc.)
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been used to evaluate the framework. The Kinect is a

novel hybrid sensing system, which can provide a stream

of color and depth images with a resolution of 640 × 480

pixels and 2048 levels of depth sensitivity (Biswal 2011).

The typical sensing range of the Kinect is limited from

1.2 meters to 3.5 meters with an angular field of view of

57° horizontally and 43° vertically (Biswal 2011). According

to the report from (Rafibakhsh et al. 2012), the average

sensing error of the Kinect was around 3.49 cm. The au-

thors also compared the sensing data from the Kinect with

the data from a Leica total station, and found that the aver-

age absolute and percentage errors were 3.60 cm and

2.898% (Zhu and Donia, 2013).

Although the Kinect has a limited sensing range and

considerably lower accuracy than a high-end terrestrial

laser scanner or total station, the main focus of the stud-

ies is not to evaluate the potential of the Kinect for con-

struction applications. Instead, the emphasis is placed on

evaluating the automation of the proposed framework

for registering building scenes and recognizing building

elements with the idea behind the fusion of visual and

spatial data. Therefore, although the Kinect has been se-

lected in the studies, other stand-alone or combined

devices could be used, as long as they provide pairs of

color and depth images. For example, the sensing data

captured by the combination of a digital camera and a

terrestrial laser scanner are also supported by the pro-

posed framework, if the color images captured by the

digital camera are well calibrated with the data captured

by the laser scanner.

Scenes registration

The first pilot study is to test the 3D building scenes

registration. Figure 2 shows the detection of the visual

features in the color image with the proposed frame-

work, where the ORB (Oriented FAST and Rotated

BIEFF) detector and descriptor (Rublee et al. 2011) have

been used. In the figure, the green points indicated the

visual features detected in the color image, and their

corresponding positions in the 3D point cloud could also

be located, considering one-on-one correspondence be-

tween the pixels in the pair of the color and depth images.

Figure 3 illustrates an example of matching common vis-

ual features in consecutive color images. The matching of

visual features in consecutive color images was built upon

the fast approximate nearest neighbor (FANN) searches.

Figure 1 Fusion-based framework.

Figure 2 2D and 3D positions of visual features.
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The detailed information about the FANN searches could

be found in the work of (Muja and Lowe 2012) and (Muja

and Lowe 2009), and the specific steps for feature detec-

tion, and description could be referred to the work of

(Rublee et al. 2011). The matching results could indicate

the common 3D points in the consecutive point clouds.

This way, the point clouds from different scans could

be progressively and automatically registered (Figure 4).

The final 3D point cloud after the registration is displayed

in Figure 5.

The accuracy of the scenes registration in the proposed

framework has been tested with the common datasets

prepared by (Sturm et al. 2012) in the Computer Vision

Groups at the Technische Universität München. Here, the

accuracy is measured by comparing the difference be-

tween the Kinect scan positions (i.e. estimated trajectory)

with its real scan positions (i.e. ground truth). According

to the test results, it was found that the average error of

using the ORB detector and descriptor for the scenes

registration was around 0.24 meter. The error may come

from the sensing error from the sensing device. For ex-

ample, the average sensing error of the Kinect in one scan

was around 3.49 cm (Rafibakhsh et al. 2012). In addition

to the sensing error, the automatic pair-wise registration

may also produce the registration error, since no explicit

control reference points have been used during the regis-

tration process. Such registration errors could not be

completely eliminated but accumulated along the registra-

tion progress. A recent study indicated that the selection

of appropriate visual feature detector and descriptor may

significantly reduce the pair-wise registration error (Zhu,

2013). Therefore, more studies are needed to investigate

Figure 3 Matching of 2D visual features.

Figure 4 Progressive 3D scenes registration.
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the effectiveness of the color and texture information

available in the building environments on the accuracy of

the scenes registration.

Building elements recognition

The second pilot study is to test the 3D building ele-

ments recognition. Figures 6 and 7 show an example of

3D points segmentation and clustering with their visual

cues. In this example, the color image is first converted

from the red, green, and blue (RGB) space to the L*a*b*

space, which includes a luminosity layer (L*) and two

chromaticity layers (a* and b*). Then, the image is seg-

mented and clustered with the k-means algorithm

(Arthur and Vassilvitskii, 2007) based on the information

in the two chromaticity layers. The luminosity layer is

not considered here in order to remove the effect of the

brightness on the segmentation and clustering results.

This way, building elements, such as walls, doors, etc., in

the color image could be identified (Figure 6). Moreover,

the corresponding 3D points belonging to the same

types of building elements could be extracted (Figure 7).

Compared with the direct segmentation and clustering

of 3D point cloud, it can be seen that the use of visual

and spatial data could provide a convenient and fully

automatic way to segment and cluster 3D point clouds.

Moreover, specific 3D building elements in the point

cloud could be further recognized, when considering more

visual cues. For example, concrete columns (rectangular

or circular) in a color image are dominated by long near-

vertical lines (contour cues) and concrete surfaces (color

and texture cues). Therefore, they could be located by

searching these cues in the color image. This idea of rec-

ognizing concrete columns has been implemented by the

writer. More details can be found in the writer’s pervious

work (Zhu and Brilakis, 2010). When such cues are found

in the image, the corresponding 2D column surface pixels

could be mapped to the 3D points in the cloud. This way,

the points belonging to the column surface can be classi-

fied and grouped to indicate the concrete column in 3D,

as illustrated in Figure 8.

Discussion

The main purpose of the two pilot studies is to show the

degree of automation that the proposed framework could

reach with the idea of fusing the spatial and visual data.

The studies are not used to validate that more dense and/

or accurate 3D points could be captured with the fusion

of spatial and visual data. Although the sensing density

and accuracy play an important role in the process of

capturing, retrieving, and modeling as-built building

information, they are not in the scope of this paper.

Instead, the studies are used to indicate that a high degree

of automation could be achieved in the current process of

capturing, retrieving, and modeling as-built building infor-

mation with the fusion of spatial and visual data. The

automation has been highly valued to promote the use of

3D as-built building information, especially considering

the current process of capturing, retrieving, and modeling

as-built building information is labor-intensive and time-

consuming.

Figure 5 Registered 3D point cloud of an office.

Figure 6 Image segmentation.
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The preliminary results from the two pilot studies

have shown that building scenes could be progressively

and automatically registered by detecting, describing,

and matching visual features. Also, building elements in

the environments could be automatically recognized

based on their visual cues. In both studies, no specific

user interventions are required for setting up the refer-

ence/control points in the building environments and

editing the sensing data for building scenes registration

and building elements recognition. A user just needs to

hold the sensing device and keep scanning the building

environments. The 3D information of the building envi-

ronments could be automatically captured and retrieved.

Meanwhile, the results could be fed back to the user

almost simultaneously for his/her timely review. Com-

pared with existing work in capturing and retrieving as-

built building information, to the writers’ knowledge, none

of existing point cloud based methods or color based

methods could reach such a high degree of automation.

This is a significant advantage of fusing the spatial and

Figure 7 Elements segmentation in 3D point cloud.

Figure 8 Example of concrete column recognition.
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visual data learned from the two pilot studies, and also the

contribution of this paper to the existing body of know-

ledge in the areas of capturing, retrieving, and modeling

as-built building information.

Conclusions

3D as-built building information, including building

geometry and features, is useful in multiple building as-

sessment and management tasks, but the current process

for capturing, retrieving, and modeling as-built builidng

information is labor-intensive and time-consuming. This

labor-intensive and time-consuming nature limited the

wide use of as-built building information in the AEC in-

dustry. In order to address this issue, several research

studies have been proposed, but they were built upon one

single type of sensing data. The sole reliance on one type

of sensing data has several limitations.

This paper investigates the fusion of visual and spatial

data to facilitate the process of capturing, retrieving, and

modeling as-built building information. An overall fusion-

based framework has been proposed. Two pilot studies

have been performed. The first study tested the automation

of building scenes registration with visual feature detection,

description, and matching. It was found that the full auto-

mation of 3D building scenes registration could be achieved

with the fusion of visual and spatial data, but the registra-

tion accuracy needs to be further improved. The second

study tested the recognition of building elements in the 3D

point cloud with their visual recognition cues. It was noted

that the use of visual recogniton cues could facilitate the

recognition of building elements in 3D.

So far, the proposed fusion-based framework rely on

the visual features for 3D building scenes registration

and building elements recognition. The precise extraction

and description of visual features in the environments play

an important role on the success of the proposed frame-

work. That is why the selection of different visual feature

extractors and descriptors may affect the scene registra-

tion accuracy as indicated in the pilot study 1. However,

no matter what visual feature extractor and descriptor are

selected, the visual features extraction and description

could still be affected by the environmental conditions

(e.g. lighting, lack of texture and color information,

shadows, etc.), since the visual feature detectors and

descriptors currently available are not ideal (Mikolajczyk

and Schmid, 2005). Also, these environmental conditions

might affect the segmentation and clustering of building

scenes for building elements recognition. In the pilot

study 2, although the RGB color space was converted to

L*a*b* space and the luminosity layer (L*) was not consid-

ered in the segmentation and clustering process, the

illumination effects on the segmentation and clustering re-

sults could still not be completely removed. Therefore, fu-

ture work will focus on 1) how to increase the robustness

of the proposed framework against common environmen-

tal conditions (e.g. lighting, lack of texture and color infor-

mation, shadows, etc.), and 2) how to recognize other

types of 3D building elements with different materials.
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