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Panel data are used in almost all subfields of the agricultural economics profession. Further-
more, many research areas have an important spatial dimension. This article discusses some of
the recent contributions made in the evolving theoretical and empirical literature on spatial
econometric methods for panel data. We then illustrate some of these tools within a climate
change application using a hedonic model of farmland values and panel data. Estimates for the
model are provided across a range of nonspatial and spatial estimators, including spatial error
and spatial lag models with fixed and random effects extensions. Given the importance of
location and extensive use of panel data in many subfields of agricultural economics, these
recently developed spatial panel methods hold great potential for applied researchers.
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Panel data are used in almost all areas of agri-

cultural economics. From price analysis to con-

servation to nutrition, identification often comes

from differences over both time and cross-section,

making panel data a vital component of analyses

in these fields. Furthermore, many of these same

research topics have an important spatial di-

mension. Particularly in agricultural economics,

in which land is immobile, weather events im-

pact decisions and resulting outcomes, policies

are set at a myriad of levels defined by regional

political boundaries, and information is often

regionally explicit—location matters. The recent

development of spatial econometric theory applied

to panel data provides agricultural economists the

ability to control for both spatial and temporal

dependencies.

Explicit econometric techniques for testing

for spatial processes and estimation with panel

data in the presence of both a spatial lag and

a spatial error have just recently been developed

(Baltagi, Song, and Koh, 2003, 2007c; Elhorst,

2003, 2009; Lee, 2003; Baltagi, Egger, and

Pfafermayer, 2007a; Baltagi, Kelejian, and Prucha,

2007b; Kapoor, Kelejian, and Prucha, 2007;

Baltagi, 2008; Baltagi and Liu, 2008; Lee and

Yu, 2009a, 2009b, 2010; Elhorst, Piras, and Arbia,

2010; Yu and Lee, 2010). Many of these programs

are now available as a package in the R language

(Millo and Piras, 2009a, 2009b; Piras, 2010; R

Development Core Team, 2010). Among other

things, these subroutines give analysts the ability

to use the standard fixed vs. random effects in the

presence of both a spatial autoregressive variable
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and a spatial autocorrelated error process. Dif-

ferent error specifications are possible with in-

dividual effects that may or may not be spatially

correlated. Methods are also currently being

developed to account for spatial processes in

simultaneous equations estimations (Kelejian

and Prucha, 2004; Baltagi and Pirotte, 2011).

Spatial heterogeneity also frequently com-

plicates panel regressions. Various non- and semi-

parametric methods have been developed for

controlling for heterogeneity in cross-sectional

data and are currently in the process of being

expanded to panel data. Each of these methods

relies on specific assumptions and data require-

ments. In this article, we briefly review the recent

theoretical advances in spatial econometrics and

their applications to panel data and discuss its

potential for application across a wide range

of fields within agricultural economics.

To demonstrate the effect of these spatial

panel methods, we tap into a recent debate in

the agriculture and resource economics litera-

ture about the effect of climate change on ag-

ricultural profitability and land values. As an

alternative to detailed crop yield simulations,

Mendelsohn, Nordhaus, and Shaw (1994) esti-

mate a cross-section of county farmland values

as a function of local climate, finding poten-

tially positive effects of climate change on

U.S. agriculture. Later work finds very different

estimates for irrigated and nonirrigated areas

and, when considering only the rain-fed regions

and using multiple years of data, find significantly

negative estimated effects of climate change

(Schlenker, Hanemann, and Fisher, 2005). Most

recently, Deschenes and Greenstone (2007) use

time-series variation and find positive effects of

climate change. Although the two more recent

articles make an attempt to correct for spatial

correlation among the error terms, none use for-

mal spatial panel methodology. Thus, we believe

it is interesting and informative to explore these

different approaches using a county-level panel

data set while formally controlling for both a

spatial lag and a spatial error correlation.

Using a hedonic land value framework, we

incorporate spatial effects across a variety of spa-

tial panel estimators combining spatial lag and

spatial error techniques within fixed- and random-

effects frameworks. The differences in underlying

assumptions and implementation procedures are

discussed, whereas the variation in estimation

results that may be obtained across the available

estimators is illustrated within the context of an

applied example.

Spatial Panel Methods Theory

Spatial models are an important tool in agri-

cultural economics as well as the related dis-

ciplines of regional sciences, geography, urban

and real estate economics, economic geogra-

phy, public economics, and local public finance

(Baltagi, Song, and Koh, 2007c). Spatial panel

data models are an emerging and promising

topic within the spatial econometrics litera-

ture. Recent contributions include, among others,

Baltagi, Song, and Koh (2003, 2007c), Elhorst

(2003, 2009), Baltagi, Egger, and Pfafermayr

(2007a, 2009), Baltagi, Kelejian, and Prucha

(2007b), Kapoor, Kelejian, and Prucha (2007),

Pesaran and Tosetti (2007), Anselin, Le Gallo,

and Jayet (2008), Baltagi and Liu (2008), Lee

and Yu (2009a, 2009b, 2010), and Millo and

Piras (2009a, 2009b).

Panel data relate to a cross-section of ob-

servations such as individuals, groups, countries,

or regions repeated over several time periods.

Spatial panels relate to repeated observations

associated with a particular position in space.

Data can be observed at specific point locations

(e.g., housing data) or aggregated over regular

or irregular geographic areas (e.g., countries, re-

gions, or states).

The structure of the interactions between the

spatial units is represented by means of a spa-

tial weights matrix. The spatial weights matrix

W is a N � N positive matrix. Each observation

appears both in rows and columns. Hence the

nonzero elements on each row of the matrix

define the ‘‘neighborhood’’ of the correspond-

ing spatial unit. The element wij expresses the

intensity of the interaction between locations

i and j. The simplest specification follows

a binary scheme where wij 5 1 when i and j are

neighbors and zero otherwise. The decision of

how to classify what constitutes a neighbor can

vary, but the most common definition is simply

one of contiguity: if two units share a common

border, they are neighbors. Another common
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approach is to define neighbors as the ‘‘k’’ nearest

units to observation i. This latter approach is the

one we take in this article. In particular, we cal-

culate a 10-nearest-neighbors spatial weights

matrix in which distance is measured in kilome-

ters. By convention, the diagonal elements of the

spatial weights matrix wij are all set to zero. Thus,

a unit is not a neighbor of itself.

Although the original weights are generally

symmetric, the matrix is often used in a row-

standardized form, leading to a matrix that is

no longer symmetric. Unless based on a formal

theoretical model, the specification of the spatial

weights matrix is often ad hoc and the choice is

typically driven by geographic criteria. Further-

more, in a panel data context, weights are as-

sumed to remain constant over time.

In a panel data framework, a large number

of combinations of spatial heterogeneity and

spatial dependence is possible but some of them

are particularly difficult to implement in practice.

As for the cross-sectional case, spatial panel data

models can be estimated both following the

maximum likelihood (ML) and the generalized

method of moments (GM) approach. Given the

large number of cross-sectional units in many

panel data, the ML estimation may be cumber-

some in terms of computing capacity. Motivated

by this shortcoming, Kelejian and Prucha (1999)

suggest an alternative estimation procedure for

these models, which remains computationally

feasible even for large sample sizes. Later,

Kapoor, Kelejian, and Prucha (2007) extend this

procedure to panel data models involving a first-

order spatially autoregressive disturbance term,

in which the innovations have the following

error component structure:

uit 5 rðIT �WNÞuit 1 eit,

where WN is a spatial weights matrix and r is a

spatial autoregressive parameter, and

eit5mi 1 nit

where mi is the region-specific, time-invariant

portion of the error, and nit is the region and time-

specific error. Contrary to other approaches, the

disturbances are allowed to be correlated over

time and across spatial units. In other words, the

model allows for spatial interactions that involve

not only the residual error components, but also

the location-specific error components.

Kapoor, Kelejian, and Prucha (2007) main-

tain the assumption that the error components

nit are identically and independently distributed

with mean zero and variance s2
n . The error com-

ponents mi are also identically and independently

distributed with mean zero and variance s2
m: Fur-

thermore, the two processes are assumed to be

independent of each other. Under some additional

assumptions, the variance covariance matrix of

eN can be expressed as

We 5 s2
nQ0 1 s2

1Q1,

where s2
1 5 s2

n 1 Ts2
m, Q0 5 IT �

JT

T

� �
� IN ,

Q1 5
JT

T
� IN and JT 5 iT i0T .

Furthermore, using the properties of Q0 and

Q1, its inverse takes the form

W�1
e 5 s�2

n Q0 1 s�2
1 Q1.

The estimation procedure makes use of this

inverse to calculate a feasible GLS estimator

of the parameter vector. To estimate the spatial

autoregressive parameter and the variance com-

ponents, Kapoor, Kelejian, and Prucha (2007)

propose an extension of the generalized moment

estimator developed in Kelejian and Prucha

(1999). Specifically, they define three sets of GM

estimators based on the six moment conditions

GN5

g0
11 g0

12 g0
13 0

g0
21 g0

22 g0
23 0

g0
31 g0

32 g0
33 0

g1
11 g1

12 0 g1
13

g1
21 g1

22 0 g1
23

g1
31 g1

32 0 g1
33

2
666666664

3
777777775
, gN5

g0
1

g0
2

g0
3

g1
1

g1
2

g1
3

2
666666664

3
777777775
,

where, for i 5 0,1:

g i
115

2

NðT � 1Þ1�i
EuN 0Qi�uN ,

g i
125

�1

NðT � 1Þ1�i
E�uN 0Qi�uN ,

g i
215

2

NðT � 1Þ1�i
E��uN 0Qi�uN ,

g i
225

�1

NðT � 1Þ1�i
E ��uN 0Qi

��uN ,

g i
315

1

NðT � 1Þ1�i
EðuN 0Qi

��uN 1 �uN 0Qi�uNÞ,
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g i
325

�1

NðT � 1Þ1�i
E�uN 0Qi

��uN ,

g i
1351, g i

235
1

N
trðW 0WÞ,

g i
335 0, g i

15
1

NðT � 1Þ1�i
EuN 0QiuN ,

g i
25

1

NðT � 1Þ1�i
E�uN 0Qi�uN , and

g i
35

1

NðT � 1Þ1�i
EuN 0Qi�uN .

The first set of GM estimators is based only

on a subset of the moment conditions (the first

three equations) and assigns equal weights to

each of them. This first set of estimators should

be therefore used as initial estimators.

From the theory of GM estimators, we know

that the ideal weighting matrix for asymptotic

efficiency is the inverse of the variance–covariance

matrix of the sample moments at the true param-

eter values. The second set of GM estimators uses

all moment conditions and an optimal weighting

scheme. Kapoor, Kelejian, and Prucha (2007)

derive the weighting matrix under the assump-

tion of normally distributed innovations. They

point out that, although the use of such a matrix

is not strictly optimal in the absence of normality,

it can be viewed as a reasonable approximation of

the true and more complex variance–covariance

matrix.

The third set of GM estimators is motivated

by difficulties related to the computation of the

elements of the asymptotic variance–covariance

matrix of the sample moments. Although one

could take advantage of the particular structure

of W, the computation of such a matrix can still

be difficult in many cases. The third set of GM

estimators still uses all moment conditions but

weights them with a simplified scheme.

Using any of the previously defined estima-

tors for the spatial coefficient and the variance

components, an FGLS estimator can be generated

based on a spatial Cochrane-Orcutt-type trans-

formation of the original model. Following the

classic error component literature, a convenient

way of calculating the estimator is to further

transform the already spatially transformed model

premultiplying it by INT 2 uQ1, where u 5

1 2 sn/s1. The FGLS estimator is then identical

to an OLS estimator calculated on the ‘‘doubly’’

transformed model.

There are a few straightforward extensions

of the estimation methodology discussed pre-

viously (see also Mutl and Pfaffermayr, 2008).

First, when it is unlikely that the time-invariant

errors mi are independently distributed, a fixed-

effects specification can be estimated using a

subset of the moment conditions (i.e., those as-

suming that the variance of the error components

is zero). Second, when a spatially lagged de-

pendent variable is included in the regression

equation, the model can be estimated using a two-

stage least-squares procedure. We implement both

extensions in our empirical analysis.

An interpretation issue arises when a spatially

lagged dependent variable is included in the

model. As LeSage and Pace (2009) point out,

a marginal change in a single observation will

not only affect the observation itself (direct ef-

fect), but also potentially influence all other ob-

servations in the sample (indirect effect), implying

that the marginal effect of a variable is no longer

simply its coefficient. In a cross-sectional frame-

work, LeSage and Pace (2009) define the average

total impact (TI), the average direct impact (DI),

and the average indirect impact (IM) from

changes in the model variable Xk as

DI 5 n�1trðSkðWÞÞ

TI 5 n�1ıTSkðWÞı

IM 5 TI � DI,

where Sk(W) 5 (I 2 lW)21bk, ı is a vector of

ones and tr() denotes the trace operator. They

also discuss how to calculate measures of dis-

persion for inference regarding the statistical

significance of these effects. In the context of

our particular model specification, effects es-

timates (for each time period) assume expres-

sions that are identical to the cross-sectional case

reported previously. Therefore, the theory pre-

sented in LeSage and Pace (2009) applies to our

application.

Although we concentrate on static spatial

panel data models that do not include time-

lagged dependent variables in the regression

equation, there has been a growing interest in

the dynamic case. Anselin, Le Gallo, and Jayet

(2008) present a taxonomy for spatial dynamic
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models and classify them into four categories:

1) pure space recursive in which the dependence

pertains only to neighboring locations in a pre-

vious period; 2) time–space recursive when both

time and space–time lags are included; 3) time–

space simultaneous when the model includes a

time lag and a contemporaneous spatial lag; and

4) time–space dynamic when all forms of de-

pendence are included. Recently, several of these

models have been more formally developed.

Parent and LeSage (2010) consider a time–space

dynamic model that relates commuting time to

highway expenditure. Korniotis (2010) estimates

a time–space recursive model with fixed effects.

Elhorst (2003) proposes an unconditional maxi-

mum likelihood estimator for dynamic panels.

Yu and Lee (2010) study a model in which mul-

tiple dynamic effects are included.

Applications in Agricultural Economics

Spatial dependencies enter into nearly all sub-

fields of agricultural economics. We provide a

brief discussion of potential or actual applica-

tions in four major areas of the profession with

references to recent examples where applica-

ble. None of these reviews should be consid-

ered a complete or comprehensive listing. For

earlier reviews of spatial econometric methods,

see Anselin (2001, 2002) and Nelson (2002).

Finance and Risk Management

The finance and risk management literatures

commonly deal with a number of issues that may

be considered from a spatial perspective. We focus

on potential applications of spatial panel methods

to portfolio style analysis of credit and insurance

markets. Although analyses at the individual level

are required to calculate actuarially fair insurance

rates and make accurate loan application and

pricing decisions, how individual loans and in-

surance policies are aggregated into a bank or

company portfolio depends on the interactions

among the individual contracts. These interac-

tions can be thought of as inherently spatial in

nature attributable to systemic factors such as

weather, which may create financial stress or

insurance losses over a widespread geographic

region. Furthermore, analyses of such issues

generally involve the use of credit or insurance

market performance data over time. Although

explicit spatial panel methods have yet to be

introduced to these areas, recent applications

of spatial techniques include analyses of his-

toric U.S. crop insurance program losses (Popp,

Rudstrom, and Manning, 2005; Woodard et al.,

2011).

Production and Land Economics

Spatial methods have also been widely adopted

in the production and land economics literature.

To examine the determinants of land values and

rent levels, one would ideally use data observed

over both time and space. Recent research has

incorporated spatial as well as temporal effects

into analyzing the factors which impact cash rent

levels and land values in the corn belt (Huang

et al., 2006; Du, Hennessy, and Edwards, 2007;

Woodard et al., 2010).

Crop yield modeling is another area in the

production literature in which spatial factors have

been explicitly modeled. Anselin, Bongiovanni,

and Lowenber-DeBoer (2004) use spatial methods

in examining the potential for variable rate tech-

nologies in fertilizer application to improve crop

yields. The spatial nature of weather events also

provides potential for incorporating spatial meth-

odologies into crop yield–weather models.

Development Economics

Spatial econometric techniques in general are

somewhat newer to development economics

than in other fields in agricultural and applied

economics. Spatial methods have largely entered

development economics through the analysis

of technology adoption. In an early application

of a spatial probit, Holloway, Shankar, and

Rahmanb (2002) consider how neighbors affect

the adoption of a high-yielding variety of rice

in Bangladesh. As an example of more recent

work, Langyintuo and Mekuria (2008) apply

a spatial tobit estimator to technology adoption

of improved maize varieties in Mozambique. As

researchers increasingly return to interview

households to add a time dimension to their data,

we predict spatial panel methods may become

more prevalent in this literature.
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In very recent work, spatial lag models have

been applied as a means to estimate peer effects

(Bramoulle, Djebbari, and Fortin, 2009; Helmers

and Patnam, 2010). To estimate the decision by

a person influenced by the actions and attitudes

of their social network, one needs to take into

account the problem that their peers are simul-

taneously choosing their actions or attitudes in

response to them. To surmount this reflection

problem, Bramoulle, Djebbari, and Fortin (2009)

propose applying a spatial lag model. Helmers

and Patnam (2010) take a similar approach to

estimating the peer effects on child skill acqui-

sition in India. They further control for spatial

errors and heteroskedasticity using the spatial

HAC proposed by Kelejian and Prucha (2007).

To our knowledge, the one area where formal

spatial panel methods have been used in de-

velopment is a recent article that uses county-

level panel data from Mexico to consider the

distributional effects of NAFTA (Baylis, Garduno-

Rivera, and Piras, 2010).

Environmental Economics

Perhaps because of its association with urban

economics, geography, and the locational attri-

butes of many pollutants, environmental eco-

nomics were an early adopter of spatial methods.

One of the more frequent applications has oc-

curred in hedonic models of house prices used

to estimate the value of pollution (e.g., Leggetta

and Bockstael, 2000; Kim, Phipps, and Anselin,

2003; Anselin and Lozano-Gracia, 2008; Cohen

and Coughlin, 2008). Although to our knowl-

edge no article has yet used formal spatial panel

methods in environmental economics, Anselin

and Lozano-Gracia (2008) use a spatial hetero-

skedasticity autocorrelation correction in their

estimation of the effect of air pollution on Los

Angeles housing prices. In a later article, Anselin

and Lozano-Gracia (2010) apply the same meth-

odology to value access to water in one major city

in India.

Other applications have occurred in the

conservation literature, in which the benefits of

land conservation are clearly affected by loca-

tion through location-specific characteristics,

development pressure, and the conservation state

of neighboring parcels (e.g., Mertens et al., 2002;

Müller and Zeller, 2002; Munroe, Southworth,

and Tucker, 2002; Newburn, Berck, and

Merenlender, 2006; Albers, Ando, and Chen,

2008; Honey-Roses, Baylis, and Ramirez, forth-

coming). Because much of environmental eco-

nomics uses panel data, we foresee great potential

for the use of spatial panel methods in this liter-

ature. One research area that has used panel data

and made some attempts to correct for spatial

processes is in the estimations of the costs and

benefits of climate change.

Climate Change and Agriculture

Applications

We explore these spatial panel methods using

a recent academic debate about the effect of

climate change on American agriculture. Much

of the early literature estimating the effect of

climate change on agriculture takes an agronomic

or production function approach that uses de-

tailed crop growth models to simulate how dif-

ferent crop yields will respond to changes in

climate. Articles using this methodology include

Callaway et al. (1982), Adams et al. (1988, 1990,

1995), Adams (1989), Rozenzweig and Parry

(1994), and Rind et al. (2002). Good surveys

of the earlier work are cited in Mendelsohn,

Nordhaus, and Shaw (1994) and include the

National Research Council (1983), Smith and

Tirpak (1989), and Cline (1992).

An alternative approach to this literature is

suggested by Mendelsohn, Nordhaus, and Shaw

(1994) who use a hedonic model to estimate a

cross-section of farmland prices to estimate the

effect of temperature and precipitation on agri-

cultural productivity. In contrast to the earlier

production function method, the hedonic ap-

proach has the benefit of being parsimonious

while also incorporating the effects of crop choice

and other behavioral responses to changing cli-

mate. The intuition comes from a Ricardian

model of farmland values, in which those values

capture discounted expected future profits asso-

ciated with that land. Thus, farmland values in-

herently reflect the benefits of local climate on

agricultural productivity.

Using 1982 county-level data for the lower

48 states, Mendelsohn, Nordhaus, and Shaw

(1994) find that a 5-degree increase in surface
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temperature and accompanying 8% increase in

precipitation may actually aid agriculture when

the observations are weighted by crop revenue.

They contrast their findings to the earlier agro-

nomic approaches, which generally found sub-

stantial damages from climate change.

Schlenker, Hanemann, and Fisher (2005)

argue that the Mendelsohn, Nordhaus, and Shaw

(1994) approach will overstate the benefits for

agriculture from climate change because they

aggregate irrigated and nonirrigated areas. Those

warmer areas that are associated with higher crop

revenue often also benefit from highly subsidized

irrigation systems. Schlenker, Hanemann, and

Fisher (2005, 2006) also note that it is inappro-

priate to assume that increasing temperatures

will make farmland in the northern Great Plains

look like the Central Valley in California. They

address this concern by restricting themselves to

counties east of the 100th meridian, where farm-

ing is possible without irrigation. They also make

a number of innovations in terms of how to treat

temperature and precipitation variables whose

effects are highly nonlinear. Third, they estimate

the effects of climate using both cross-sectional

and pooled data that span 15 years. Lastly, they

also transform their data to take into account

spatial correlation in their error terms. Using this

approach, they find that climate change is likely to

negatively impact nonirrigated U.S. agriculture.

A third recent contribution to this debate

comes from Deschenes and Greenstone (2007)

who make use of time-series variation in weather

to predict changes in agricultural profit from

climate change. They argue that unobservables

associated with location likely drive much of the

results found in Schlenker, Hanemann, and Fisher

(2005) and therefore use county fixed effects to

control for these unobservable factors. They also

use state-by-year fixed effects so that their iden-

tification comes off of how county weather in

year t differs from the average county weather

controlling for statewide annual shocks. They

then estimate agricultural profit as a function

of temperature and precipitation and find that

warmer, wetter weather as predicted by cli-

mate change will increase agricultural profits

by 4% per year.

Deschenes and Greenstone (2007) argue

that their approach allows them to estimate the

effect of weather on agricultural productivity

and from that duce the potential effect of cli-

mate change. If anything, because it does not

allow for the full range of behavioral responses

to changes in climate, the authors argue that

this model will provide a lower bound on the

effect of climate change. A criticism of this

approach has been that weather variation may

have very different effects on agriculture than

an expected long-run change in climate. Fisher

et al. (forthcoming) also note concerns with the

data and the need for a spatial error correction

in the Deschenes and Greenstone (2007) model.

Furthermore, these studies are subject to the as-

sumption that adjustments are not made in re-

sponse to climate change outside of the United

States. The extent to which climate change im-

pacts agriculture in other areas could also impact

land values. This caveat also applies to the em-

pirical illustration we provide subsequently.

Data and Approach

In this article, we explore the hedonic approach

and examine variation in the estimated effects

that may occur across nonspatial and spatial

models. Using the same panel data used in

Schlenker, Hanemann, and Fisher (2006), we use

the spatial panel estimators discussed previously

to estimate the effect of temperature and pre-

cipitation variables on the log of farmland values.

We largely follow the model specification from

Schlenker, Hanemann, and Fisher (2006) using

county-level data from the continental United

States and restricted to the counties east of the

100th meridian to control for nonirrigated

agriculture.

We also use their formulation of the climate

data, in which the temperature information is

converted into nonlinear measures of degree-

days. Specifically, we use 30-year rolling averages

of degree days over 8°C from April to September

with a second variable of degree days over 34°C

to control for excessive heat. We regret that we

do not have access to their detailed time-variant

soil quality measures, so we follow the specifica-

tion by Mendelsohn, Nordhaus, and Shaw (1994),

using their data from 1982 on soil composition,

erodability (K-factor), moisture capacity, and

permeability. Lastly, like Schlenker, Hanemann,
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and Fisher (2006), we include county average

income per capita and population density to con-

trol for demand for land for nonagricultural uses.

Summary statistics for our data are reported in

Table 1.

Note that this discussion is for demonstra-

tion purposes only with a focus on illustrating

the impact that the incorporation of spatial con-

siderations may have on the estimates and in-

terpretation of those results. We do not claim that

our results reflect the effects of climate change

on U.S. agriculture nor should they be compared

with the results of the previously discussed cli-

mate change studies. For example, unlike all three

previous articles, we present simple, unweighted

results that use agricultural land area, agricultural

value, and other measures of the accuracy of

county land values to weight their observations.

Thus, we do not recommend that readers use our

results to predict the effect of climate change.

We only hope that by illustrating some key dif-

ferences between the approaches, we can dem-

onstrate the value of spatial panel methods and

perhaps shed some light on the debate.

Land values are spatially correlated. Along

with reflecting potentially unobservable soil

characteristics, agricultural land markets are

highly localized with many buyers being farmers

looking to add fields near to their existing oper-

ation. Like with house prices, one might also ex-

pect increased prices in one region to directly

increase prices in the neighboring region, result-

ing in a spatial lag process. We apply spatial lag

and spatial error models using both fixed- and

random-effects extensions to the panel. We there-

fore extend the work by Schlenker, Hanemann,

and Fisher (2005, 2006) to include a formal

spatial panel framework.

Results

Specifically, we estimate seven models, all of

which are presented in Table 2. The first three

models do not control for spatial characteristics

of the data. The first model is a simple pooled

model with fixed effects by state. The second

model, in column 2, is a standard panel model

with county-level fixed effects. Note that the

use of fixed effects drops the coefficients on our

time-invariant characteristics such as latitude

and soil type. The third column presents a stan-

dard panel model with random effects.

The last four columns present results from

the spatial panel estimations. The fourth column

Table 1. Summary Statistics for Counties Included in the Analysis

Variables Minimum Median Mean Maximum

Standard

Deviation

Farmland Value 1982 104 981 1136 8056 649.06

Farmland Value 1987 140 837 1013 7008 735

Farmland Value 1992 139 995 1262 14,530 1143.87

Farmland Value 1997 150 1327 1592 13,870 1154.75

Farmland Value 2002 205 1792 2183 22,850 1900.94

Degree-days (8–32°C) 1.03 2.3 2.3 3.42 0.5

Degree-days2 (8–32°C) 1.07 5.27 5.53 11.70 2.28

Degree-days (34°C) 0.00 1.22 1.63 7.85 1.50

Precipitation (cm) 25.54 61.61 61.48 102.1 10.01

Precipitation2 (cm2) 652.4 3795 3881 10,430 1270.42

Latitude –12.16 –0.51 –0.71 10.45 4.58

Income per capita 6133 16080 16770 57,110 6418.62

Population density 0.00 0.07 0.2 8.84 0.46

Population density squared 0.00 0.01 0.26 78.15 2.1

Clay –0.14 –0.14 0.00 0.86 0.35

Permeability –3053 –1235 –157.7 65,710 3612.47

Moisture capacity –259.2 –122.5 –9.64 1707 269.23

Soil erosion –0.19 0.01 0.00 0.19 0.07

Note: Farmland values are measured in 1997 U.S. dollars.
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illustrates the spatial error model with fixed

effects, whereas the fifth column uses random

effects. The sixth and seventh columns present

the same models including a spatial lag. First,

note that the estimates of the spatial lag are

highly significant in both fixed- and random-

effects models. Similarly, both spatial error models

show strong evidence of spatial correlation.

Table 2. Regression Results from a Variety of Panel Specifications

Pooled

OLS

County

Fixed

Effects

Random

Effects

with State

Dummies

Spatial

Error

Fixed

Effects

Spatial

Error

Random

Effects

Spatial

Lag

Fixed

Effects

Spatial

Lag

Random

Effects

Constant 230.35 357.65 416.98 53.22

(16.54) (27.07) (31.88) (22.49)

Degree-days (8–32°C) 193.82 125.09 106.36 87.01 164.72 48.01 57.62

(11.11) (63.06) (18.78) (48.01) (22.64) (30.69) (15.38)

Degree-days2 (8–32°C) –35.66 –35.51 –24.72 –21.2 –32.81 –11.22 –11.16

(2.32) (13.03) (3.93) (9.85) (4.81) (6.43) (3.24)

Square root

degree-days

–44.66 77.36 1.1 9.43 –14.69 9.64 –3.26

(34°C) (1.81) (3.61) (2.53) (4.36) (2.94) (4.48) (2.04)

Precipitation 4.94 –0.48 3.72 1.19 1.56 –0.03 0.33

(0.39) (0.93) (0.59) (0.98) (0.62) (0.41) (0.46)

Precipitation2 –0.0326 0.0074 –0.0221 –0.0086 –0.0094 0.0006 –0.0015

(0.003) (0.0072) (0.0045) (0.0075) (0.0048) (0.0032) (0.0035)

Latitude –2.59 –3.63 –1.45 –0.41

(0.43) (0.71) (0.88) (0.57)

Income per capita 0.004 0.0041 0.0039 0.0022 0.0022 0.0004 0.0009

(5.4e–5) (4.5e–5) (4.1e–5) (8.9e–5) (8.3e–5) (0.0002) (7.4e–5)

Population density 53.59 56.06 60.15 3.13 39.54 31.59 42.54

(1.44) (8.92) (2.46) (6.67) (1.83) (5.69) (1.61)

Population density2 –5.49 –15.45 –6.89 –4.39 –4.07 –8.11 –4.6

(0.29) (1.95) (0.51) (1.24) (0.34) (1.39) (0.32)

Clay 2.35 4.49 0.18 –0.45

(1.09) (1.95) (1.57) (1.36)

Permeability –0.001 –0.0014 0.0002 0.0002

(0.0001) (0.0002) (0.0002) (0.0002)

Moisture capacity 0.0373 0.0324 0.017 0.0158

(0.0023) (0.0042) (0.0035) (0.003)

Soil erosion –46.22 –32.32 7.41 2.7

(8.35) (14.93) (14.32) (11.21)

State fixed effects Yes No Yes No Yes No Yes

Number of

observations

11,395 11,395 11,395 11,395 11,395 11,395 11,395

Spatial lag

coefficient

0.895 0.776

(0.005) (0.002)

Spatial error

coefficient

0.8055 0.8262 –0.4444 0.4239

Note: Standard errors are reported in parentheses below the coefficient estimates.
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In all models, degree-days have a positive

effect on land values, whereas squared degree-

days have a negative effect. The estimated ef-

fect of increased excessive heat, as measured

by the square root of degree-days over 34°C, is

negative and significant for the pooled model

and the two spatial models with random effects

but appears to be significantly positive for the

fixed-effects models. When we calculate sim-

ple marginal effects of an increase in degree-

days above 8°C, but below 34°C at the average,

the effect is negative for most models but posi-

tive for the pooled model and the two spatial

models with random effects. The effect of pre-

cipitation is largely positive with a negative

squared term. That said, although not signifi-

cant, the effect of precipitation reverses for two

of the models using county-level fixed effects. In

all models, the marginal effect of precipitation is

positive at the county average.

Beyond the effect of fixed vs. random ef-

fects, controlling for the spatial nature of these

panel data makes a difference. We observe sub-

stantial differences in the coefficient estimates on

degree-days between the spatial and nonspatial

panel estimates. The spatial error random effects

model has a coefficient estimate with a sub-

stantially larger absolute value on both degree-

days and degree-days squared than the nonspatial

model with random effects. The fixed-effect es-

timates are also smaller in (absolute) magnitude

for the spatial model as compared with the stan-

dard fixed-effect estimates.

The estimates of the positive linear effect

of precipitation decrease dramatically with the

spatial models, whereas the coefficient on the

squared term also decreases. This leaves the mar-

ginal effect of precipitation calculated at the

average to be positive for all models but much

smaller for all four spatial panel models. Again,

although we caution against the use of our es-

timates to draw conclusions about the impact of

climate change on agriculture, these results in-

dicate that the estimated effects of the climate

variables on agricultural land values is smaller

when spatial models are used.

Furthermore, as one might anticipate, the

estimates of the coefficients are smaller in mag-

nitude for the spatial lag models. This result is

not surprising given that degree-days influence

agricultural value not only directly, but through

the agricultural value of neighboring counties.

As stated previously, the coefficient estimates in

the spatial lag models do not directly represent

estimates of the marginal effects of those fac-

tors as in the spatial error models. Thus, the

magnitudes of the coefficients should not be

compared with assess the marginal effect esti-

mates resulting from the spatial error and spatial

lag models.

We present estimates of the direct, indirect,

and total effects as defined by LeSage and Pace

(2009) in Tables 3 and 4. To save space, we do

not present results on the statistical significance

of the effects; these results are available from the

authors on request. As can be seen in Tables 3

and 4, the combined marginal effect of temper-

ature and precipitation is actually larger with the

spatial lag models than their counterparts.

Discussion and Conclusion

We see strong evidence of spatial effects in our

estimation. Furthermore, incorporating spatial

panel methods clearly affects the results. In

our example, the spatial methods give rise to

Table 3. Direct, Indirect, and Total Marginal Effects for the Spatial Lag Model with Fixed Effects

Spatial Lag with Fixed Effects Direct Indirect Total

Degree-days (8–32°C) 50.24 391.62 441.87

Degree-days2 (8–32°C) –11.74 –91.52 –103.26

Square root degree-days (34°C) 10.08 78.61 88.69

Precipitation –0.028 –0.225 –0.251

Precipitation2 0.0006 0.0049 0.0056

Income per capita 0.0004 0.0033 0.0037

Population density 33.07 257.74 290.81

Population density2 –8.49 –66.18 –74.67
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smaller marginal effects of both temperature

and precipitation. Although this result is ex-

pected for the spatial lag model because cova-

riates now have both a direct effect within the

county and an indirect effect through the spa-

tially lagged outcome variable, it is somewhat

more surprising for coefficients in the spatial

error model to vary as much as they do from the

standard panel results.

As to the debate about fixed vs. random

effects, we do observe that fixed effects appear

to generate larger and/or positive coefficients

associated with increased temperature and

precipitation, whereas random effects appear to

indicate negative effects associated with increased

temperature although slightly larger positive ef-

fects associated with increased rainfall. That said,

these results should be treated very cautiously,

noting that we are not weighting our observa-

tions by any measure of importance of agricul-

ture in the county.

Future research on farmland values or other

measures of productivity need to carefully take

space into account. Schlenker, Hanemann, and

Fisher (2005) note the high degree of spatial

heterogeneity resulting from comparing west

with east, which they associate with subsidies

to irrigation that are more prevalent west of the

100th meridian than in the eastern half of the

country. Presumably, other forms of spatial het-

erogeneity exist and should be taken into con-

sideration when estimating the effect of climate

change. One might expect, for example, that cli-

mate change may have differential effects on land

near the urban fringe compared with land with

very low development pressure. Although al-

lowing for a nonlinear effect of population den-

sity helps address this issue, it does not address

the effect population density has on the coeffi-

cients on temperature or precipitation. A better

understanding of the spatial process of yields,

prices, and land markets would further aid work

in this area. Finally, the estimation of dynamic

space–time panel models would allow researchers

to quantify dynamic responses over time and

space as well as space–time diffusion impacts.

In conclusion, we argue that given the im-

portance of location and extensive use of panel

data in finance and risk, production economics,

environmental economics, and increasingly in

development economics, recently developed

spatial panel methods hold great potential for

applied researchers in these fields. We demon-

strate the applicability of these methods using

a large data set and illustrate that the appropriate

incorporation of spatial effects can generate

different results than nonspatial panel models or

ex-post corrections for spatial error correlation.

As future advances are made in terms of seem-

ingly unrelated regressions for spatial panel data,

spatial panel estimators for discrete choices, and

others, we feel that these tools have great

potential to benefit empirical research in the

agricultural economics profession.

Table 4. Direct, Indirect, and Total Marginal Effects for the Spatial Lag Model with Random
Effects

Spatial Lag with Random Effects Direct Indirect Total

Degree-days (8–32°C) 59.01 198.52 257.53

Degree-days2 (8–32°C) –11.42 –38.44 –49.86

Square root degree-days (34°C) –3.33 –11.23 –14.57

Precipitation 0.34 1.13 1.47

Precipitation2 –0.0015 –0.0051 –0.0067

Latitude –0.4191 –1.4098 –1.8289

Income per capita 0.0009 0.0030 0.0039

Population density 43.57 146.57 190.14

Population density2 –4.70 –15.82 –20.52

Clay –0.46 –1.56 –2.02

Permeability 0.00001 0.00004 0.00055

Moisture capacity 0.0161 0.0543 0.0705

Soil erosion 2.76 9.29 12.05
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