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Abstract

Aims

The spatial segregation hypothesis and the low-frequency hypothesis

are two important proposed mechanisms that delay or prevent com-

petitive exclusion in ecosystems. Because tree species interact with

their neighbors, the importance of these potential processes can be

investigated by analyzing the spatial structures of tree species.

Methods

The distribution of the adults of 27 common tree species in a fully

mapped 5-ha subtropical forest plot in Baishanzu, eastern China,

was analyzed to investigate the community-level intra- and interspe-

cific spatial association patterns. We first tested for the overall spatial

pattern in the 5- to 40-m neighborhoods and classified first-order bi-

variate associations with a diametric scheme based on Ripley’s K and

nearest-neighbor statistic (G-function). Then heterogeneous Poisson

null models were used to distinguish second-order interactions from

overall spatial associations (including first-order effects). Finally, we

analyzed correlations between the existence of species interactions

and some attributes of the species involved.

Important Findings

Partial overlap and segregation increased with scale, whereas mixing

decreased. Nearly 70% of the species pairs occurred less than

expected at random, and only 3.4% of the species pairs were well

mixed; 11.0% of all species pairs showed significant small-scale

interactions, whichwas a greater frequency than expected by chance

if species are abundant or prefer the same habitat, but less frequent

than expected if species are highly aggregated. This suggests that

both spatial segregation and low frequency of species facilitate spe-

cies coexistence by reducing the opportunity that trees of two species

encounter each other. The study also revealed that positive interac-

tions were more prevalent than negative interactions in the forest,

which indicates that positive interactions may have important effects

on forest species assemblies.
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INTRODUCTION

The relative importance of inter- and intraspecific interactions

is one of the central debates in ecology. Although positive

interactions between species have recently been reported, es-

pecially in stressful habitats (Callaway et al. 2002; Martinez

et al. 2010), competition has been accepted as a prevalent pro-

cess in nature since the 1930s (Gause 1934). Specifically, com-

petition has important effects on composition and structure of

plant communities (e.g. Chesson 2000; Grime 1977; Tilman

1994). Due to interspecific competition, species in a community

will exclude each other until only one species remains (Wright

2002). However, many mechanisms have been proposed that

delay or prevent competitive exclusion. Given the fact that

plants are sessile organisms, the frequency at which two species

directly interact will be influenced by the spatial patterns they

(separately and jointly) exhibit and their relative abundances.

The Spatial Segregation Hypothesis contends that highly patchy
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distributions lead to interspecific segregation and, thus, on av-

erage individuals will interact with conspecifcs rather than het-

erospecifics (Pacala 1997). Most tropical and subtropical forests

are species rich, which usuallymeans low densities of individual

species. This generally weakens direct interspecific interactions

among species. If two species occur at low frequencies, they do

rarely encounter each other as proximal neighbors (Perry et al.

2009). The Low-Frequency Hypothesis states that, due to the

low frequencies ofmost species in forests, pairwise species inter-

actions are rare occurrences. The common ground between

these hypotheses is that reducing the probability of encounters

between pairs of species avoids competitive exclusion.

Whatever coexistence mechanisms are operating in the for-

est, they should leave a spatial signature (Hubbell et al. 2001).

Space can be used as a surrogate for uncovering ecological pro-

cess through the study and analysis of spatial patterns (McIntire

and Fajardo 2009). If spatial mechanisms, such as the spatial

segregation hypothesis and the low-frequency hypothesis, are

indeed important for species coexistence, one would expect

emergence of distinct spatial patterns, not only intraspecific

but also interspecific. However, while there have been plenty

of studies that investigate intraspecific spatial structure, few

attempts have been made to analyze species spatial associations

as a subset of species biological interactions (e.g. Kubota et al.

2007; Martinez et al. 2010; Perry et al. 2009; Wang et al.

2010; Wiegand et al. 2007). Such studies are necessary to reveal

potential biological processes that control the assembly, dynam-

ics and functioning of forest ecosystems.

Interspecific spatial repulsion is demonstrated by fewer het-

erospecific neighbors on average than expected in a random

distribution and can be explained by negative interactions

(e.g. competition). Interspecific spatial attraction, on the other

hand, can be a result of positive interactions (e.g. facilitation)

and manifests itself as higher than expected neighborhood

densities of heterospecifics. However, other substantially dif-

ferent processes performed at different scales can create similar

spatial patterns. For example, spatial repulsion (or attraction)

between species may be also explained by different (or similar)

microhabitat preferences (i.e. shading, soil moisture or nutri-

ent levels; Wright 2002). Large-scale interspecific distribution

patterns that are usually determined by species’ habitat pref-

erences will confound small-scale patterns if the analyses are

not conducted appropriately (Wang et al. 2010). This makes

the true underlying ecological processes behind patterns in

species distributions difficult to elucidate (i.e. biological limi-

tation). Thus, it is essential to integrate all relevant ecological

information when making a priori inferences from ecological

theory, which will help break up the biological limitation

(McIntire and Fajardo 2009). For instance, if the Spatial Seg-

regation Hypothesis is true in the forest, (i) most species should

be aggregated and most species pairs should be spatially segre-

gated especially at large spatial scales, (ii) the probabilities of

significant interspecific associations should negatively corre-

late with the degrees of aggregations of species involved and

(iii) species pairs with the same habitat preference should as-

sociate more frequently at small spatial scales. Alternatively,

given that the Low-Frequency Hypothesis applies to an ecosys-

tem, (i) the probabilities of significant interspecific associations

should positively correlate with densities (or abundances) of

involved species and (ii) a higher mean relative species density

of a forest (i.e. abundance of one species relative to the total

abundance of all species or the inverse of species richness) will

lead to a lower frequency of interspecific associations in the

forest.

Precise application of analytical tools is important to effec-

tively test the above inferences we have made (McIntire and

Fajardo 2009). A considerable problem in this study is to sep-

arate the effect of the abiotic environment from the effect of

direct plant interactions. One effective approach to studying

species interactions is to use heterogeneous Poisson processes

as null models to account for larger spatial scale patterns when

small-scale patterns are of primary interest (Wiegand et al.

2007). This approach is in the spirit of the empirically based

knowledge that plant–plant interactions (second-order effects)

usually work at small scales (e.g. 0–15 m) and species environ-

ment interactions (first-order effects) work at large scales (e.g.

>15m). Another problem is to precisely describe the overall

heterogeneous patterns of interspecific associations. Information

of relative neighborhood density or nearest-neighbor distance

alone does not unambiguously characterize heterogeneous

patterns. Wiegand et al. (2007) developed a simple scheme in-

tegrating information of relative neighborhood density and

nearest-neighbor distance to classify overall associations.

In this article, we use the above-mentioned analytical tools

to assess the type and frequency of species distributions and

associations in a subtropical forest in eastern China. In order

to test the (i) Spatial Segregation Hypothesis and (ii) Low-

Frequency Hypothesis for species coexistence, we tested the

priori inferences drawn from the hypotheses. Specifically,

we analyzed (i) how many species pairs were spatially segre-

gated, (ii) how many species pairs associated at small scales,

(iii) how the probability of interspecific association was related

to the species’ properties, such as species density, degree of in-

traspecific aggregation, and species habitat preference, and

(iv) the relationship between community-wide relative den-

sity and frequency of association. In order to answer the last

two questions, we conducted further analyses: we correlated

the P values of interspecific associations with the intraspecific

g(r) values (see Methods for calculations of these two

statistics) and abundances of species involved; we checked

the relationship between the frequency of significant inter-

specific associations and habitat preference of species

involved with permutation tests, and finally, we compared

the percentages of significant interspecific associations among

different forests.

Study site

The study site (Baishanzu Forest Dynamic Plot, hereafter

Baishanzu FDP), a 2503 200m permanent forest plot, is located

in the Baishanzu mountains in southeast China (119�3#53$E,
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27�40#54$N). In summer, the region is influenced by the south-

east monsoon, which carries a large amount of water from the

Pacific Ocean. The Baishanzu FDP is representative of mid-

altitude subtropicalmountain evergreen broadleaf forests, which

is the typical vegetation in the subtropical monsoon climate.

Many rare species exist in the old-growth species-rich commu-

nity of the Baishanzu FDP, while the abundance of dominant

species is much higher than other species (Xu et al. 2007).

The site is on a north-facing hillside with a slope ranging from

7.27� to 44.12�.
The Baishanzu FDP (1 400–1 600 m elevation) was estab-

lished in July 2003, when it was divided into 120 20 3 20 m

and 10 20 3 10 m grids by using a total station. All trees with

>1 cm diameter at 1.3 m height (DBH) and seedlings (individ-

uals with DBH < 1 cm and/or height < 1.3 m) of non-shrub spe-

cies were tagged, measured, stem mapped and identified to the

species level.Wemonitored 156 tree species in the census. They

show varying degrees of association to topography (Wang et al.

2011).

Study species

In this study, all species with >30 adult trees in the censuswere

included. In order to include more shrub and understory spe-

cies, we developed criteria to define adult trees. Trees were

considered adult when DBH > 8 cm for canopy species;

DBH > 4 cm for understory species and DBH > 2.5 cm for

shrub species. Adult specimens of 27 species (7 canopy species,

13 understory species and 7 shrub species) were analyzed.

These 27 species accounted for ;93.8% of the total number

of adults in the plot. There were 6 species with >1 000 adults,

including the most abundant species, Rhododendron latoucheae,

with >6 000 adults. All these species showed aggregation at

some scale (Luo et al. 2009). Therewere 14 species that showed

significant habitat preference (Wang et al. 2011). The ecolog-

ical attributes of these species are shown in Table S1 in the

online supplementary material.

Spatial pattern analysis

Summary second-order statistics.

Sophisticated techniques of spatial point pattern analysis

were used to quantify species associations. Specifically, we

chose the summary statistics of Ripley’s (1976) K-function,

pair-correlation function (Stoyan and Stoyan 1994) and the

distribution function of near neighbor distances G(y) (Diggle

2003) to analyze the data. The bivariate K-function K12(r)

was defined as the expected number of Type 2 points within

radius r of an arbitrary Type 1 point, divided by intensity k2 of
Type 2 (i.e. the expected number of points of Type 2 per unit

area). The bivariate pair-correlation function g12(r) based on

point-to-point distance is related to the derivative of the

K12-function, i.e. g12(r) = K’12(r)/2pr (Stoyan and Stoyan

1994). K12(r) is a cumulative distribution function where

the values of K12(r) at larger scales include the values of

K12(r) at smaller scales. In contrast, the pair-correlation func-

tion g12(r) is a non-cumulative distribution function in which

g12(r) is the expected density of Type 2 points in a ring (its

width Dr is very small) of a given distance r around a Type

1 focal point divided by intensity k2 of Type 2 (Wiegand

and Moloney 2004). By factoring out the interference among

different distances, the pair-correlation function allows for a

precise assessment of scales where significant point-to-point

interactions occur (Wiegand et al. 2007). The univariate K

and pair-correlation functions are analogous to the bivariate

functions, but the focal point is not counted (Wiegand and

Moloney 2004). The statistic G12(y) evaluates the fraction

of points of the focal Type 1 that have their nearest Type

2 neighbor within distance y (Diggle 2003; Illian et al.

2008). This statistic provides information on the bivariate

emptiness probability not provided by K12(r) (Wiegand

et al. 2007).

Statistical hypotheses and null models

Spatial analysis 1: Overall non-random association.

The null statistical hypothesis of this analysis (i.e. homoge-

neous process) was that Species 2 is randomly distributed in

the plot, irrespective of the distribution of Species 1. In order

to distinguish the difference between observed associations

and random distribution hypothesis, we implemented com-

plete spatial randomness (CSR) as the null model of this test.

In this null model, the locations of the focal species were fixed,

but Species 2 were distributed randomly and independently

of the locations of Species 1. Additionally, with the scheme

developed by Wiegand et al. (2007), we categorized all associ-

ations of the heterogeneous bivariate patterns. The commonly

used statistics bivariate K12(r) and the G12(r) were imple-

mented to construct the two axes of the scheme. The two axes

P and M are defined as

PðrÞ= Ĝ12ðrÞ � G
exp
12 ðrÞ: ð1Þ

MðrÞ= lnðK̂12ðrÞÞ � lnðKexp
12 ðrÞÞ: ð2Þ

The theoretical value of the two summary statistics under

CSR is known (G
exp
12

�
r
�
= 1� e�k2pr2 andK

exp
12 ðrÞ = pr2), but we

used the mean of the Monte Carlo simulations because the

edge-corrected estimates of K12(r) are not unbiased (Perry

et al. 2006). The M axis and P axis evaluate two fundamental

aspects of bivariate point patterns like the bivariate K12- and

G12-functions. The M axis indicates the extent to which there

are more (positive value) or less (negative value) points of

Species 2 than expected (K-function), while the P axis indi-

cates the extent to which the probability of having a nearest

neighbor of Species 2 within distance r is higher (positive

value) or lower (negative value) than expected (emptiness

probability). P(r) can distinguish the state in which many

Species 1 points have no Species 2 neighbor but few Species

1 points have many Species 2 neighbors (with low values of

P(r)) from the state where all Species 1 points have a similar

number of Species 2 neighbors (with high values of P(r)); this
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can not be distinguished by M(r). P(r) will be negative if the

proportion of nearest neighbors within distance r is smaller

than expected and positive if the proportion is larger than

expected.Similarly,M(r) will be negative if the average number

of neighbors within distance r is smaller than expected and pos-

itive if the number is larger than expected. Further discussion

about this scheme can be found in Wiegand et al. (2007) and

Wang et al. (2010). Following this scheme, species spatial asso-

ciations can be roughly classified into five types:

1. ‘segregation’ (P(r) < 0 and M(r) < 0) where two species are

segregated in space;

2. ‘partial overlap’ (P(r) < 0 andM(r) > 0)wheremany plants of

Species 1 have no Species 2 neighbors within distance r, but

other plants of Species 1 have plenty of Species 2 neighbors;

3. ‘mixing’ (P(r) > 0 andM(r) > 0) where two species are mixed

well in space;

4. ‘strong interaction’ (P(r) >0 and M(r) < 0) where most

individuals of the two species are segregated, but

occasionally plants of Species 2 are the common nearest

neighbors of all the focal plants in the strongly aggregated

cluster; and

5. ‘null association’ (or Type 0, P(r) = 0 andM(r) = 0) proposed

by Martinez et al. (2010). A null association arises if

neither K12(r) nor G12(r) shows significant departures from

the CSR.

Spatial analysis 2: small-scale plant–plant interactions

A univariate g-function was used to investigate the spatial

patterns of conspecific adults. In order to reveal significant

second-order effects in the univariate patterns (i.e. regular-

ity or aggregation), we examined the discrepancies between

the observed g-function and the 95% confidence envelope of

the simulated null model. Here we used heterogeneous Pois-

son point processes (HP) as the null model because it is

a shortcut for separating the first- (i.e. habitat preference)

and second (i.e. direct plant-plant interactions)-order effects

(Wiegand et al. 2007). Diggle (2003) suggested that small-scale

effects are attributed to second-order plant–plant interactions

and large-scale effects are attributed to environmental hetero-

geneity. In HP, the occurrence of any point is independent of

that of any other, but the points are distributed in accordance

with an intensity function k(x, y) that varies with location (x, y)

(Stoyan and Stoyan 1994; Wiegand and Moloney 2004). The

Epanechnikov kernel function, a nonparametric method, was

used to estimate the intensity function k(x, y) of a given point

pattern (Wiegand et al. 2007).

In order to reveal significant second-order effects in the

bivariate patterns (i.e. repulsion or attraction), we kept the lo-

cation of the individuals of the first species fixed and random-

ized the locations of the individuals of the second species under

the HP model. Estimation of intensity of Species 2 was con-

ducted as in the univariate patterns analysis. This allowed

us to assess, given the intensity of Species 2, whether points

of Species 2 were found more or less frequently than expected

around points of Species 1, which would suggest interspecific

attraction or repulsion, respectively. We tested all possible pairs

of the 27 species. Each species was analyzed as Species 1 and

Species 2 because there was no reason to assume that the inter-

actions would be symmetric.

Significant tests comparing patterns with the null

model

Significant departures from the underlying null model were

tested by overlap with 95% confidence envelope, which

was constructed by using the 5th lowest and the 5th highest

value of 199 Monte Carlo iterations, or, if the number of trees

of Species 2 was <200, by using the 10th lowest and the 10th

highest value of 399Monte Carlo iterations.We performed dif-

ferent numbers of iterations for different abundances, because

as the number of events in the event set decreases, the test’s

power falls and the ability to discriminate between different

patterns is lost (Perry et al. 2006).

In order to minimize type I error, we used a goodness-of-fit

(GOF) test to assess significant departures from the null model.

The P value of the observed pattern is calculated as follows:

p̂=1 �
+s

j=1
I
�
u0>uj

�

s+1
ð3Þ

where I(u0> uj) is an indicator function that equals 1 if u0> uj and

equals 0 otherwise, and s represents the number of simulation

iterations. ui is a summary statistic thatmeasures the discrepancy

between the empiricalmeasurement and the theoretical pair cor-

relation function over a distance interval of interest, with

ui = +
rmax

rk= rmin

½ĝiðrkÞ � �giðrkÞ�
2drk; ð4Þ

where rk is distance, rmin and rmax are lower and upper limits of

the summation in terms of distance. ĝiðrkÞ is the empirical mea-

surement for pattern i for g(r), �giðrkÞ is the mean result com-

puted for all simulated patterns except for i, and drk = (tk+1� tk)

is the width of the distance interval (Diggle 2003; Loosmore

and Ford 2006).

Bandwidth selection for intensity estimation of each

species

The Epanechnikov kernel function that was applied to estimate

the intensities of species depends on the parameter bandwidthR.

It is important to select a suitable bandwidth parameter for sep-

arating biological effects, as an unsuitable Rmay underestimate

or overestimate intensity k(x,y). For example, Zhu et al. (2010)

reported that the HP null model led many randomly distributed

species show fake large-scale regularity in terms of statistical test.

This may be caused by overestimation of intensity k. In general,

plant–plant interactions are restricted to within a limited spatial

separation. An individual-based analysis of plant survival in

this forest revealed that direct interactions usually occur

among plants within 15 m of each other. This observation

was used to select the bandwidth for each species.
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We used a procedure to select the best bandwidths for each

species (listed in Table S1 in the online supplementary

material), as follows:

1. Given R = R*, we estimated the intensity function of a

species using the Epanecnikov kernel function.

2. Then, we simulated 199 patterns under the HP null model

with the intensity function estimated from the species.

3. We calculated g(r) values of these modeled patterns and the

observed pattern.

4. After that, we estimated the P value of the GOF test using

Equations (3) and (4) and restricting rk to 15–35 m (i.e.

tmin = 15, tmax = 35).

5. We repeated Step 1 through 4 using R* values ranging from

10 to 25m,with step intervals of 1m and assessed P values at

each step.

6. We chose the bandwidth corresponding to the largest

P value as the suitable bandwidth for the species.

Additional tests

In order to assess how the probability of significant interspe-

cific interactions varies with species aggregation and abun-

dance, we correlated the P value of the GOF with the

number of stems of species pairs and the univariate g(r) of focal

or neighbor species at scales r = 0, 2, 6, 10, 15 and 30 m using

Spearman’s q. Significance of these correlations was deter-

mined with a t-test. Testing for similar habitat preferences

of species pairs between which interactions have been identi-

fied is much more difficult. Here we used a permutation

test: (i) based on the matrix of interspecific interactions (i.e.

Table S2 in the online supplementary material), the observed

number of species pairs (note that Species 1 vs. Species 2 and

Species 2 vs. Species 1 are considered as different species pairs)

which had the same habitat preference and showed a signifi-

cant interaction (i.e. ‘p’ or ‘n’ in Table S2 (see online supple-

mentary material) indicating positive and negative interaction

respectively) were counted; (ii) ps and ns were randomly

replaced over thematrix (but the diagonal of thematrix should

always keep empty); (iii) the number of species pairs with the

same habitat preference and a significant interaction were

counted again based on the new distribution of ps and ns in

thematrix; and (iv) we repeated steps 2 and 3 999 times result-

ing in 1 000 predictions of number of interacting species pairs

with similar habitat preferences if the relationship were ran-

dom. If the observed number belong to the largest (or smallest)

2.5% of the total numbers, interspecific interaction was con-

cluded to occur more (or less) frequently between species with

the same habitat preference than between species with differ-

ent habitat preferences.

All these analyses were conducted in R statistical software

(R Development Core Team 2009). We used the package spat-

stat (Baddeley and Turner 2005) in R to perform spatial point

pattern analyses.

RESULTS
Analysis 1: Overall non-random associations

As shown in Fig. 1, the relative frequencies of overall interspe-

cific associations depended on scale. Most changes in the rel-

ative frequencies of the different bivariate association types

occurred at scales smaller than 15 m (Fig. 1). The frequency

of species pairs where neither summary statistic (i.e. K12 nor

G12) showed significant departure from the CSRmodelwas rel-

atively high in small neighborhoods. Partial overlap and seg-

regation increased and mixing decreased with increasing

spatial scale. The analyzed 702 species pairs were not equally

distributed within the 2D classification space (Fig. 1, 2). Taking

the proportion of cases (i.e. species pairs) at the 20-m spatial

scale as an example, segregation and partial overlap were the

two most frequent associations, making up 34.2 and 35.6%

of all cases, respectively. As expected, type IV associations

Figure 1: assessment of scale dependence on overall associations. The

figure shows the proportion of the 702 species pairs studied categorized

into five association types.

Figure 2: allocation of the overall association of the 702 species pairs

involving 27 species in the Baishanzu FDP at 20 m based on the clas-

sification scheme described in Analysis 1.
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(i.e. strong interaction) occurred in only 1.2% of all cases and

only 3.4% species pairs were well mixed. This distribution pat-

tern of classifications suggested that for most species pairs,

trees encounter a neighbor from the counterpart species less

often than expected by chance [P(r) < 0], though there are still

25.6% of species pairs whose association can be predicted by

their abundance alone (i.e. not significant under CRS model).

Analysis 2: small-scale plant–plant interactions

Univariate case.

In 27 adult patterns examined, 20 of them showed signifi-

cant departure from HP null models (i.e. P value from GOF

test < 0.05). Nineteen species were fine-scale aggregated.

The univariate pair-correlation function showed that none

of the species was significantly regular at scale < 5m and 3 spe-

cies exhibited regularity at mid-scale (5–15 m). Among these

three species, only Acer olivaceum did not show aggregation at

small scale while the other two species did. The remaining

seven species followed the HP null models.

In order to roughly estimate the effect of scale on species

spatial patterns, we counted the number of species (with

P value < 0.05 by GOF test) for each detail scale r where

the observed pattern showed significant aggregation or repul-

sion (i.e. g(r) value was above or below the envelopes con-

structed by Monte Carlo simulations). Results showed that

the number of species exhibiting aggregation peaked at 3–4 m

and decreased with the increasing scale, while the number

of species exhibiting regularity fluctuated with the increasing

scale from 5 to 15 m (Fig. 3a).

Bivariate case.

A total of 702 bivariate point pattern analyses for all adult pairs

of the 27 species were executed. For 77 of these species pairs,

the GOF test revealed a significant association (11.0%); in 58

of these cases, the small-scale association was positive (attrac-

tion), and in 19, it was negative (repulsion). In order to esti-

mate the magnitude of scale dependence, we also counted for

each scale the number of species exhibiting significant attrac-

tion or repulsion (using only species pairs where the P value of

the GOF test was < 0.05). We found that attraction occurred

more frequently than repulsion, especially at small scales; the

count of attraction showed a decreasing trend with increasing

scale and stabilized for scales >15 m at a count of;0–2 species,

while the count of repulsion peaked at 2 m with 13

species pairs and decreased gradually with increasing scale

(Fig. 3b).

Among 77 significantly interacting species pairs, 42 of them

were symmetric, while the other 35 species pairs were asym-

metric (see Table S2 in the online supplementary material).

Both positive and negative interactions showed some symmet-

rical cases (19 and 2 cases, respectively). Symmetric interac-

tions usually involved an abundant species. From the 27

species analyzed, only one species (Illicium angustisepalum)

did not show any significant small-scale (0–15 m) association

to another species. This species showed a relatively high degree

of univariate clustering and relatively low abundance. On the

other hand, two species (R. latoucheae and Cleyera pachyphylla)

showed significant interaction with >10 other species (14 and

17 species, respectively). Rhododendron latoucheaewas the most

abundant species in the community and was scattered

throughout the plot. Most interactions involving this species

were positive and symmetric; only one species (Sycopsis sinen-

sis) negatively interacted with R. latoucheae. Cleyera pachyphylla

showed negative association with 9 species. It is interesting to

note that this species showed strong clonal reproduction.

The P value of the GOF test was moderately and negatively

correlated with the number of stems of neighbor species (Spe-

cies 2) (q = �0.25; P < 0.01), weakly and negatively correlated

with the number of stems of focal species (Species 1) (q = -0.17;

p< 0.01) and negatively correlatedwith the product and sumof

the number of stems of two species (q = �0.31 and q = �0.30,

respectively, both P < 0.01, see Table 1). This suggests that the

abundant species interacted more frequently with other spe-

cies. We also found a positive but weak correlation of P value

with the clumping of two species. The two correlations both

peaked at scale 2 m (q = 0.19 for Species 1 and q = 0.12 for

Species 2, see Table 1). This suggested that small-scale clump-

ing species were less likely to interact with other species.

Figure 3: Scale-dependent biotic interactions. The figures exhibit number of species (univariate) and species pairs (bivariate) showing significant

positive and negative adult interactions over different scales in the Baishanzu FDP.
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Additionally, the permutation test showed that significant

interactions, especially for positive interactions (P < 0.01), oc-

curred somewhat more frequently for those species with the

same habitat preference (P < 0.05). These results indicate that

species with similar habitat preference tended to interact.

DISCUSSION

The comprehensive spatial analyses of species distributions

and associations among adult trees of 27 common species in

a subtropical evergreen broad-leaved forest in eastern China

revealed a variety of strong scale-dependent spatial structures.

We found that most species were aggregated at small scales,

and segregation and overlap were dominant in overall species

associations. More than a quarter of species pairs co-occurred

at scales >10 m, by chance alone. Selective analysis of small-

scale effects revealed that 89% of species pairs did not exhibit

significant interactions between adult plants (note that we did

not perform multiple testing here, if we had, the percentage

would have been higher). The findings highlight that neutral

species–species associations are prevalent in this subtropi-

cal forest, which would facilitate species coexistence. Many

theories may explain the lack of positive or negative species–

species interactions (e.g. Chesson 2000; Hubbell 2001; Wright

2002). Here we mainly discuss the importance of the segrega-

tion hypothesis and the low-density hypothesis in interpreting

the patterns we observed.

The segregation hypothesis and the low-frequency

hypothesis

These two hypotheses are known as mechanisms that violate

the condition of the competitive exclusion principle (Chesson

2000; Wright 2002). The common underlying mechanism of

these hypotheses is that spatial segregation or low densities

among species decreases the probability of interspecific

encounters with the effect of weakening interspecific interac-

tion (Palmer 1994; Vazquez et al. 2007). All 27 species were

significantly aggregated, which separate different species in

space (Luo et al. 2009). Our study showed that spatial segre-

gation and partial overlap were the most dominant (near

70%) overall species association types, which suggests that

trees encounter a neighbor from the counterpart species less

often than expected by chance [P(r) < 0]. More than a third

of species pairs were segregated completely; these pairs of spe-

cies rarely occupy the same areas, allowing plants of different

species to ‘avoid’ each other. This observation is compatible

with the segregation hypothesis and explains why 86.6% of

all species pairs did not exhibit significant small-scale associa-

tions. The finding that small-scale clumping species are less

likely to interact with other species (i.e. the P value of the

GOF test positively correlated with the clumping of two spe-

cies) also strongly supports the segregation hypothesis. This

hypothesis is also supported by the finding that species with

similar habitat preferences tended to interact (especially

attract) significantly. Habitat heterogeneity attributed to dif-

ferences in topography had profound effects on species asso-

ciations. On one hand, species with the same association

usually inhabit the same area, which gives them more oppor-

tunity to interact; on the other hand, adults usually modify

their local environment, benefiting heterospecifics with simi-

lar preferences and allowing them to take up the same area.

Low frequency of most species is also a reason that results in

a low percentage of significant species interactions. If most spe-

cies were present at low abundances relative to the number of

species, chance alone would make it unlikely that they en-

counter each other as neighbors (Lieberman and Lieberman

2007; Perry et al. 2009). Our results show that significant

small-scale interspecific interactions are more likely if one

or both species aremore abundant. A good example is themost

abundant species, R. latoucheae, which shows significant inter-

actions with 14 other species, while the rare canopy species,

I. angustisepalum, is independent of all other species. An impor-

tant difference between species-rich and species-poor commu-

nities is that the mean relative species density of species-rich

communities is often low, while that of species-poor commu-

nities is often high. Under the low-frequency hypothesis, the

high relative species density in species-poor communities

would lead to increased frequencies of species–species interac-

tions. A comparison of results from Changbaishan (Wang et al.

2010), Sinharaja (Wiegand et al. 2007) and Baishanzu (this pa-

per) supported our expectation that lower mean relative spe-

cies densities (i.e. higher species richness) in a forest lead to

Table 1: correlation of the P value of the GOF test of the bivariate

analysis 2 with several variables describing species abundance

and aggregation

Variable Correlation q

ns1 3 ns2 �0.31***

ns1 + ns2 �0.30***

ns1 �0.17***

ns2 �0.25***

g11(r = 0.1 m) 0.05

g11(r = 2 m) 0.19***

g11(r = 6 m) 0.18***

g11(r = 10 m) 0.12***

g11(r = 15 m) 0.14***

g11(r = 30 m) 0.14***

g22(r = 0.1 m) 0.03

g22(r = 2 m) 0.12***

g22(r = 6 m) 0.06

g22(r = 10 m) 0.06*

g22(r = 15 m) �0.05

g22(r = 30 m) �0.06

The correlations are not corrected for multiple testing. ns1, the number

of individuals of Species 1; ns2, the number of individuals of Species 2;

g11 and g22 are the values of the univariate pair correlation functions of

Species 1 and 2, respectively, at the specified spatial scale r.

*P < 0.1; **P < 0.05; ***P < 0.01.
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a lower frequency of interspecific association (see Table S3 in

the online supplementary material). These results suggest that

the low-frequency hypothesis elucidates important mecha-

nisms influencing the frequency of small-scale interspecies

interactions within forests. However, further comparisons

with statistical test across sites are still necessary to confirm

the effect of low species density across communities because

the frequency of significant interactions and mean relative

species density are reciprocally dependent.

Furthermore, the low probability of interspecific encounters

has profound influence on species trait evolution that is related

to a species’ ability to compete. Since the set of neighbors en-

countered by individuals of a given species within the imme-

diate neighborhood is quite variable and unpredictable for the

individual (i.e. high biotic uncertainty), Hubbell and Foster

(1986) argued that natural selection may be diffuse. Under

these conditions, species are unlikely to develop specific inter-

actions with other species. In this scenario, interspecific inter-

action would be weak even if individuals of the two species

sometimes encountered each other.

Our study supports the idea that reducing the probability of

interspecific encounters may strikingly weaken species inter-

actions. Naturally, if species live in different habitats and have

no direct or indirect interactions with each other, they should

have no difficulty coexisting in a region (Chesson 2000). How-

ever, species do not have to be strictly segregated in space for

regional coexistence. There are still a third of species pairs that

overlapped and some species pairs mixed well. Spatial patterns

are usually controlled by multiple processes, which work at

different scales (He et al. 1997; Luo et al. 2009). In a broad

sense, species differing in the resources they exploit (i.e. niche

complementarity) would weaken interspecific interactions

(Chesson 2000; Wills et al. 2006).

Interpretations of intraspecific aggregation

Similar to results from other tropical, subtropical and temper-

ate forests (e.g. Condit et al. 2000; Li et al. 2009; Wang et al.

2010), we found that intraspecific aggregation is prevalent

in this subtropical forest. The high degree of individual species

aggregation has important effects on species spatial separation

and their interactions (DeBoeck et al. 2006; Seidler and Plotkin

2006). Species habitat preference is an important process lead-

ing to the aggregation pattern here (Luo et al. 2009).More than

half of these species exhibited habitat preference (see Table S1

in the online supplementary material). This suggests that the

benefit of growing in favorable habitats may overwhelm the

negative effects of sharing that habitat with conspecifics

(Getzin et al. 2008). Our study showed that the observed pat-

terns of seven species were undistinguishable from predictions

of a heterogeneous Poisson model, suggesting that patterns of

these species can be explained by habitat heterogeneity alone.

Preceding studies also indicate that dispersal limitation also

contributes to aggregation patterns (Grubb 1977; He et al.

1997). Indeed, we found that even after accounting for the

effects of habitat preference, there were 19 species that were

aggregated at a small scale. This suggests that the effects of dis-

persal limitation are very strong. Fruit type and seed size of

these species show that most species in the community are

not dispersed far from their parent trees, which disperse their

seed by gravity or wind. Habitat heterogeneity and dispersal

limitation are the two most important effects that determined

species distribution patterns in forests (Shen et al. 2009). More-

over, the lack of evidence of spatial regularity of individual

species at small scales suggests Janzen–Connell effects and in-

traspecific competition is absent or weak at least. The Janzen–

Connell hypothesis posits that mother trees impair survival

of offspring where natural enemies are aggregated (Connell

1971; Janzen 1970). The effect will lead to a regular spatial dis-

tribution of adults. However, further studies are needed to

confirm the absence of Janzen–Connell effects and intraspe-

cific competition because strong effects of dispersal limitation

and habitat preference may mask them.

The importance of positive interactions in forests

Positive associations have been documented in stressed envi-

ronments like alpine, arid andMediterranean-type plant com-

munities (Armas and Pungnaire 2005; Callaway et al. 2002;

Riginos et al. 2005), but are rare in forest communities (but

see Kubota et al. 2007 and Martinez et al. 2010). Our selective

analysis of small-scale effects revealed that positive associations

are more prevalent than negative associations in Baishanzu

FDP, especially between species pairs involving non-canopy

species with similar habitat preferences. The finding is not sur-

prising when species have similar requirements for establish-

ment; canopy trees modify the local environment in their

vicinity, which facilitates small conspecifics and heterospecifics

with similar preferences (Dovciak et al. 2001; Kubota et al.

2007); and/or species’ niches differ (Chesson 2000).

Such small-scale attractions, which enable species to exploit

a greater portion of available resources, profoundly influence

community structure. We find that the most abundant species,

R. latoucheae, associates with 14 other species and only one of

these associations is negative. Most species can recruit under

adults of R. latoucheae. This has interesting implications for com-

munity assembly. By providing habitats for numerous species,

the net effect of foundation species on species diversity can ac-

tually be positive. This phenomenon may need to be integrated

into forest ecological theory (Bruno et al. 2003). For example,

Shen et al. (2009) used the joint effects of dispersal limitation

and habitat heterogeneity to explain species-area curves in

Gutianshan plot (25 ha, in subtropics) and BCI (Barro Colorado

Island) plot (50 ha, in tropics) and showed that the joint effects of

these two processes did not fit the observed species-area curves

well at intermediate spatial scales (they usually predicted lower

than the observed species area). The influence of positive inter-

actions between species may explain this departure. Positive fa-

cilitative interactions between species occurring at some life

stages can compensate for negative competitive interactions at

other stages (Callaway et al. 2002; Illian et al. 2009; Martinez

et al. 2010). In this case, the patterns that finally emerged would
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be predominantly neutral as those found here (Wiegand et al.

2007). It would be interesting to study species interactions at dif-

ferent life stages and habitats.

SUPPLEMENTARY MATERIAL

Supplementary Tables S1–S3 are available at Journal of Plant

Ecology online.
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