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Abstract

Removing rain streaks from a single image has been

drawing considerable attention as rain streaks can severely

degrade the image quality and affect the performance of ex-

isting outdoor vision tasks. While recent CNN-based de-

rainers have reported promising performances, deraining

remains an open problem for two reasons. First, existing

synthesized rain datasets have only limited realism, in terms

of modeling real rain characteristics such as rain shape, di-

rection and intensity. Second, there are no public bench-

marks for quantitative comparisons on real rain images,

which makes the current evaluation less objective. The core

challenge is that real world rain/clean image pairs can-

not be captured at the same time. In this paper, we ad-

dress the single image rain removal problem in two ways.

First, we propose a semi-automatic method that incorpo-

rates temporal priors and human supervision to generate a

high-quality clean image from each input sequence of real

rain images. Using this method, we construct a large-scale

dataset of ∼29.5K rain/rain-free image pairs that covers a

wide range of natural rain scenes. Second, to better cover

the stochastic distribution of real rain streaks, we propose

a novel SPatial Attentive Network (SPANet) to remove rain

streaks in a local-to-global manner. Extensive experiments

demonstrate that our network performs favorably against

the state-of-the-art deraining methods.

1. Introduction

Images taken under various rain conditions often show

low visibility, which can significantly affect the perfor-

mance of some outdoor vision tasks, e.g., pedestrian detec-

tion [30], visual tracking [37], or road sign recognition [48].

Hence, removing rain streaks from input rain images is an

important research problem. In this paper, we focus on the

single-image rain removal problem.

In the last decade, we have witnessed a continuous

progress on rain removal research with many methods pro-

posed [20, 29, 26, 5, 47, 9], through carefully modeling
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(a) Rain image (b) Clean image (c) SPANet

(d) DDN [11] (e) DID-MDN [42] (f) RESCAN [25]

Figure 1. We address the single-image rain removal problem in

two ways. First, we generate a high-quality rain/clean image pair

((a) and (b)) from each sequence of real rain images, to form a

dataset. Second, we propose a novel SPANet to take full advantage

of the proposed dataset. (c) to (f) compare the visual results from

SPANet and from state-of-the-art derainers.

the physical characteristics of rain streaks. Benefited from

large-scale training data, recent deep-learning-based derain-

ers [10, 11, 40, 42, 25, 45, 15] achieve further promising

performances. Nonetheless, the single-image rain removal

problem remains open in two ways, as discussed below.

Lack of real training data. As real rain/clean image

pairs are unavailable, existing derainers typically rely on

synthesized datasets to train their models. They usually

start with a clean image and add synthetic rain on it to form

a rain/clean image pair. Although some works have been

done to study the physical characteristics of rain, e.g., rain

direction [40] and rain density [42], their datasets still lack

the ability to model a large range of real world rain streaks.

For example, it is often very difficult to classify the rain

density into one of the three levels (i.e., light, medium and

heavy) as in [42], and any misclassification would certainly

affect the deraining performance. To simulate global rain

effects, some methods adopt the nonlinear “screen blend

mode” from Adobe Photoshop, or additionally superimpose

haze on the synthesized rain images. However, these global

settings can only be used in certain types of rain, or the

background may be darkened, with the details lost.
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Lack of a real benchmark. Currently, researchers

mainly rely on qualitatively evaluating the deraining per-

formance on real rain images through visual comparisons.

Fan et al. [45] also use an object detection task to help

evaluate the deraining performance. Nevertheless, a high-

quality real deraining benchmark is still much needed for

quantitative evaluation of deraining methods.

In this paper, we address the single-image rain removal

problem in two ways, as summarized in Figure 1. First, we

address the lack of real training/evaluation datasets based

on two observations: (1) as random rain drops fall in

high velocities, they unlikely cover the same pixel all the

time [13, 44], and (2) the intensity of a pixel covered by

rain fluctuates above the true background radiance across

a sequence of images. These two observations imply that

we can generate one clean image from a sequence of rain

images, where individual pixels of the clean image may

be coming from different images of the sequence. Hence,

we propose a semi-automatic method that incorporates rain

temporal properties as well as human supervision to con-

struct a large-scale real rain dataset. We show that it can sig-

nificantly improve the performance of state-of-the-art de-

rainers on real world rain images.

Second, we observe that real rain streaks can exhibit

highly diverse appearance properties (e.g., rain shape and

direction) within a single image, which challenges existing

derainers as they lack the ability to identify real rain streaks

accurately. To address this limitation, we exploit a spatial

attentive network (SPANet), which first leverages horizon-

tal/vertical neighborhood information to model the physical

properties of rain streaks, and then remove them by further

considering the non-local contextual information. In this

way, the discriminative features for rain streak removal can

be learned in a two-stage local-to-global manner. Exten-

sive evaluations show that the proposed network performs

favorably against the state-of-the-art derainers.

To summarize, this work has the following contributions:

1. We present a semi-automatic method that incorporates

temporal properties of rain streaks and human super-

vision to generate a high quality clean image from a

sequence of real rain images.

2. We construct a large-scale dataset of ∼29.5K high-

resolution rain/clean image pairs, which covers a wide

range of natural rain scenes. We show that it can sig-

nificantly improve the performance of state-of-the-art

derainers on real rain images.

3. We design a novel SPANet to effectively learn discrim-

inative deraining features in a local-to-global attentive

manner. SPANet achieves superior performance over

state-of-the-art derainers.

2. Related works

Single-image rain removal. This problem is extremely

challenging due to the ill-posed deraining formulation as:

B = O −R, (1)

where O, R and B are the input rain image, the rain streak

image, and the output derained image, respectively.

Kang et al. [20] propose to first decompose the rain im-

age into high-/low-frequency layers and remove rain streaks

in the high frequency layer via dictionary learning. Kim et

al. [21] propose to use non-local mean filters to filter out

rain streaks. Luo et al. [29] propose a sparse coding based

method to separate rain streaks from the background. Li et

al. [26] propose to use Gaussian mixture models to model

rain streaks and background separately for rain removal.

Chang et al. [5] propose to first affine transform the rain

image into a space where rain streaks have vertical appear-

ances and then utilize the low-rank property to remove rain

streaks. Zhu et al. [47] exploit rain streak directions to

first determine the rain-dominant regions, which are used

to guide the process of separating rain streaks from back-

ground details based on rain-dominant patch statistics.

In [11, 10], deep learning is applied to single image de-

raining and achieves a significant performance boost. They

model rain streaks as “residuals” between the input/output

of the networks in an end-to-end manner. Yang et al. [40]

propose to decompose the rain layer into a series of sub-

layers representing rain streaks of different directions and

shapes, and jointly detect and remove rain streaks using a

recurrent network. In [43], Zhang et al. propose to remove

rain streaks and recover the background via the Conditional

GAN. Recently, Zhang and Patel [42] propose to classify

rain density to guide the rain removal step. Li et al. [25]

propose a recurrent network with a squeeze-and-excitation

block [17] to remove rain streaks in multiple stages. How-

ever, the performances of CNN-based derainers on real rain

images are largely limited by being trained only on syn-

thetic datasets. These derainers also lack the ability to at-

tend to rain spatial distributions. In this paper, we propose

to leverage real training data as well as a spatial attentive

mechanism to address the single image deraining problem.

Multi-image rain removal. Unlike single-image de-

raining, rich temporal information can be derived from a se-

quence of images to provide additional constraints for rain

removal. Pioneering works [12, 13] propose to apply pho-

tometric properties to detect rain streaks and estimate the

corresponding background intensities by averaging the ir-

radiance of temporal or spatial neighboring pixels. Subse-

quently, more intrinsic properties of rain streaks, such as

chromatic property, are explored by [44, 28, 36]. Recent

works [4, 8, 6, 21, 19, 35, 39, 24, 27] focus on removing

the rain streaks from the background with moving objects.
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Chen et al. [7] further propose a spatial-temporal content

alignment algorithm to handle fast camera motion and dy-

namic scene contents, and a CNN to reconstruct high fre-

quency background details.

However, these methods cannot be applied for our pur-

pose of generating high-quality rain-free images. This is

because if their assumptions (e.g., low-rank [8, 39, 24]) are

violated, over-/under-deraining can happen to the entire se-

quence and further bury the true background radiance, i.e.,

the clean background pixels may not exist in this sequence.

Hence, in this paper, we propose to use the original se-

quence of rain images to generate a clean image, and rely

on human judgements on the qualities of generated rain-free

images.

Generating the ground truth from real noisy images.

One typical strategy [2, 33] to obtain a noise/noise-free im-

age pair is to photograph the scene with a high ISO value

and a short exposure time for the noise image, and a low

ISO value and a long exposure time for the noise-free im-

age. However, this strategy cannot be used here to capture

rain-free images. As rain drops fall at a high speed, in-

creasing the exposure time will enlarge the rain streaks, not

removing them. Another approach to obtain a ground truth

noise-free image is multi-frame fusion [46, 32, 1], which

performs weighted averaging of a pre-aligned sequence of

images taken from a static scene with a fixed camera set-

ting. However, as rain streaks have brighter appearances

and larger shapes than random noise, this approach is not

able to accurately remove rain from the rain pixels. In con-

trast, we propose to refine the rain pixels based on the ob-

servation that the intensity values of the pixels covered by

rain fluctuate above their true background intensities.

3. Real Rain Image Dataset

Pixels

(a) A rain image sequence (b) Intensity histogram of a 
pixel cross an image seqeuence

Figure 2. We trace the intensity of one pixel across an image se-

quence in (a). We ask a user to identify if this pixel in each frame

is covered by rain (in red) or not (in blue). The intensity distribu-

tion of this pixel over all frames is show in (b). It shows that the

intensity of the pixel tends to fluctuate in a smaller range if it is

not covered by rain, as compared with that covered by rain.

We first conduct an experiment on how to select a suit-

able background value ob from a collection of pixel values

Ol = {o1l, ..., oNl} at spatial position l from a sequence of

N rain images. We capture a video of a rain scene over

a static background, as shown in Figure 2, and then ask

a person to indicate (or predict) when a particular pixel is

covered by rain and when it is not, across the N frames.

We have observed two phenomena. First, rain streaks do

not always cover the same pixel (the temporal property of

video deraining [44]). Second, humans typically predict if

a pixel is covered by rain or not based on the pixel inten-

sity. If the intensity of the pixel is lower at a certain frame

compared with the other frames, humans would predict that

it is not covered by rain. This is because rain streaks tend

to brighten the background. These two observations imply

that, given a sequence of N consecutive rain images, we

can approximate the true background radiance Bl at pixel l

based on these human predicted rain-free pixel values (i.e.,

the blue region of the histogram in Figure 2(b)). If we as-

sume that the ambient light is constant during this time span,

we can then use the value that appears most frequently (i.e.,

mode in statistics) to approximate the background radiance.

Background approximation. Referring to Figure 3,

given a set of pixel values Ol at position l from a sequence

of N rain images, we first compute the mode of Ol as:

φl = Φ(Ol), (2)

where Φ is the mode operation. However, since Eq. 2 does

not consider the neighborhood information when comput-

ing φl, the resulting images tend to be noisy in dense rain

streaks. So, we identify the percentile range (Rmin
l , Rmax

l )

of the computed φl in Ol based on their intensity values as:

Rmin
l =

100%

N

N!

i=1

{1|oil < φl},

Rmax
l =

100%

N

N!

i=1

{1|oil > φl}. (3)

Figure 3(c) shows an example. Instead of using polyg-

onal lines to connect the mode values φl at all spatial po-

sitions, we can determine a suitable percentile p̂ so that

it crosses the highest number of percentile ranges (the red

dash line in Figure 3(c)). In this way, the estimated back-

ground image is globally smoothed by computing p̂ as:

p̂ = argmax
p

({

M−1!

l=0

{1|Rmin
l < p < Rmax

l }}100p=0
), (4)

where M is the number of pixels in a frame. Figure 4(e)

shows an example that using the mode leads to noisy result,

while our method in Figure 4(f) produces a cleaner image.

Selection of N for different rain scenes. Recall that

we aim to generate one clean image from a sequence of

N rain images. Our method assumes that for each pixel

of the output clean image, we are able to find some in-

put frames where the pixel is not covered by rain. To

satisfy this assumption, we need to adjust N according
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Figure 3. Overview of our clean image generation pipeline (a). Given a sequence of rain images, we compute the mode for each pixel based

on its intensity changes over time, and the percentile range of its mode (b). We then consider the global spatial smoothness by finding a

percentile rank that can cross most of the percentile ranges (c).

(a) Input (b) Jiang [19] (c) Wei [39] (d) Li [24] (e) Mode filter (f) Ours (g) Ground Truth

Figure 4. A deraining example using a synthetic rain video of 100 frames. We show the best result of each method here. Refer to the

supplementary for more results.

to the amount of rain as follows. First, we empirically

set N to be {20, 100, 200} depending on whether the rain

is {sparse, normal, dense}, respectively, and generate an

output image using our method. Second, we ask users to

evaluate the image as humans are sensitive to rain streaks

as well as other artifacts such as noise. If the image fails

in the user evaluation, we adjust N by adding {10, 20, 50}
frames for {sparse, normal, dense} rain streaks and then

ask the users to evaluate the new output image again. We

find that while 20 and 100 frames are usually large enough

to obtain a clean image for sparse and normal rain streaks,

N may go from 200 to 300 frames for dense rain streaks.

We deliberately start with smaller numbers of frames be-

cause we find that the more frames that we use, the higher

chance that the video may contain noise, blur and shaking.

Discussion. An intuitive alternative to obtaining a

rain-free image is to use a state-of-the-art video deraining

method to first generate a sequence of derained results from

the input rain sequence, and then average them or select the

best result from them to produce a single final rain-free im-

age. Unfortunately, there is no guarantee that rain streaks

can be completely removed by the video deraining method,

as shown in Figure 4(b)-(d). On the contrary, we rely on hu-

man judgements to generate high-quality rain-free images.

We show a comparison between our method and three state-

of-the-art video deraining methods [19, 39, 24] in Table 1

on 10 synthesized rain videos (10 black-background rain

videos bought from [31] are imposed on 10 different back-

ground images), which clearly demonstrates the effective-

ness of our method.

Dataset description. We construct a large-scale dataset

using 170 real rain videos, of which 84 scenes are cap-

Methods Input Jiang et al. [19] Wei et al. [39] Li et al. [24] Ours

PSNR 25.40 32.79 (29.82) 27.30 (25.71) 32.59 (30.59) 51.40

SSIM 0.7228 0.8827 (0.8566) 0.9043 (0.8911) 0.9458 (0.9387) 0.9907

Table 1. Comparison with the state-of-the-art video deraining

methods. In each method, we select the frame of highest PSNR

for comparison. The average PSNR/SSIM are in brackets.

tured by us using an iPhone X or iPhone 6SP and 86 scenes

are collected from StoryBlocks or YouTube. These videos

cover common urban scenes (e.g., buildings, avenues), sub-

urb scenes (e.g., streets, parks), and some outdoor fields

(e.g., forests). When capturing rain scenes, we also con-

trol the exposure durations as well as the ISO parameter

to cover different lengths of rain streaks and illumination

conditions. Using the aforementioned method, we generate

29, 500 high-quality rain/clean image pairs, which are split

into 28, 500 for training and 1, 000 for testing. Our experi-

ments show that this dataset helps improve the performance

of state-of-the-art derainers.

4. Proposed Model

As real rain streaks may have highly diverse appearances

across the image, we propose the SPANet to detect and re-

move rain streaks in a local-to-global manner, as shown in

Figure 5(a). It is a fully convolutional network that takes

one rain image as input and outputs a derained image.

4.1. Spatial Attentive Block

Review on IRNN architecture. Recurrent neural net-

works with ReLU and identity matrix initialization (IRNN)

for natural language processing [23] have been shown to

be easy to train, good at modeling long-range dependen-
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Figure 5. The architecture of the proposed SPANet (a). It adopts three standard residual blocks (RBs) [16] to extract features, four spatial

attentive blocks (SABs) to identify rain streaks progressively in four stages, and two residual blocks to reconstruct a clean background. A

SAB (b) contains three spatial attentive residual blocks (SARBs) (c) and one spatial attentive module (SAM) (d). Dilation convolutions [41]

are used in RBs and SARBs.

cies as well as efficient. When applied to computer vision

problems, their key advantage is that information can be ef-

ficiently propagated across the entire image to accumulate

long range varying contextual information, by stacking at

least two RNN layers. In [3], a two-round four-directional

IRNN architecture is used to exploit contextual informa-

tion to improve small object detection. While the first

round IRNN aims to produce the feature maps that summa-

rize the neighboring contexts for each position of the input

image, the second round IRNN further gathers non-local

contextual information for producing global aware feature

maps. Recently, Hu et al. [18] also exploit this two-round

four-directional IRNN architecture to detect shadow regions

based on the observation that directions play an important

role in finding strong cues between shadow/non-shadow re-

gions. They design a direction-aware attention mechanism

to generate more discriminative contextual features.

We summarize the four-directional IRNN operation for

computing feature hi,j at location (i, j) as:

hi,j ← max (αdir hi,j−1 + hi,j , 0) , (5)

where αdir denotes the weight parameter in the recurrent

convolution layer for each direction. Figure 6 illustrates

how a two-round four-directional IRNN architecture accu-

mulates global contextual information. Here, we extend the

two-round four-directional IRNN model to the single-image

rain removal problem, for the purpose of handling the sig-

nificant appearance variations of real rain streaks.

Spatial attentive module (SAM). We build SAM based

on the aforementioned two-round four-directional IRNN ar-

chitecture. We use the IRNN model to project the rain

streaks to the four main directions. Another branch is

added to capture the spatial contextual information in or-

der to selectively highlight the projected rain features, as

shown in Figure 5(d). Unlike [18] that implicitly learns

Input Feature Map 1-stage Feature Map Output Feature Map
st

Figure 6. Illustration of how the two-round four-directional IRNN

architecture accumulates global contextual information in two

stages. In the first stage, for each position at the input feature map,

four-directional (up, left, down, right) recurrent convolutional op-

erations are performed to collect horizontal and vertical neighbor-

hood information. In the second stage, by repeating the previous

operations, the contextual information from the entire input feature

map are obtained.

direction-aware features in the embedding space, we fur-

ther use additional convolutions and sigmoid activations to

explicitly generate the attention map through explicit super-

vision. The attention map indicates rain spatial distributions

and is used to guide the following deraining process. Fig-

ure 7 shows the input rain images in (a) and our SPANet

derained results in (c). We also visualize the attention maps

produced by SAM in (b). We can see that SAM can ef-

fectively identify the regions affected by rain streaks, even

though the rain streaks exhibit significant appearance varia-

tions (i.e., smooth and blurry in the first scene and sharp in

the second scene).

Removal-via-detection. As shown in Figure 5(a),

given an input rain image, three standard residual blocks

(RBs) [16] are first used to extract features. We feed these

features into a spatial attentive block (SAB) (Figure 5(b)),

which uses a SAM to generate an attention map to guide

three subsequent spatial attentive residual blocks (SARBs)

(Figure 5(c)) to remove rain streaks via the learned negative

residuals. The SAB is repeated four times. (Note that the
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High ProbabilityLow Probability

(a) Rain Image (b) Attention Map (c) SPANet Result

Figure 7. Visualization of the attention map. (a) shows one real

rain image. (b) shows the corresponding attention map produced

by SAM. Red color indicates pixels that are highly likely covered

by rain. (c) shows the corresponding derained result by the pro-

posed SPANet. This demonstrates the effectiveness of SAM in

handling significant appearance variations of rain streaks. Refer to

the supplementary for more results.

weights of the SAM in the four SABs are shared.) Finally,

the resulting feature maps are fed to two standard residual

blocks to reconstruct the final clean background image.

4.2. Training Details

Loss function. We adopt the following loss function to

train SPANet:

Ltotal = L1 + LSSIM + LAtt. (6)

We use the standard L1 loss to measure the per-pixel re-

construction accuracy. Lssim [38] is used to constrain the

structural similarities, and is defined as: 1− SSIM(P, C),
where P is the predicted result and C is the clean image. We

further apply the attention loss Latt as:

Latt = $A−M$
2

2
, (7)

where A is the attention map from the first SAM in the net-

work and M is the binary map of the rain streaks, which is

computed by thresholding the difference between the rain

image and clean image. In this binary map, a 1 indicates

that the pixel is covered by rain and 0 otherwise.

Implementation details. SPANet is implemented using

the PyTorch [34] framework on a PC with a E5-2640 v4

2.4GHz CPU and 8 NVIDIA Titan V GPUs. For loss op-

timization, we adopt the Adam optimizer [22] with a batch

size of 32. We adopt scaling and cropping to augment the

diversity of rain streaks. The learning rate is initialized at

0.005 and divided by 10 after 5K, 15K, 30K and 50K itera-

tions. We train the network for 60K iterations.

5. Experiments

In this section, We first evaluate the effectiveness of the

proposed dataset on existing CNN-based single-image de-

rainers, and then compare the proposed SPANet to the state-

of-the-art single-image deraining methods. Finally, we pro-

vide internal analysis to study the contributions of individ-

ual components of SPANet. Refer to the supplementary for

more results.

Evaluation on the proposed dataset. The perfor-

mances of existing CNN-based derainers [11, 40, 42, 25]

trained on our dataset are shown in Table 2. It demon-

strates that our real dataset can significantly improve the

performance of CNN-based methods on real images. This

is mainly due to the fact that existing synthesized datasets

lack the ability to represent highly varying rain streaks. One

visual example is given in Figure 9, from which we can

see that the retrained derainers can produce cleaner images

with more details compared to those trained on synthetic

datasets. Note that we use their original codes for evalua-

tion and retraining.

We also show the performance of non-CNN-based state-

of-the-art methods in Table 2. We have an interesting ob-

servation here that the input rain images have similar or

even higher average PSNR and SSIM scores compared with

those of the derained results by the state-of-the-art derain-

ers. As demonstrated in Figure 8, it is mainly caused by

over deraining. Even though [29] is less dependent on train-

ing data (but still depends on a learned dictionary) as the

deep learning methods ([40, 42, 25]), it fails when the rain

exhibits unseen appearances and mistakenly removes the

structures that are similar to rain streaks.

Rain

34.2

DSC [29]

30.9

JORDER [40]

27.2

DID-MDN [42]

23.0

RESCAN [25]

31.1

Clean

PSNR

Figure 8. The difference maps (red boxes shown at the top-right)

between the input rain image and results by deraining methods that

suffer a PSNR drop. (Brighter indicates a higher difference.) We

can see that [29, 40, 42, 25] tend to over-derain the image.

Evaluation on the proposed SPANet. Table 2 reports

the performance of our SPANet, trained on the proposed

dataset. It achieves a superior deraining performance com-

Methods
Rain

Images

DSC [29]

(ICCV’15)

LP [26]

(CVPR’16)

SILS [14]

(ICCV’17)

Clear [10]

(TIP’17)

DDN [11]

(CVPR’17)

JORDER [40]

(CVPR’17)

DID-MDN [42]

(CVPR’18)

RESCAN [25]

(ECCV18)

Our

SPANet

PSNR 32.64 32.33 32.99 33.40 31.31 33.28 (34.88) 32.16 (35.72) 24.91 (28.96) 30.36 (35.19) 38.06

SSIM 0.9315 0.9335 0.9475 0.9528 0.9304 0.9414 (0.9727) 0.9327 (0.9776) 0.8895(0.9457) 0.9553 (0.9784) 0.9867

Table 2. Quantitative results for benchmarking the proposed SPANet and the state-of-the-art derainers on the proposed test set. The original

codes of all these derainers are used for evaluation. We have also trained CNN-based state-of-the-art methods [11, 40, 42, 25] on our dataset,

and results are marked in red. The best performance is marked in bold. Note that due to the lack of density labels for the rain images in

our dataset, we only fine-tune the pre-trained model of DID-MDN [42] without the re-training label classification network.
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(a) Rain / Clean Image

33.53 / 0.9372

(b) DDN [11]

37.27 / 0.9631

(c) JORDER [40]

36.67 / 0.9657

(d) DID-MDN [42]

22.86 / 0.8721

(e) RESCAN [25]

35.80 / 0.9538

(f) Our SPANet

43.49 / 0.9938

(g) DDN [11]

38.36 / 0.9668

(h) JORDER [40]

40.49 / 0.9834

(i) DID-MDN [42]

26.54 / 0.9625

(j) RESCAN [25]

39.29 / 0.9771

Figure 9. Visual comparison of the state-of-the-art CNN-based derainers trained on the original/proposed datasets. Methods in red mean

that they are retrained on the proposed dataset. PSNR/SSIM results are included for reference.

(a) Rain / Clean Image

31.06 / 0.9108

(b) DSC [29]

34.49 / 0.9316

(c) LP [26]

34.42 / 0.9488

(d) SILS [14]

33.20 / 0.9463

(e) Clearing [10]

31.82 / 0.9353

(f) Our SPANet

38.22 / 0.9764

(g) DDN [11]

33.94 / 0.9460

(h) JORDER [40]

35.09 / 0.9495

(i) DID-MDN [42]

21.69 / 0.8018

(j) RESCAN [25]

34.35 / 0.9265

Figure 10. Visual comparison of SPANet with the state-of-the-art derainers. PSNR/SSIM results are included for reference.

pared to the state-of-the-art derainers. This is because

SPANet can identify the rain streak regions and remove

them accurately. Figure 10 shows a visual example from our

test set. We can see that while methods (b)−(e) tend to leave

rain streaks unremoved and methods (g)−(j) tend to corrupt

the background, the proposed SPANet (f) can produce much

cleaner result. We also show some deraining examples on

rain images collected from previous derain papers and the

Internet in Figure 11. While existing derainers fail to re-

move the rain streaks and some of them tend to darken or

blur the background, our SPANet can handle different kinds

of rain streaks and preserve more details. Table 3 compares

the performances of SPANet with the state-of-the-art de-

rainers on the synthetic test set from [42], demonstrating

the effectiveness of SPANet.

Internal analysis. We verify the importance of the spa-

tial attentive module (SAM) and different ways of using it

in Table 4. Ba is a basic Resnet-like network that does not

use SAM. Bb, Bc, and Bf represent three variants of us-

ing only one SAM for four times (recall that we have four

SAB blocks), four SAMs, and four SAMs that share the

same weights for all operations, respectively. While we can

see that all variants of incorporating the SAM improve the

performance, Bf performs the best, as sharing the weights

makes the deraining process inter-dependent on the four

SAB blocks, which allows more attention to be put to the

challenging real rain streak distributions. Bd is the SPANet

but without the above attention branch in SAM. The com-

parison between Bd and Bf shows that attention branch is

effective in leveraging the local contextual information ag-

gregated from different directions. Be is a variant that re-

moves the attention loss supervision. It demonstrates the

importance of providing explicit supervision on the atten-

tion map generation process.
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(a) Rain (b) DDN [11] (c) JORDER [40] (d) DID-MDN [42] (e) RESCAN [25] (f) Our SPANet

Figure 11. Visual comparison of SPANet with the state-of-the-art CNN-based derainers on some real rain images collected from previous

derain papers and from the Internet.

Methods Input DSC [29] LP [26] Clear[10] JORDER [40] DDN [11] JBO[47] DID-MDN[42] Our SPANet

DID-MDN Test Set 0.7781/21.15 0.7896/21.44 0.8352/22.75 0.8422/22.07 0.8622/24.32 0.8978/ 27.33 0.8522/23.05 0.9087/ 27.95 0.9342/30.05

Table 3. Comparison on the test set from [42]. SPANet is trained on the synthetic dataset from [42].

Methods Ba Bb Bc Bd Be Bf

Resnet ! ! ! ! ! !

Single SAM !

4 SAMs w/o shared weights !

4 SAMs w/ shared weights ! ! !

Self-Attention branch ! ! ! !

Attention Loss ! ! ! !

PSNR 37.43 37.43 37.47 37.70 37.39 38.06

SSIM 0.9856 0.9854 0.9854 0.9858 0.9856 0.9867

Table 4. Internal analysis of the proposed SPANet. The best per-

formance is marked in bold.

(a) Input (b) JORDER (c) DID-MDN (d) Our SPANet

Figure 12. Failure case. Our method fails to remove extremely

dense rain streaks.

6. Conclusion and Future Work

In this paper, we have presented a method to produce a

high-quality clean image from a sequence of real rain im-

ages, by considering temporal priors together with human

supervision. Based on this method, we have constructed a

large-scale dataset of ∼29.5K rain/clean image pairs that

cover a wide range of natural rain scenes. Experiments

show that the performances of state-of-the-art CNN-based

derainers can be significantly improved by training on the

proposed dataset. We have also benchmarked state-of-the-

art derainers on the proposed test set. We find that the

stochastic distributions of real rain streaks, especially the

varying appearances of rain streaks, often fail these meth-

ods. To this end, we present a novel spatial attentive net-

work (SPANet) that can learn to identify and remove rain

streaks in a local-to-global spatial attentive manner. Exten-

sive evaluations demonstrate the superiority of the proposed

method over the state-of-the-art derainers.

Our method does have limitations. One example is given

in Figure 12, which shows that our method fails when pro-

cessing haze-like heavy rain. It is because the proposed

dataset generation method fails to select clean pixels from

the misty video frames. As a result, the proposed network

produces a haze-like result.

Currently, our dataset generation method relies on hu-

man judgements. This is partly due to the fact that there are

no existing metrics that can assess the generated rain-free

images, without clean images for reference. It would be

interesting to develop an unsupervised mechanism for this

purpose in the future.
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