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Abstract

Background: Spatial analytical techniques and models are often used in epidemiology to identify

spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only

identify the location of such hotspots, but also their spatial patterns.

Methods: In this study, we utilize spatial autocorrelation methodologies, including Global Moran's

I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are

situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic

regression model to test the characteristics of similarity and dissimilarity by gender.

Results: Gender is compared in efforts to formulate the common spatial risk. The mean found by

local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally

great interest in discovering the relationship between the leading causes of death and well-

documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of

clusters where there is a prevalence of tuberculosis to closely correspond to the location of

aboriginal townships.

Conclusions: Cluster mapping helps to clarify issues such as the spatial aspects of both internal

and external correlations for leading health care events. This is of great aid in assessing spatial risk

factors, which in turn facilitates the planning of the most advantageous types of health care policies

and implementation of effective health care services.

Background
The Taiwan National Health Insurance (NHI) program
was implemented in 1995. The coverage rate of the pro-
gram has increased from 92.41% in 1995 to more than
96.16% in 2000. Coverage further increased to 98% after
the inclusion of active military forces in 2001. At the

beginning of 2004, NHI data related to medical care, such
as the leading causes of death, were reclassified and
reprocessed in relation to smaller units or areas (e.g., pre-
cincts or townships rather than the country as a whole).
Regional data from the statistical analysis system (SAS)
program are announced publicly by the NHI in regular
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annual reports (e.g., NHI, 2006) [1]. These reports pro-
vide an accurate and reliable data source to help investiga-
tors explore health care issues in Taiwan.

In the study of spatially-related objects or characteristics,
one first describes the regional characteristics that differ-
entiate areas one from another, and then proceeds with
the analysis of spatial interrelations [2]. Common spatial
techniques used in health research include disease map-
ping, clustering techniques, diffusion studies, identifica-
tion of risk factors through map comparisons and
regression analysis [3]. Spatial clustering techniques are
important for statistical consideration, and form the
beginning steps in the development of models for predict-
ing disease risk sites. Disease risk sites are, specifically,
areas located close to one another that tend to share sim-
ilar disease risk factors, because they share similar envi-
ronments and are also often connected by the spread of
communicable disease via vectors or host dispersal [4].

Cuzick and Edwards (1990) proposed three general meth-
odological approaches that can be utilized for the detec-
tion of clustering: the first is based on cell counts; the
second on autocorrelative adjacencies of cells with high
counts; and the third based on determining the distance
between events [5]. Numerical methods have been exten-
sively adopted for spatial cluster detection in health
research and epidemiology, especially for the processing
of areal data. The analytical approaches include the fol-
lowing: join-count statistics [6]; Ohno statistics [7]; Pois-
son statistics [8]; Global Moran's I [9-11]; Global Geary's
C [9-11]; General Getis-Ord's G [12]; Local Moran's I [13];
and Local Gi(d) and Gi*(d) [12-14]. Spatial autocorrela-
tion statistics such as the Moran's I and Geary's C methods
are global, in the sense that they estimate the overall
degree of spatial autocorrelation in a dataset. The possibil-
ity of spatial heterogeneity suggests that the estimated
degree of autocorrelation may vary significantly across
geo-space. Local spatial autocorrelation statistics provide
estimates which are disaggregated to the level of the spa-
tial analysis units, allowing assessment of dependency
relationships in different areas. Local Gi(d) and Gi*(d)

statistics can be used to make autocorrelation compari-
sons in different neighborhoods. A global average is used
to help identify local regions of strong autocorrelation.
Local version of the Moran's I and Geary's C statistics are
also available.

In this study, we develop a method for ascertaining the
spatial clustering associated with the 20 leading health
care events, based on medical care data collected by the
Taiwan NHI agency. Furthermore we also investigate
potential spatial risks which contribute to these health
care events and redefine epidemiologic and spatially refer-
enced data.

Methods
Study area

The study area includes the main island of Taiwan only
(excluding all islets), comprising more than 22 million
inhabitants in the year 2000, living in an area of 36,000
km2. There are a total of 349 local administrative govern-
ment areas, which include 5 main urban areas, 2 second-
ary urban areas, 187 rural townships, and 29 aboriginal
townships (Figure 1). According to a bulletin from the
Ministry of Interior issued in 1996, urban areas are
regions having at least one metropolitan center and can
include neighboring cities and townships which share
socioeconomic activities. Main urban areas are defined as
those with a population larger than one million, specifi-
cally, Taipei-Keelung, Kaohsiung, Taichung-Changhua,
Jhongli-Taoyuan and Tainan. Secondary urban areas are
defined as those with a residential population ranging
from 0.3 to 1 million (for example, Hsinchu and Chiayi).

Data collection and management

The data were collected from contractual medical care
institutions, which in this study, means institutions where
the NHI covers the costs of prescription medicines and
treatment at outpatient clinics. Such facilities accumulate
detailed databases of medical costs for inpatient care. The
number of outpatient cases were classified in relation to
disease codes, as defined in the 1975 edition of "The Inter-
national Classification of Diseases, 9th Revision, Clinical
Modification" (hereafter, ICD 9 CM). Criteria for refining
the data were first established. Some data were not
included in the final statistical data set. For example, cases
where patients suffer from diseases which defy code clas-
sification, mismatched ID numbers, and so on. Disease
codes were classified by gender and age. Cases with the
same ID numbers but different diseases were counted as
different instances [1].

Medical care data obtained from the NHI, 2006 report
were examined, and the prevalence rates of the 20 leading
causes of death calculated. Diseases classifications (made
according to the International Classification of Disease,
Injuries, and Causes of Death, 1975) are indicated in
parentheses. They include the following: malignant neo-
plasms (ICD 08-14); cerebrovascular disease (ICD 29);
heart disease (ICD 250, 251, 27, and 28* which includes
a partial listing of ICD 420-429); diabetes mellitus (ICD
181); accidents and adverse side effects (ICD E47-E53);
pneumonia (ICD 321); chronic liver disease and cirrhosis
(ICD 347); nephritis, nephritic syndrome and nephrosis
(ICD 350); suicide (ICD E54); hypertensive disease (ICD
26); bronchitis, emphysema and asthma (ICD 323); sep-
ticaemia (ICD 038); tuberculosis (ICD 02); ulcers of the
stomach and duodenum (ICD 341); certain conditions
originating in the perinatal period (ICD 45); congenital
anomalies (ICD 44); anaemias (ICD 200); homicide (ICD
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E55); meningitis (ICD 220); and protein-calorie malnu-
trition (ICD 192).

Demographic information was provided by the Ministry
of Interior [15]. The smallest administrative units coded
for examination of the various diseases cases or health
care events were precincts and townships. Age-adjusted
standard prevalence rates, a direct adjustment using the
world population in 2000 as the standard population
[16], was then calculated, the results showed the leading
causes of death for males and females in each township.

Global Moran's I statistic

The global spatial autocorrelation statistical method was
used to measure the correlation among neighboring
observations, to find the patterns and the levels of spatial
clustering among neighboring districts [17]. The Moran's
I statistic, which is similar to the Pearson correlation coef-
ficient [18], is calculated by

I
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Map of urban areas and aboriginal townships in the study areaFigure 1
Map of urban areas and aboriginal townships in the study area. Map of the study area divided into 349 administrative 
districts including 7 urban areas and an integrated area of 29 aboriginal townships.
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where N is the number of districts; wij is the element in the
spatial weight matrix corresponding to the observation
pair i, j; and xi and xj are observations for areas i and j with
mean u and

Since the weights are row-standardized Σwij = 1, the first
step in the spatial autocorrelation analysis is to construct
a spatial weight matrix that contains information about
the neighborhood structure for each location. Adjacency
is defined as immediately neighboring administrative dis-
tricts, inclusive of the district itself. Non-neighboring
administrative districts are given a weight of zero.

Determining spatial weights/connectivity matrices

Spatial contiguity for polygons is the property of sharing
a common boundary or vertex. Contiguity analysis is an
important method for assessing unusual features in the
connectivity distribution [13,19]. The Queen's measure of

contiguity can be utilized to make up for spatial contiguity
by incorporating both the Rook and Bishop relationships
into a single measure [19].

The administrative districts considered in this study are
highly irregular in both shape and size. We compare the
first order queen polygon continuity method and a dis-
tance-based method, to choose the most appropriate
method for quantifying the spatial weights matrix for
analysis of the connectivity distributions between neigh-
bors. Figure 2 shows the results of both the distance-based
and the first order Queen's contiguity analysis for the
administrative district boundaries. When the distance-
based method is used there is a larger percentage of conti-
guity connection between neighbors (greater than 15);
whereas the maximum value for the first order Queen's
contiguity is 10. The differences between the distance-
based contiguity and the first order Queen's contiguity
methods are obvious. The connectivity distribution
results obtained with the latter highlights the marked par-
ities in connectivity. Based on the results of the connectiv-

S wO ij
ji

= ∑∑ (2)

Results of the analysis of the connectivity distributions of neighboring administrative district boundaries in TaiwanFigure 2
Results of the analysis of the connectivity distributions of neighboring administrative district boundaries in Tai-
wan.
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ity distribution, we construct a first order queen polygon
contiguity weight file for districts which share common
boundaries and vertices. The spatial weights/connectivity
matrices are utilized in the following local G*(d) calcula-
tions.

Local Gi*(d) statistic

The local Gi *(d) statistic (local G-statistic) is used to test
the statistical significance of local clusters (as related to
the 20 leading causes of death), and to determine the spa-
tial extent of these clusters [12,14]. The local G-statistic is
useful for identifying individual members of local clusters
by determining the spatial dependence and relative mag-
nitude between an observation and neighboring observa-
tions [20]. The local G-statistic can be written as follows
[12,21,22]:

where x is a measure of the prevalence rate of each

leading cause of death event within a given polygon

(i.e., each administrative district); wij is a spatial

weight that defines neighboring administrative dis-

tricts j to i; Wi is the sum of the weights wij,

.

Developing the spatial weights wij is the first step to calcu-
lating Gi*(d). The spatial weight matrix includes wij = 1. In
this study, adjacency is defined using a first order queen
polygon continuity weight file which has been con-
structed based on the districts that share common bound-
aries and vertices.

Non-neighboring administrative districts are given a
weight of zero. The neighbors of an administrative district
are defined as those with which the administrative district
shares a boundary. A simple 0/1 matrix is formed, where
1 indicates that the municipalities having a common bor-
der or vertex; 0 otherwise [21,23].

The local G-statistic includes the value in the calculation
at i. Assuming that Gi *(d) is approximately normally dis-
tributed [12], the output of Gi *(d) can be calculated as a
standard normal variant with an associated probability
from the z-score distribution [24]. Clusters with a 95 per-
cent significance level from a two-tailed normal distribu-
tion indicate significant clustering spatially, but only
positively significant clusters (the z-score value greater
than +1.96) are mapped.

Logistic regression analysis

Similarities between spatial distribution patterns for
males and females are displayed. In addition to mapping,
logistic regression is also performed. The binary response
indicates whether there is significant autocorrelation
between administrative districts or areas. There is higher
correlation if the absolute value of the z-score of the local
G-statistics is larger than 1.96; lower correlation other-
wise. Gender is considered as an explanatory variable in
the logistic regression model. Thus the model is expressed
as

where β0 and β1 are the logistic regression coefficients of
the model. Pr(Higher correlation) and Pr(Lower correla-
tion) denote the "Higher" and "Lower" correlation prob-
abilities, respectively. Computation is performed with the
R-language (R 2.8.1).

Results
The results of the calculation of the global autocorrelation
statistics for the top 20 leading cause of death events in the
year 2006 in Taiwan are summarized in Table 1. The
results of the global Moran's tests for all cases related to
the leading causes of death (for both males and females)
are statistically significant (z-score greater than 1.96) and
indicate spatial heterogeneity.

The spatial clusters (hotspots) as obtained from the local
Gi*(d) statistic for the top 20 leading health care prob-
lems for both males and females in Taiwan in 2006 are
shown in Figures 3, 4 and 5.

The z-score outcomes as calculated by the Gi*(d) statistic
are categorized as clusters or non-clusters, at the 5% sig-
nificance level. This is followed by cross tabulation with
the top 20 leading health problems. All results are sum-
marized in Figure 6.

Furthermore, we find that there is no statistically signifi-
cant dissimilarity (p-value > 0.05) between the spatial dis-
tribution patterns for males and females for fifteen out of
twenty spatial clusters. We do find dissimilarities for cere-
brovascular disease, heart disease, nephritis, nephritic
syndrome and nephrosis, ulcers of stomach and duode-
num, and certain conditions originating in the perinatal
period. All results are shown in Table 2.

Discussion
Nearby locations are likely to possess similar attributes. In
other words, everything is related to everything else, and
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nearby things are more closely related to nearby things
than to distant things [25]. In epidemiology, a cluster
becomes apparent when a number of health events occur
which are situated close together in space and/or time.
The evaluation of spatial distributions as a measure of dis-
ease risk may provide etiological insights [26]. Spatial
autocorrelation is defined as the relation between the val-
ues of a single variable. This relation is attributable to the
geographic arrangement of areal units on a map and can
be used to identify the degree of spatial clustering [27,28].
In this study, the local G-statistic is used to measure the
degree of spatial clustering and map the geographic pat-
terns of the areal units. Spatial clustering of the leading
cause of death (also called a hot spot) is defined as when
we obtain z-score values larger than 1.96. In epidemiol-
ogy, hot spots are considered interesting because of their
correlation to etiology. For this reason, we indicate the hot
spots of 20 leading cause of death, as obtained from our
analysis, and identify their spatial locations. Information
about spatial location is useful for detecting risk factors
from a spatial viewpoint. A more detailed survey of these
identified hot spots may reveal important clues as to risk
factors for these diseases.

To appropriately use public health data aggregated
according to irregular administrative districts it is impor-
tant to decide on the local measures of spatial autocorre-
lation for the specification of local neighborhood (as
defined by the spatial weights matrix). In general, the spa-

tial autocorrelation may be the strongest between the
nearest neighbors. As the neighborhoods increase in
number, this autocorrelation weakens [29]. A formal
guidance for choosing a proper spatial weight matrix has
not yet been developed [30,31]. Therefore, the proper spa-
tial weight matrix is chosen after a comparison of the con-
nectivity distributions of neighbors obtained with the
distance-based contiguity and the first order Queen's con-
tiguity methods. However, an evaluation of the sensitivity
of the results to the different spatial weight matrices still
needs to be developed and assessed for further studies.

The modifiable areal unit problem (MAUP) is a phenom-
enon whereby different results are obtained from analysis
of the same data, grouped into different sets of areal units.
The MAUP can be subdivided into two separate effects
that usually occur simultaneously during the analysis of
aggregated data. The scale effect causes variation in statis-
tical results given different levels of aggregation. In other
words, association between variables depends on the size
of the areal units for which data are reported. Generally,
correlation increases as the size of the areal unit increases.
The zone effect describes variation in correlation statistics
caused by the regrouping of data into different configura-
tions but with the same scale. These effects occur because
spatial processes generating the observed data may exist at
scales and for particular areal units that may be reflected
more or less accurately by the boundaries in use [32].
Studies of the MAUP based on empirical data provide

Table 1: Global autocorrelation analysis of data for 20 leading health problems in Taiwan, 2006.

Male Female

Leading cause-of-death events (ICD code) Moran'I Z(I) Moran'I Z(I)

Malignant neoplasms (ICD 08-14) 0.39 12.52 0.37 11.94

Cerebrovascular disease (ICD 29) 0.20 6.44 0.38 11.92

Heart disease (ICD 250, 251, 27, and 28*) 0.28 8.95 0.52 16.56

Diabetes mellitus (ICD 181) 0.25 8.17 0.38 12.13

Accidents and adverse effects (ICD E47-E53) 0.56 18.03 0.51 16.25

Pneumonia (ICD 321) 0.52 16.38 0.54 17.09

Chronic liver disease and cirrhosis (ICD 347) 0.27 8.91 0.50 16.02

Nephritis, nephritic syndrome and nephrosis (ICD 350) 0.39 12.50 0.23 7.27

Suicide (ICD E54) 0.36 11.38 0.20 6.39

Hypertensive disease (ICD 26) 0.55 17.22 0.62 19.52

Bronchitis, emphysema and asthma (ICD 323) 0.59 18.93 0.46 14.89

Septicaemia (ICD 038) 0.47 14.75 0.55 17.33

Tuberculosis (ICD 02) 0.42 13.16 0.56 18.10

Ulcer of stomach and duodenum (ICD 341) 0.30 9.39 0.56 17.67

Certain conditions originating in the perinatal period (ICD 45) 0.29 9.39 0.54 16.90

Congenital anomalies (ICD 44) 0.39 14.20 0.38 11.95

Anaemias (ICD 200) 0.21 6.58 0.48 15.27

Homicide (ICD E55) 0.14 6.27 0.35 11.67

Meningitis (ICD 220) 0.52 16.41 0.22 7.21

Other protein-calorie malnutrition (ICD 192) 0.32 10.16 0.14 6.21

Z(I) a value greater than 1.96 is statistically significant.
28* indicates the complete list including ICD codes 420-429.
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Spatial clusters (hotspots) of the 20 leading causes of death from top 1 to 6 in Taiwan in 2006Figure 3
Spatial clusters (hotspots) of the 20 leading causes of death from top 1 to 6 in Taiwan in 2006. Maps showing the 
spatial clusters of the 20 leading causes of death from top 1 to 6 in Taiwan in 2006: malignant neoplasms are designated by A; 
cerebrovascular disease, B; heart disease, C; diabetes mellitus, D; accidents and adverse effects, E; pneumonia, F. Gender is 
indicated by a number, where male is 1 and female is 2.

Legend

> +3.31

+ 2.58 to +3.31

+1.96 to +2.58 

Gi*: Z scores
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Spatial clusters (hotspots) of the 20 leading causes of death from top 7 to 14 in Taiwan in 2006Figure 4
Spatial clusters (hotspots) of the 20 leading causes of death from top 7 to 14 in Taiwan in 2006. Maps showing the 
spatial clusters of the 20 leading causes of death from top 7 to 14 in Taiwan in 2006: chronic liver disease and cirrhosis are des-
ignated by G; nephritis, nephritic syndrome and nephrosis, H; suicide, I; hypertensive disease, J; bronchitis, emphysema and 
asthma, K; septicaemia, L; tuberculosis, M; ulcer of stomach and duodenum, N. Gender is indicated by a number, where male is 
1 and female is 2.
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only limited insight of the inability to control relation-
ships between multiple spatial variables. Data simulation
is necessary to control over various properties of individ-
ual level data. Simulation studies, such as those by Swift
et al. (2008), have demonstrated that the spatial support

of variables can affect the magnitude of the ecological bias
caused by spatial data aggregation [33]. Manley et al.
(2006) concluded that MAUP is not really a problem but
in constrast, a resource. Data at different scales can help us
identify processes operating at different scales. It is clear

Spatial clusters (hotspots) of the 20 leading causes of death from top 15 to 20 in Taiwan in 2006Figure 5
Spatial clusters (hotspots) of the 20 leading causes of death from top 15 to 20 in Taiwan in 2006. Maps showing 
the spatial clusters of the 20 leading causes of death from top 15 to 20 in Taiwan in 2006: certain conditions originating in the 
perinatal period are designated by O; congenital anomalies, P; anaemias, Q; homicide, R; meningitis, S; and other protein-calo-
rie malnutrition, T. Gender is indicated by a number, where male is 1 and female is 2.
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that it is not possible to define an ideal single census geog-
raphy that captures all the processes for all variables [32].
Furthermore, the internal composition of the areal units
may not be homogeneous, particularly for disease distri-

bution. Further to this, Matisziw et al. (2008) suggested
that downscaling the spatial structure of polygonal units
sould provide valuable information on the spatial distri-
bution of disease [34].

Map of cross tabulations with consistency rates for the top 20 leading health care problems in Taiwan, 2006Figure 6
Map of cross tabulations with consistency rates for the top 20 leading health care problems in Taiwan, 2006.

(A) malignant neoplasms (B) cerebrovascular disease (C) heart disease (D) diabetes mellitus 

Female Female Female Female 

cluster non-cluster cluster non-cluster cluster non-cluster cluster non-cluster 

Male 

cluster 24 37

Male 

cluster 24 6 

Male 

cluster 28 6 

Male 

cluster 16 22

non-cluster 27 261 non-cluster 26 293 non-cluster 45 270 non-cluster 21 290

Consistent rate:0.817 Consistent rate:0.908 Consistent rate:0.854 Consistent rate:0.877 

(E) accidents and adverse effects (F) pneumonia 
(G) chronic liver disease and 
cirrhosis 

(H) nephritis, nephritic syndrome and 
nephrosis 

Female Female Female Female 

cluster non-cluster cluster non-cluster cluster non-cluster cluster non-cluster 

Male 

cluster 38 3 

Male 

cluster 43 10

Male 

cluster 52 14

Male 

cluster 28 41

non-cluster 2 306 non-cluster 5 291 non-cluster 11 272 non-cluster 21 259

Consistent rate:0.986 Consistent rate:0.957 Consistent rate:0.928 Consistent rate:0.822 

(I) suicide (J) hypertensive disease 
(K) bronchitis, emphysema and 
asthma 

(L) septicaemia 

Female Female Female Female 

cluster non-cluster cluster non-cluster cluster non-cluster cluster non-cluster 

Male 

cluster 18 15

Male 

cluster 42 2 

Male 

cluster 28 6 

Male 

cluster 73 15

non-cluster 7 309 non-cluster 14 291 non-cluster 8 307 non-cluster 19 242

Consistent rate:0.937 Consistent rate:0.954 Consistent rate:0.960 Consistent rate:0.901 

(M) tuberculosis (N) ulcer of stomach and duodenum 
(O) certain conditions originating in 
the perinatal period 

(P) congenital anomalies 

Female Female Female Female 

cluster non-cluster cluster non-cluster cluster non-cluster cluster non-cluster 

Male 

cluster 44 5 

Male 

cluster 60 10

Male 

cluster 31 22

Male 

cluster 35 26

non-cluster 2 298 non-cluster 38 241 non-cluster 45 251 non-cluster 35 253

Consistent rate:0.980 Consistent rate:0.862 Consistent rate:0.808 Consistent rate:0.825 

(Q) anaemias (R) homicide (S) meningitis (T) other protein-calorie malnutrition 

Female Female Female Female 

cluster non-cluster cluster non-cluster cluster non-cluster cluster non-cluster 

Male 

cluster 39 27

Male 

cluster 24 4 

Male 

cluster 20 21

Male 

cluster 10 1 

non-cluster 28 255 non-cluster 9 312 non-cluster 12 296 non-cluster 1 337

Consistent rate:0.842 Consistent rate:0.963 Consistent rate:0.905 Consistent rate:0.994 

# Consistent rate is the rate that both male and female are cluster or non-cluster.
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This is the first study of the spatial distribution of the 20
leading health problems in Taiwan. There have been few
previous ecological studies related to health care issues
and their correlation to risk factors in Taiwan, although
malignant neoplasms and tuberculosis have been docu-
mented and are discussed briefly below. We hope that this
study of the spatial clustering of Taiwan's leading health
issues can provide help for the study of spatial epidemiol-
ogy.

Residents along the southwestern and northeastern coasts
of Taiwan drank well water contaminated with a high con-
centration of arsenic before the establishment of the pub-
lic water system [35]. Residents in these areas were found
to have an increased risk of malignant neoplasms, includ-
ing cancers of the liver, nasal cavity, lung, skin, bladder
and kidney, for both males and females, as well as pros-
tate cancer in males [36,37]. Although well water was no
longer used for drinking or cooking after the mid-1970s,
there was still significantly increased risks of urinary can-
cers [38,39] and lung cancer [39,40] in the arseniasis-
endemic areas of southwestern and northeastern Taiwan.
Our results, showed clusters for malignant neoplasms in
these arseniasis-endemic areas, but also did reveal a new
carcinogen clustering (for females) in the northen coastal
region of Taiwan. This is worthy of more investigation in
the future.

According to data from the Center for Disease Control in
Taiwan, there is a four-fold higher incidence of tuberculo-

sis in aboriginal portions of the population than in people
of Han ethnicity (Hans) [41]. Environmental factors such
as hygiene, income, and social behavior (e.g., alcoholism)
have been blamed for the prevalence of tuberculosis in
aboriginal populations. Genetic variations in NRAMP 1
may also affect susceptibility to and increase the risk of
tuberculosis in Taiwanese aboriginals [42]. Here we calcu-
late tuberculosis clusters for males and females by utiliz-
ing the local G-statistic. The results show clear spatial
clustering in Taiwanese aboriginal townships. Thus, our
observations support the results obtained in previous
studies. In addition, the hypertensive disease cluster, also
possibly closely correlated to mountainous and aborigi-
nal townships, is also worthy of attention. The strength of
the relationship between aboriginal populations and
hypertensive disease clusters needs further study to clarify.
A more detailed survey of hypertensive disease may reveal
valuable findings in terms of the risk factors between pop-
ulations (four main populations are distributed in Tai-
wan) and hypertensive disease.

The z-scores for the local G-statistic are calculated using
the logistic regression model. The results for various lead-
ing health problems and gender are compared. The test
results show statistically significant differences for five
health care problems in Taiwan in the year 2006, but
another fifteen cases which are not, on the other hand. In
other words, the null hypothesis is accepted. The accepted
null hypothesis results indicate that the common spatial
factor(s) may interact with both sexes.

Table 2: Logistic regression model comparisons of the top 20 leading health problems in Taiwan by gender, 2006.

Leading cause-of-death event (ICD code) p-value description

Malignant neoplasms (ICD 08-14) 0.30 Similarity

Cerebrovascular disease (ICD 29) 0.02* Dissimilarity

Heart disease (ICD 250, 251, 27, and 28*) 0.00*** Dissimilarity

Diabetes mellitus (ICD 181) 0.90 Similarity

Accidents and adverse effects (ICD E47-E53) 0.91 Similarity

Pneumonia (ICD 321) 0.59 Similarity

Chronic liver disease and cirrhosis (ICD 347) 0.77 Similarity

Nephritis, nephritic syndrome and nephrosis (ICD 350) 0.04* Dissimilarity

Suicide (ICD E54) 0.27 Similarity

Hypertensive disease (ICD 26) 0.20 Similarity

Bronchitis, emphysema and asthma (ICD 323) 0.80 Similarity

Septicaemia (ICD 038) 0.73 Similarity

Tuberculosis (ICD 02) 0.74 Similarity

Ulcer of stomach and duodenum (ICD 341) 0.01* Dissimilarity

Certain conditions originating in the perinatal period (ICD 45) 0.03* Dissimilarity

Congenital anomalies (ICD 44) 0.38 Similarity

Anaemias (ICD 200) 0.92 Similarity

Homicide (ICD E55) 0.50 Similarity

Meningitis (ICD 220) 0.27 Similarity

Other protein-calorie malnutrition (ICD 192) 1.00 Similarity

*** Significance < 0.001; * significance < 0.05.
28* indicates the complete list included ICD codes 420-429.
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Conclusions
Spatial autocorrelation calculation is useful for cluster
mapping of regional health care problems. Cluster map-
ping helps to clarify issues such as the spatial aspects of
both internal and external correlations of leading health
care events. This helps planners to assess spatial risk fac-
tors, and to ascertain what would be the most advanta-
geous types of health care policies for the planning and
implementation of health care services. These issues can
greatly affect the performance and effectiveness of health
care services and also provide a clear outline for helping us
to better understand the results in depth.
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