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Population genetic theory predicts that plant populations will exhibit internal spatial autocorrelation
when propagule ¯ow is restricted, but as an empirical reality, spatial structure is rarely consistent
across loci or sites, and is generally weak. A lack of sensitivity in the statistical procedures may
explain the discrepancy. Most work to date, based on allozymes, has involved pattern analysis for
individual alleles, but new PCR-based genetic markers are coming into vogue, with vastly increased
numbers of alleles. The ®eld is badly in need of an explicitly multivariate approach to autocorrelation
analysis, and our purpose here is to introduce a new approach that is applicable to multiallelic
codominant, multilocus arrays. The procedure treats the genetic data set as a whole, strengthening the
spatial signal and reducing the stochastic (allele-to-allele, and locus-to-locus) noise. We (i) develop a
very general multivariate method, based on genetic distance methods, (ii) illustrate it for multiallelic
codominant loci, and (iii) provide nonparametric permutational testing procedures for the full
correlogram. We illustrate the new method with an example data set from the orchid Caladenia
tentaculata, for which we show (iv) how the multivariate treatment compares with the single-allele
treatment, (v) that intermediate frequency alleles from highly polymorphic loci perform well and rare
alleles poorly, (vi) that a multilocus treatment provides clearer answers than separate single-locus
treatments, and (vii) that weighting alleles di�erentially improves our resolution minimally. The
results, though speci®c to Caladenia, o�er encouragement for wider application.
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Introduction

Studies of spatial structure in plant populations can
reveal the operation of key evolutionary processes.
When spatial structure develops, it may in¯uence the
patterns of local breeding and evolution. Population
genetic theory predicts that plant populations will
exhibit local population genetic structure when gene
¯ow is restricted (Wright, 1943, 1978). In support of
these models, Turner et al. (1982) showed with computer
simulations that under restricted gene ¯ow and selective
neutrality, the population (as a whole) develops a patchy
distribution of genotypes. Subsequent computer studies
have con®rmed that positive spatial autocorrelation,
declining with distance, develops quickly under restrict-
ed gene ¯ow (e.g. Sokal & Wartenberg, 1983; Sokal

et al., 1989; Epperson, 1990, 1995a,b; Sokal & Jacquez,
1991).
Contrary to theoretical expectations, however, spa-

tial structure is rarely consistent across loci or sites,
and when found, is generally weak, with many studies
showing minor spatial structure on a strictly microspa-
tial scale (Heywood, 1991). Schnabel et al. (1991) have
found spatial autocorrelation at short distances for
some allozyme loci in Gleditsia triacanthos and Maclura
pomifera; Perry & Knowles (1991) found similar
patterns in Acer saccharum, and weak spatial structure
was reported in Pinus banksiana (Xie & Knowles,
1991), Quercus laevis (Berg & Hamrick, 1995) and
Psychotria o�cinalis (Loiselle et al., 1995). On the
other hand, Waser (1987) found no apparent spatial
autocorrelation at ®ve allozyme loci in Delphinium
nelsonii, although reliable estimates of pollen and seed
dispersal suggest that it should have existed. Similarly,
no spatial autocorrelation for allozyme loci has been
found in Pinus contorta (Epperson & Allard, 1989),
Picea mariana (Knowles, 1991), Psychotria nervosa
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(Dewey & Heywood, 1988) or Carpa procera (Doligez
& Joly, 1997).

Several factors may explain why spatial structure is
often weaker than anticipated. The usual post hoc
explanation is that gene ¯ow must have been greater
than expected and su�cient to minimize local spatial
structure (e.g. Dewey & Heywood, 1988; Epperson &
Allard, 1989; Knowles, 1991; Doligez & Joly, 1997). An
alternative is that spatial structure varies with life
history stage, and that we are sometimes sampling the
wrong cohort. In Cecropia obtusifolia, for example,
seedlings show marked microspatial structure (spaced
out on a cm ´ cm scale), but spatial structure declines
among saplings (spaced out on a m ´ m scale), and is
absent among adults (spaced 10s of m apart) (Epperson
& Alvarez-Buylla, 1997).

A lack of sensitivity in the statistical procedures may
also be a problem. Epperson (1995c) has shown that
joint-count statistics for pairs of individuals are more
sensitive to spatial structure than is the more familiar
Moran I-statistic (Cli� & Ord, 1981), based on allele
frequencies of sets of individuals. He has pointed out
that widely cited simulations (e.g. Sokal & Wartenberg,
1983) employed a di�erent computational procedure for
Moran's I than is typically used for empirical work in
natural populations. The denominator of the published
Moran statistic leads to an underestimate of the
autocorrelation under restricted gene ¯ow. Appropriate
adjustments (Epperson, 1995c) indicate that natural and
simulated levels of spatial structure match more closely
than had previously been realized.

Most spatial structure studies to date are based on
allozymes. However, a series of new PCR-based genetic
markers is becoming widely used in plant studies, in part
because they are more numerous and more informative
than allozymes. These include microsatellites (or simple
sequence repeat markers), henceforth SSRs (Jarne &
Lagoda, 1996), RAPDs ± random ampli®ed polymor-
phic DNA markers (Welsh & McClelland, 1990;
Williams et al., 1990) ± and AFLPs ± ampli®ed fragment
length polymorphic markers (Vos et al., 1995). SSR
markers are single-locus, codominantly inherited sys-
tems, not unlike allozymes, but given the often large
number of alleles per locus, allele frequency spectra are
sometimes dominated by numerous low-frequency al-
leles. The information per locus is considerably greater
than for allozymes, and in selfers exceeds that for any
other markers (e.g. Rongwen et al., 1995). The RAPD
and AFLP procedures yield multilocus DNA pro®les
with dominantly inherited polymorphisms. By virtue of
the essentially unlimited number of primer combinations
available, however, both RAPDs (Peakall et al., 1995)
and AFLPs (Powell et al., 1996) represent more variable
assay batteries than allozymes.

The procedures and publicly available software for
investigating spatial genetic structure are not well
designed for the large numbers of codominant alleles
typical of many SSR loci, nor are they well designed to
deal with multiple loci. Our purpose in this paper is to
introduce a new approach to spatial genetic structure
analysis that is applicable to multiallelic codominant,
multilocus arrays, a method that can easily incorporate
di�erential weighting of low-frequency alleles, if that is
desired. The procedure is intrinsically multivariate,
avoiding the need for allele-by-allele, locus-by-locus
analysis, though such analyses can always be undertak-
en, if desired. By treating the genetic data set as a whole,
we can strengthen the spatial signal by reducing the
stochastic (allele-to-allele, and locus-to-locus) noise.

Our technical objectives are: (i) to develop a multiple-
character, spatial autocorrelation analysis that is very
general, based on genetic distance methods, (ii) to
illustrate that treatment for multiallelic codominant loci,
and (iii) to provide nonparametric permutational testing
procedures for the full correlogram. We will illustrate
these new methods with an example allozyme data set
from Caladenia tentaculata, and in that context, we will
address the following four questions. (i) How does the
multiallele treatment compare with separate single-allele
treatment, and which alleles convey most of the infor-
mation, the common or rare alleles? (ii) How do
di�erent loci perform, and how is that related to allelic
richness and the overall level of polymorphism? (iii) Is
the multilocus treatment more powerful than are sepa-
rate single-locus treatments, and do we lose information
with the overarching treatment? (iv) What is the
advantage (if any) of weighting alleles di�erentially, in
terms of their respective frequencies?

Mathematical and statistical methods

Genetic distance measures

We begin by de®ning the genetic distance between a
pair of individuals for a multiallelic codominant locus,
such as one would have with either allozymes or
microsatellite (SSR) markers; it is a slight modi®cation
of the scheme shown in Peakall et al. (1995). Consider
a trio of codominant alleles (A, B, C ) and a sextet of
diploid genotypes, as shown in Fig. 1(a). The homo-
zygotes (AA, BB, CC ) are represented by the vertices
of an equilateral triangle, and the linear distances
between these vertices are scaled to be `2' units apart,
measured along the side between adjacent vertices. The
heterozygotes (AB, AC, BC ) are positioned midway
between the respective heterozygotes, and are a linear
distance of `1' from each homozygote. From the
geometry of the triangle, it is also clear that the linear
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distance between heterozygotes sharing a single allele
(say AB and AC) is 1, and that between any hetero-
zygote and the opposite vertex homozygote (e.g. AB to
CC) is Ö3. The squared distances between the various
genotypes are thus 1 (AB to AA, BB, AC or BC; AC to
AA, CC, AB or BC; BC to BB, CC, AB or AC), 3 (AB
to CC, AC to BB, BC to AA), or 4 (AA to BB, AA to
CC, BB to CC). The distance between any genotype
and itself is clearly `0'. We will need squared distances
for what follows, but the scoring scheme is `additive'.
We can see the connection between the linear scoring

convention and squared genetic distance by de®ning
these distances in terms of paired vectors of three linear
genetic variables, de®ned as shown in Fig. 1(b). The
squared distance between any two genotypes is one-half
the Euclidean distance between their respective vectors,

d2
ij �

1

2

XK

k�1
yik yjk

�2
; �1�

where the subscript k � 1, ¼, K indexes the genetic
(scoring) character. Just to illustrate, consider the two
vectors for AA and BC. Equation 1 takes the form

d2
AA vs: BC � 1

2 �2 0�2 � �0 1�2 � �0 1�2
h i

� 3; �2�

the same result we had from the triangle. We can extend
to four alleles (equilateral tetrahedron or a vector of
length 4), ®ve alleles (equilateral pentahedron or a
vector of length 5), and so on. The only thing that is new
is the distance between two nonoverlapping heterozy-
gotes, for example AB vs. CD, which is d � Ö2, in linear
form, and d 2 � 2, in squared form. We are led to an
interindividual distance matrix of the form shown in
Table 1.

Unequal character weights

It has been suggested (Epperson, 1995c) that the
information available from rare alleles is greater than

Fig. 1 Additive distance metric for multiallelic, codominant
loci; (a) three-allele (A, B, C ) equilateral triangle, with linear

distances indicated; (b) equivalent vector representation of
a three-allele (A, B, C ) equilateral triangle.

Table 1 Unweighted squared genetic distances for a four-allele, codominant locus

AA AB AC AD BB BC BD CC CD DD

AA 0 1 1 1 4 3 3 4 3 4
AB 1 0 1 1 1 1 1 3 2 3
AC 1 1 0 1 3 1 2 1 1 3
AD 1 1 1 0 3 2 1 3 1 1
BB 4 1 3 3 0 1 1 4 3 4
BC 3 1 1 2 1 0 1 1 1 3
BD 3 1 2 1 1 1 0 3 1 1
CC 4 3 1 3 4 1 3 0 1 4
CD 3 2 1 1 3 1 1 1 0 1
DD 4 3 3 1 4 3 1 4 1 0
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that from common alleles, and that it should thus be
weighted di�erentially. We can weight inversely by
frequency in such a way that the squared distances
shown in Table 1 still obtain for equifrequent alleles, as
a special case. We require a simple change in the
distance metric (eqn 1) to incorporate allele-speci®c
weights:

d2
ij �

XK

k�1
Wkk yik yjk

�2
; �3�

where the weights are inversely proportional to the allele
frequencies (pk) and the total number of alleles, and are
given by

Wkk � 2Kpk� � 1; �4�

with the subscript k � 1, ¼, K again indexing the
genetic characters. A few examples from the four-allele
case should su�ce to show the pattern:

d2
AA vs: BB �

1

2K
4

pA
� 4

pB

� �
d2

AA vs: AB �
1

2K
1

pA
� 1

pB

� �

d2
AB vs: AC �

1

2K
1

pB
� 1

pC

� �

d2
AA vs: BC �

1

2K
4

pA
� 1

pB
� 1

pC

� �
�5�

d2
AB vs: CD �

1

2K
1

pA
� 1

pB
� 1

pC
� 1

pD

� �
:

The weighting scheme gives the rare alleles more impact,
on the premise that spatial proximity for two rare
genotypes should carry more weight than proximity of
two common genotypes.

The only di�culty with this weighting scheme is that
the data used to assess spatial autocorrelation will
probably also have to be used to establish the allele
frequencies. We recommend substantial sample sizes,
but even with large sample sizes, the precise frequencies
of the rare alleles are not well established. The usual
estimates of (1/pk) are biased upwards for rare alleles,
and the bias increases as the true frequency decreases, so
we will follow Smouse & Chakraborty (1986) and Xu
et al. (1994) in recommending less biased estimates, in
this case

~p 1
K � 2N � 1

nk � 1
K

; �6�

where nk is the tally of the kth allele in the study
population, and N is the total sample size. Unequal

weighting of characters has no impact on the subsequent
computations, as long as we use eqn (3). Whether
weighting actually helps to detect autocorrelation is an
empirical matter, to which we will return for the
Caladenia illustration.

Multilocus treatment

Whether we have used weighted or unweighted distances,
we can de®ne an N ´ N genetic distance matrix, D, for a
single locus, using the appropriate elements extracted
from Table 1, or from the analogous treatment in
eqn (5), a matrix that takes the form

D �
0 d2

12 . . . d2
1N

d2
12 0 . . . d2

2N
. . . . . . . . . . . .
d2
1N d2

2N . . . 0

2664
3775� �7�

To obtain a multilocus distance, we simply add across
loci. For the ith and jth individuals,

d2
ij L separate loci� � �

XL

l�1
d2

ij lth locus� �; �8�

where each locus is separately scored. We assume here
that there are no missing genetic data for particular
individuals, i.e. that the data set is complete. We could,
with some sort of `missing value' technique, adjust for
holes in the data set, but that is beyond the scope of this
e�ort. All later aspects of the analysis amount to
manipulations of the elements of D, so the choice of
metric is the aspect that really matters. Alternative
distance measures can be envisaged and de®ned for these
and other sorts of genetic markers, and we have
developed alternatives for dominant/recessive RAPDs
(Hu� et al., 1993) and haplotypic markers, such as seen
with mtDNA assay (Exco�er et al., 1992). We can even
introduce some other weighting scheme. Su�ce it,
however, that as long as our chosen distance metric
provides Euclidean closure, all the computations that
follow are invariant with respect to that choice of metric.

The covariance matrix

The distance matrix D can be used to compute an inter-
individual covariance matrix, C, which is what we will
need for the autocorrelation analysis. The matrix C
takes the form

C �
c11 c12 . . . c1N

c21 c22 . . . c2N

. . . . . . . . . . . .
cN1 cN2 . . . cNN

2664
3775; �9�
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where the diagonal terms measure the squared Euclid-
ean distance from each individual genotype to the
multivariate centroid of the genetic space,

cii �
XM
m�1

Wmm yim �ym� �2; �10�

where m � 1, ¼, M now indexes all the characters
(alleles) of the multilocus set, and where the weights are
either � or are given by eqn (4). Similarly, the inter-
individual covariance terms provide a measure of the
tendency of the ith and jth individuals to vary in the
same (multidimensional) genetic direction from the
centroid,

cij �
XM
m�1

Wmm yim ym� � yjm ym

�2
: �11�

There is a convenient duality between genetic distance
matrices and covariance matrices that makes our task
simple. For the ith and jth individuals, Gower (1966) has
shown that we can derive the squared distance, from
eqns (10) and (11), via

d2
ij � cii � cjj 2cij: �12�

In whatever way we choose to de®ne our genetic
characters, and whatever we choose as a weighting
scheme, we can always convert the covariance matrix, C,
into a corresponding genetic distance matrix, D, where
the characters are de®ned in the same fashion. It is more
convenient for us, however, to compute D directly, as
described earlier, and then to e�ect a back-translation to
C, using the `centring' technique described by Gower
(1966). Collapsing several algorithmic steps into one
equation, we de®ne cij as

cij � d2
ij �

XN

j�1
d2

ij �
XN

i�1
d2

ij

 !,
N

"

XN

i 6�j

d2
ij

 !,
N 2

#,
2 for all i and j : �13�

The ®rst summation is over all N elements of the ith
row; the second summation is over all N elements of the
jth column; the third summation is over all N2 elements
of the matrix D, including the implicit diagonal zeroes.
We have now converted our genetic characters, embed-
ded in the multiallelic, multilocus distance matrix, D,
into a corresponding genetic covariance matrix, C.

The X (h)-matrices

Corresponding to the covariance matrix, C, among
individuals, we also need to de®ne a set of correspond-
ing N ´ N matrices for the spatial distances, X(h),
between pairs of individuals separated by h steps (or
`lags', as they are sometimes called in geospatial
literature),

X�h� �
x�h�11 x�h�12 . . . x�h�1N

x�h�21 x�h�22 . . . x�h�2N

..

. ..
. . .

. ..
.

x�h�N1 x�h�N2 . . . x�h�NN

266664
377775; �14�

where xij
(h) � 1 for all pairs of individuals (i and j) that

are h spatial distance classes apart (h lags apart), and
xij
(h) � 0 otherwise. The diagonal element is the number

of nonzero pairs involving the ith individual at distance
(lag) h. We have a separate matrix for each class (h) of
spatial separation. The essence of spatial autocorrela-
tion analysis is to compare the elements of C with those
of X(h), for sets of paired observations that are h steps
apart (h � 1, ¼, H).
To consolidate the idea of a `distance class', consider

the seven-individual hypothetical population in
Fig. 2(a). For purposes of illustration, let us suppose
that genetic propagule (seed or pollen) movement is
animal-mediated, and that the animal vector cannot
cross water. The wavy line in Fig. 2(a) represents the
stream network, so genetic movements (in our hypo-
thetical example) must accommodate the drainage.
Although the ``line-of-sight'' distances between points
A and F, B and F, E and F, and F and G are small, those
direct connections are less relevant than the travel paths
that would have to be taken by the animal vectors, all
routed through positions C or D. Although the physical
distances between the adjacent (immediately connected)
points are not precisely equal, we arbitrarily denote
them as all being members of the ®rst distance class
(h � 1). That is to say, all such pairs are said to be `one
step (lag) apart'. The appropriate form for X(1) is shown
in Fig. 1(b). Individual A is adjacent only to B, so
x�1�AA � 1, and x�1�AB � 1 � x�1�BA . On the other hand, indi-
vidual B is adjacent to both A and C, so x�1�BB � 2,
whereas x�1�BA � 1 � x�1�AB and x�1�BC � 1 � x�1�CB. Because in-
dividual B is connected to both A and C at distance
(h � 1), it is counted twice. We continue in this fashion
for points C through G. For two-step connections
(h � 2), A vs. C, B vs. D, B vs. F, C vs. E, F vs. E, D vs.
G, the analogous treatment is shown in the matrix X(2)

of Fig. 1(b). Individuals A and G are only involved in
two-step distances once each, so the Ath and Gth
diagonal elements are `1', but all the other individuals
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are involved twice each in two-step connections, so their
diagonal elements are each `2'. The three-and four-step
connections are shown in X(3) and X(4), respectively.
There is also a single ®ve-step connection, that between
A and G, so X(5) (not shown) has `1's in all four corners
and `0's everywhere else. In this fashion, we can
formally describe the connections between individuals
separated by `h distance classes', for h � 1, 2, 3, ¼,
and so on.

The autocorrelation coef®cient

For all pairs of individuals that are `h steps apart', we
compute a correlation coe�cient, according to the
formula shown below. The two sets of genetic variables
involved in a pairwise comparison of the ith and jth
individuals are the same, however, with only their
spatial location being di�erent, so we describe the

correlation as a spatial autocorrelation of individuals
h steps apart (or `at lag h').

r�h� �
XN

i 6�j

x�h�ij cij

 !, XN

i�1
x�h�ii cii

 !
; �15�

where the numerator is the sum of all N (N ± 1) o�-
diagonal `element-by-element' products of C and X(h),
and the denominator is the sum of all N diagonal
`element-by-element' products of those same two matri-
ces. The coe�cient r(h) is a proper correlation coe�cient,
with a mean of `0' when there is no autocorrelation, and
bounded by [±1, +1], closely related to Moran's ±I (h)

coe�cient, except that the x�h�ii terms for Moran's
coe�cient are either `1' or `0', depending on whether
the ith individual is (or is not) involved in pairs at
distance class h, with no allowance for how many times

Fig. 2 Translation of spatial ®eld sample
into connection matrices for an example
of a hypothetical seven-individual

collection in the headwaters of a small
drainage: (a) portrayal of available single-
step connections, disallowing traverse of

the stream system; (b) the connection
matrices, X(h) for ®rst (h � 1), second
(h � 2), third (h � 3) and fourth

(h � 4) distance classes. The matrix for
h � 5 is not shown, but has `1's in all
four corners.
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the ith individual is paired with other individuals at that
distance. Although the two coe�cients have the same
qualitative behaviour, we prefer r(h), because it is both
completely general (multivariate) and a proper correla-
tion. We compute an r(h)-value for each matrix X(h), and
construct a `correlogram' from the full series
(h � 1, ¼, H ) of lags.

Sampling from the null distribution

Having computed an array of autocorrelations, one per
distance class, we turn next to the question of how to
test their departures from the null hypothesis that each is
`0'. If there is no pattern of spatial genetic pattern within
the site, then the null hypothesis should be that each of
the correlations is drawn from a distribution of mean 0.
If we represent the collection of H autocorrelations by a
vector of length H, denoted R � [r(1), r(2), ¼, r(H)]T,
then the null hypothesis is that R � 0. If we conclude
from analysis of the data that the actual correlations at
close distances are positive, we can also expect those at
greater distances to be negative. The internal geometry
of the covariance matrix C virtually guarantees it. We
thus need to treat the vector R as a unit, representing all
of the spatial inter-relationships in the data set.
To determine the null distribution for R, we provi-

sionally accept the (null hypothesis) view that genetic
a�nity and spatial a�nity are not related at all, and we
randomize spatial positions of the N separate individ-
uals. That amounts to permuting ID numbers (the rows
and corresponding columns) in the matrix C, while
holding those of the X(h)-matrices constant, e�ectively
permuting whole genotypes amongst the spatial posi-
tions occupied. For the mth permutational shu�e, we
compute a new array of estimated r(h)-values, packed
into a vector of length H, denoted Rm. We permute C
many times, say (M ± 1) � 999, each time extracting the
estimated vector of r-values, packed into (M ± 1) sample
Rm � {rm

(h)}-vectors, all drawn from the same null
distribution with no autocorrelation. On the premise
that the genetic data were themselves drawn from that
same null distribution, we use the estimated vector,
RG � {rG

(h)}, drawn from the actual positions of the
individuals, as the Mth random realization.
To test the autocorrelation for a particular distance

class, say the hth, we tally theM random estimates of r(h),
extracting an estimatedmean and standard deviation and
generating an empirical con®dence interval around that
null-hypothesis mean. When testing for a positive auto-
correlation (one-tailed test), we can simply tally the
number of random r(h)-values that are at least as large as
that actually seen, i.e. â � Tally�r�h�m � r�h�G �=M . Because
the actual value is also included in the random set, the tail
probability will always be â � M 1. If a two-tailed test is

in order, because signi®cant negative r(h)-values are also
deemed to be relevant, then we compute

t2h �
r�h�G rá

�h�
h i2

s2h
; �16�

where�rá�h� is the average of the randomized estimates, and
where s2h is their estimated variance. Substituting individ-
ual r�h�m -values into eqn (16), we compute an empirical null
distribution for t2h,m, against which to compare the actual
value, t2h,G, with â � Tally�t2h;m � t2h;G�=M . Alternatively,
we can compare r�h�G with a con®dence interval spanning a
desired fraction (say 95% or 99%) of the random values,
r�h�m . No distributional assumptions are required for this
nonparametric test.
It is customary (Morrison, 1976), when testing large

numbers of correlations (several distance classes and
many separate analyses of single alleles or single loci), to
employ a Bonferroni probability criterion, assuming
that all the test criteria are independent. Because we
have included all loci and all alleles in a single genetic
a�nity measure, there is no need for a separate test of
each allele and each locus, and the multiple-character
analysis (measuring overall genetic a�nity) is what we
want. Moreover, the separate tests of H di�erent r�h�G -
values cannot be independent, given the internal Eu-
clidean closure of the distance matrix, D, and the
consequent closure of the covariance matrix, C. For an
overall assessment of spatial autocorrelation, we test the
null hypothesis, R � 0, against the alternative hypoth-
esis, R ¹ 0. If spatial autocorrelation is positive at some
distances, it must be negative at others; the correlations
at di�erent lags are not independent. We need a test that
allows for both types of simultaneous departures from
the null model. We prefer a multivariate analogue of the
univariate t2-test in eqn (16).
From the collection of M null hypothesis Rm-vectors

(including the actual vector, RG), we compute a null
mean vector,

R �
XM
m�1

Rm=M ; �17�

and a covariance matrix,

SR �
s11 s12 . . . s1H

s12 s22 . . . s2H

..

.
. . . . .

. ..
.

s1H s2H . . . sHH

26664
37775: �18�

We invert this covariance matrix, and compute
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T 2
m � Rm R

� �T
S 1

R Rm R
� � �19�

which we compare with the distribution of similarly
computed values from the random vectors to determine
how often a random (null-hypothesis) autocorrelation
vector deviates as far from the multivariate centroid as
does the observed vector, with â � Tally�T 2

m � T 2
G�=M .

This multiclass test is patterned on the classic T2-test
(Hotelling, 1951), but we rely on permutational testing,
rather than parametric theory. The T2-criterion mea-
sures departures from the R � 0 hypothesis for all
distance classes simultaneously, and thus provides a
global test of spatial genetic clustering that allows for all
of the interdependencies within the spatial and genetic
data sets.

An illustration with Caladenia tentaculata

Background

In a detailed study, Peakall & Beattie (1996) have
examined the ecological and genetic consequences of
exclusive pollination by sexually attracted male thynnine
wasps in the orchid Caladenia tentaculata (Schldl).
Pollination in this species is typical of the many
Australian orchids, exploiting the reproductive behav-
iour of thynnine wasps by production of pheromone-like
fragrances and presentation of labellum structures that
mimic the female. Pollination occurs when male wasps
attempt copulation (pseudocopulation) with the label-
lum. After pollination, wasps immediately leave the
patch, rather than visiting additional plants within the
patch. As a consequence of this behaviour, pollen
movements approximate a linear (rather than lepto-
kurtotic) distribution, with a mean dispersal distance of
17 m (max. � 58 m). This is among the largest mean
pollen dispersal distances known in a herbaceous plant
(Peakall & Beattie, 1996).

Despite extensive pollen ¯ow in C. tentaculata, an
analysis of ®ve allozyme loci revealed signi®cant genetic
clustering within a 20 ´ 40 m quadrat. The existence of
spatial structure, in the presence of homogenizing pollen
¯ow, may be a consequence of restricted seed dispersal
instead. Although C. tentaculata's minute seeds are
wind-dispersed, most of the seed probably fall close to
the parent, where the chances of seedling establishment
may be enhanced by the presence of mycorrhizal fungi
that are required for germination.

Here, we revisit the data set of Peakall &Beattie (1996),
demonstrating various features of our new method of
spatial autocorrelation analysis. First, we use the method
to compare the spatial structure of single alleles, compar-

ing the results for rare and polymorphic alleles, alongwith
those of amultiallelic analysis for the same locus.We then
comparemultiallele analyses for the di�erent loci, relating
the results to the levels of polymorphism for single loci,
and contrast the results with those of a full multilocus
analysis. Finally, we examine the impact of di�erential
weights for common and rare alleles, to see whether
weighting clari®es the situation by emphasizing the
detectable pattern from the rarer alleles.

Sampling and genetic analysis

This spatial autocorrelation analysis focused on a
20 ´ 40 m plot, embedded within a larger population
of C. tentaculata, a plot orientated in such a way that a
maximum number of orchids was contained within it.
All ¯owering plants within the plot were sampled, and
allozyme analysis of 16 enzyme systems was performed,
yielding 22 putative loci. Of these 22 loci, only the ®ve
most polymorphic loci were used for the subsequent
analysis: Mr, Pgm, Mdh-1, Got-3 and Pgi-2 (Peakall &
Beattie, 1996). Table 2 shows the allele frequencies of
the loci, listed in order of decreasing heterozygosity
(He). Because our multilocus genetic distance is not
currently programmed to deal with missing genotypes,
the ®nal data set used for this paper consists of only the
384 plants for which the genotypes were known for all
loci. Thus, the allele frequencies reported here di�er
slightly from those published in Peakall & Beattie
(1996). Figure 3 shows the distribution of the 384 plants
within the 20 ´ 40 m plot.

Microgeographical distance classes of 1 m were used
in all analyses, so that the ®rst distance class included all
distances in the (0,1) interval, (1,2) interval, and so on.
Tests of signi®cance were computed for each distance
class by comparing the observed value of r�h�G with those
obtained from 999 spatial permutations of the 384
sampled plants. The observed data were added as the
1000th permutation, on the null premise that the actual
data were genetically random with respect to spatial
position. The 1000 sets of pseudocorrelations were then
sorted, and a 95% con®dence interval was constructed
from the 975th value and 25th value, respectively. We
assessed signi®cance of a single correlation with the two-
tailed t2h-criterion, as computed from eqn (16), and that
of the correlogram as a whole with the two-tailed T2-
criterion, eqn (19). We would remind the reader at this
juncture that if we wished to test all of these separate th

2

criteria, as though they were independent, a Bonferroni
correction would be in order, but because our preference
is for a single test of the total correlogram, via T2 (see
below), we will ignore that nuance here.
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Single-allele vs. multiallele treatment

Classical spatial autocorrelation analysis of genetic
frequencies is executed one allele at a time, and our
treatment is multiallelic. There is nothing to prevent us,
however, from examining each allele separately, and we
illustrate with the Mr locus. Figure 4 shows the
correlograms for each of the Mr alleles, for a compar-
ison with the correlogram for a multiallelic treatment of
the locus. Mr2 showed the strongest spatial structure,
with r(1) � 0.175, and with r(h) remaining signi®cantly
positive out to 7 m. Mr1 shows the same trend, and Mr4

shows a similar (but weaker) trend. Interestingly, no
signi®cant spatial structure was detected for Mr3,
although it occurred at higher frequencies than Mr4

(Table 2). In general, we are interested in the demo-
graphic (propagule ¯ow) processes causing autocorrela-
tion. For those purposes, individual alleles are best
viewed as replication, and their di�erences are best
viewed as the stochastic consequences of random genetic
sampling of alleles, scattered across a spatial landscape.
The multiallele treatment shows the essential pattern of
spatial genetic a�nity, allows for the correlations among
alleles, extracts all the information, and (by virtue

of averaging across these discrete genetic variables)
`smoothes out the bumps' in the correlogram. The
variation among alleles (the `noise') is reduced and the
pattern of genetic a�nity (the `signal') is clear.

Single-locus vs. multilocus analysis

We show a series of separate, unweighted correlograms
for each locus and one for the multilocus treatment in
Fig. 5.All ®ve loci showedpositive values of r(h) in the ®rst
three to seven distance classes, and (with the exception of
Pgi-2) signi®cant spatial structure was apparent for the
shortest distance classes, as shownby the values of the r(h)-
values that exceeded the upper 97.5% con®dence limits.
The most striking result was that for Mr, with r(h)

remaining signi®cantly positive out to 7 m (i.e. seven
steps, or seven `lags'). Oscillation of the correlogram
between positive and negative values is apparent for Mr,
beyond 7 m, and to a lesser extent for Got-3 as well,
consistent with a pattern of strongmicrospatial structure.
The multilocus correlogram shows a similar pattern to
that for Mr, but with a somewhat smoother curve. The
point atwhich the curve ®rst crosses thex-axis provides an
estimate of patch size (Sokal &Wartenberg, 1983), which

Table 2 Allele frequencies and expected heterozygosities (gene diversities) within the plot of Caladenia tentaculata for the
®ve polymorphic allozyme loci

Allele

Genetic locus Number of alleles 1 2 3 4
Expected

heterozygosity

Mr 4 0.283 0.441 0.185 0.090 0.683
Pgm 4 0.067 0.706 0.069 0.158 0.467
Mdh-1 3 0.208 0.709 0.084 ± 0.447
Got-3 2 0.816 0.184 ± ± 0.300
Pgi-2 4 0.021 0.017 0.946 0.016 0.103

Fig. 3 Distribution of 384 Caladenia tent-

aculata plants sampled within a
20 m ´ 40 m plot.
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is between 2 and 7 m. The overall departure from the null
hypothesis of no spatial genetic clustering is resoundingly
rejected for the multilocus treatment.

With the exception of Got-3, the strength of autocor-
relation decreased with decreasing heterozygosity
(cf. Table 2), ranging from high in Mr (He � 0.68) to

low and not statistically di�erent from zero in Pgi-2
(He � 0.10), showing that the strength of the spatial
signal increases with the level of polymorphism, rather
than the number of alleles per se. Although Pgi-2
exhibited four alleles, the most common had a frequency
close to 0.95, our arbitrary criterion for exclusion of a

Fig. 4 Unweighted correlograms (solid lines) for each of the Mr alleles and the corresponding multiallelic (single-locus)
correlogram, with 95% null hypothesis con®dence regions indicated by dotted lines; probabilities of total correlogram test criterion
t2 (for individual alleles) or T2 (for the full locus) are shown in the top right corner.

Fig. 5 Unweighted correlograms (solid lines) for each locus separately, and the corresponding multilocus correlogram, with 95%

null hypothesis con®dence regions indicated by dotted lines; probabilities of total correlogram T2 are shown in the top right corner.
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locus from analytical consideration (Table 2). None of
the individual alleles showed any pattern for this locus
(not shown). There is little to be gained by attempting to
detect spatial pattern for a locus that shows almost no
variation!

Weighted vs. unweighted analysis

One possible reason for the absence of autocorrelation
for essentially invariant loci is that there are few useful
comparisons in the data set, so that even if strong
spatial structure were to exist, it would be di�cult to
detect. One possible solution to this problem is to
weight the pairwise genetic distances inversely by allele
frequency, as described in the Methods section. We
evaluated this option by using the codominant weight-
ing scheme in eqn (5). The analytical results of inverse
frequency weighting are shown in Fig. 6. Empirically,
weighting had little e�ect on the outcome, except for
Mdh-1 (compare Mdh-1 in Figs 5 and 6). For Mdh-1,
the weighted analysis indicated stronger autocorrela-
tion than was evident from the unweighted analysis,
with r(1) substantially above the 97.5% con®dence
interval and r(h) remaining high and mostly signi®cant
out to 12 m. The weighted results for Mdh-1 rein-
forced the ®nding of strong and signi®cant spatial
autocorrelation for the other loci. Nevertheless, the
overall interpretation from the weighted analysis is
identical to that from the unweighted analysis. With
the multilocus approach, we have the advantages of

considerable averaging. Weighting creates no particu-
lar problems, but it does not seem to o�er much
additional resolution.

Extensions and generalizations

Other types of genetic markers

Although our genetic distance metric in Table 1, and
its weighted analogue, eqn (5), are designed speci®cal-
ly for codominant diploid allozyme or SSR loci, there
is nothing that restricts us to such markers. With a
proper distance metric, we can examine any type of
genetic marker available. Elsewhere, we (Hu� et al.,
1993) have shown how to compute genetic distances
for dominant/recessive markers, such as are generated
by RAPD (Welsh & McClelland, 1990; Williams et
al., 1990) and AFLP (Vos et al., 1995) methods. Both
RAPDs and AFLPs can be used in any species,
without DNA sequence knowledge. By virtue of the
essentially unlimited number of primer combinations
available, both RAPDs (Peakall et al., 1995) and
AFLPs represent more variable assay batteries than
allozymes. With band presence scored as `1' and its
absence as `0', the genetic distance between two
individuals is a simple tally of the `1' vs. `0' (di�erent
bands) tally for those individuals. Unequal weighting
for the di�erent loci is easy to add if desired. Given a
proper distance metric, of course, everything else is
the same.

Fig. 6 Weighted correlograms (solid lines) for each locus separately, and the corresponding multilocus correlogram, with 95% null

hypothesis con®dence regions indicated by dotted lines; probabilities of total correlogram T2 are shown in the top right corner.
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Relationship to competing methodological
alternatives

The distance-based autocorrelation methods described
here are related to innovations by earlier workers, and a
few words are in order to put this current e�ort into
broader perspective. Sokal et al. (1986) adapted a
distance-based version of autocorrelation analysis. More
recently, Sokal (see Burgman & Williams, 1995) has
formalized that treatment and labelled the outcome a
`Mantel Correlogram', which is basically a comparison
of the genetic distance matrix, D, with a matrix of
counter-variables, patterned after X(h). The method is
very similar to that described here, based on a correla-
tional coe�cient, but uses D and X, rather than C and X.

Bertorelli & Barbujani (1995) have introduced dis-
tance-based versions of both Moran's I- and Geary's
c-coe�cients, labelled AIDA (autocorrelation indices
for DNA analysis) coe�cients, for the case of linked
haplotypes, using either the phenetic or phyletic metrics
that we introduced elsewhere (Exco�er et al., 1992).
Barring a di�erence in denominator, their treatment is a
binary haploid analogue of the multistate diploid
treatment introduced here.

The patterns of spatial structure in C. tentaculata
revealed by our new method are qualitatively similar to
those in Peakall & Beattie (1996), whose multilocus
treatment followed a technique developed by J. Nason
(see Loiselle et al., 1995), based on an estimate of
Wright's relatedness coe�cient q. The estimated value,
denoted rij, but de®ned di�erently from our eqn (15), is
a frequency-weighted average over all alleles and loci.
The di�erence here is that we have allowed for the
covariances between alleles, which follow from the fact
that the allele frequencies at any one locus must sum to
unity. Epperson (1995c) has developed a `joint count'
distance, a frequency-weighted measure that reduces
each locus to 2-allele form. Each of these methods
represents a laudable attempt to allow for inherent
information di�erences that arise with alleles of di�erent
frequencies. Our treatment, embodied in eqns (3)±(5), is
a more general codominant weighting scheme. Ana-
logues for dominant/recessive loci, as well as for
haplotypic marker sets, are easily constructed and fairly
obvious. As mentioned earlier, given the choice of
distance metric, everything else stays the same.

Beyond technical particulars, we have introduced a
generic multivariate method for spatial autocorrelation
analysis of genetic data on individuals, requiring only a
proper distance metric (and perhaps a weighting
scheme). This adds a method for spatial analysis to the
battery of tests that can be accessed routinely from the
interindividual genetic distance matrix, joining such
standard tools as AMOVAAMOVA (Exco�er et al., 1992; Hu�

et al., 1993; Peakall et al., 1995) and Matrix Correlation
Analysis (Mantel, 1967; Sneath & Sokal, 1973; Smouse
et al., 1986; Smouse & Long, 1992). The primary value
of generic methods is that they can be used on di�erent
sorts of data, a feature that will increase in importance
as new genetic methodologies are added to our assay
battery. With a truly multivariate approach, we have the
additional advantages of averaging over stochastically
varying systems. For most purposes, we do not really
need a separate test for every allele, or even a separate
test for each locus. What we need is one test that
addresses the question: `Are genotypes in close physical
proximity any more similar than those with greater
physical separation?'. A multivariate approach provides
that, both in the form of the vector RG, and its
associated multivariate test criterion, T 2

G.
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