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ABSTRACT

Aim

 

Spatial autocorrelation in ecological data can inflate
Type I errors in statistical analyses. There has also been a
recent claim that spatial autocorrelation generates ‘red
herrings’, such that virtually all past analyses are flawed. We
consider the origins of this phenomenon, the implications of
spatial autocorrelation for macro-scale patterns of species
diversity and set out a clarification of the statistical problems
generated by its presence.

 

Location

 

To illustrate the issues involved, we analyse the
species richness of the birds of western/central Europe, north
Africa and the Middle East.

 

Methods

 

Spatial correlograms for richness and five environ-
mental variables were generated using Moran’s I coefficients.
Multiple regression, using both ordinary least-squares (OLS)
and generalized least squares (GLS) assuming a spatial struc-
ture in the residuals, were used to identify the strongest
predictors of richness. Autocorrelation analyses of the residuals
obtained after stepwise OLS regression were undertaken, and
the ranks of variables in the full OLS and GLS models were
compared.

 

Results

 

Bird richness is characterized by a quadratic north–
south gradient. Spatial correlograms usually had positive
autocorrelation up to 

 

c

 

. 1600 km. Including the environmen-
tal variables successively in the OLS model reduced spatial
autocorrelation in the residuals to non-detectable levels,
indicating that the variables explained all spatial structure in
the data. In principle, if residuals are not autocorrelated then
OLS is a special case of GLS. However, our comparison
between OLS and GLS models including all environmental
variables revealed that GLS de-emphasized predictors with
strong autocorrelation and long-distance clinal structures,
giving more importance to variables acting at smaller
geographical scales.

 

Conclusion

 

Although spatial autocorrelation should always
be investigated, it does not necessarily generate bias. Rather,
it can be a useful tool to investigate mechanisms operating on
richness at different spatial scales. Claims that analyses that
do not take into account spatial autocorrelation are flawed
are without foundation.

 

Key words

 

birds, generalized least squares, latitudinal gradients,
multiple regression, Palearctic, spatial autocorrelation, species
richness.

 

INTRODUCTION

 

The latitudinal gradient in species richness has been known
for almost 200 years (von Humboldt, 1808). Over the years,
many hypotheses have been developed to explain this pattern.
Many are redundant, vague or untestable, and some are
simply not supported by empirical evidence. Consequently, the

focus is now on a much reduced subset of hypotheses (Currie,
1991; O’Brien, 1993, 1998; Rosenzweig, 1995; Hawkins &
Porter 2001; Rahbek & Graves, 2001).

Tests of mechanisms driving species diversity are usually
performed using multiple regression and related statistical
approaches (e.g. path analysis), in which species richness is
regressed against sets of environmental variables, sometimes
at different spatial scales (see Badgley & Fox, 2000; Rahbek
& Graves, 2001; for recent examples). However, as is becom-
ing widely appreciated by ecologists, patterns of spatial
autocorrelation in data can create false positive results in
the analyses. Autocorrelation is the lack of independence
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between pairs of observations at given distances in time or
space and is found commonly in ecological data (Legendre,
1993). Recent papers have discussed the importance of
measuring spatial autocorrelation when evaluating problems
in geographical ecology, including latitudinal gradients in
species richness (Badgley & Fox, 2000; Jetz & Rahbek, 2001;
Rahbek & Graves, 2001), the relationship between local and
regional richness (Bini 

 

et al

 

., 2000; Fox 

 

et al

 

., 2000), spatial
patterns in community structure (Leduc 

 

et al

 

., 1992) and
spatial synchrony in population dynamics (Koenig & Knops,
1998; Koenig, 1998, 1999). The problem is also potentially
important in metapopulation studies and analyses of species–
area relationships.

When testing statistical hypotheses using standard methods
(e.g. 

 

anova

 

, correlation and regression), the standard errors
are usually underestimated when positive autocorrelation
is present and, consequently, Type I errors may be strongly
inflated (Legendre, 1993). However, Lennon (2000) recently
argued that, beyond difficulties in hypothesis testing due
to inflated Type I errors, there would also be a systematic
bias toward particular kinds of mechanisms associated with
variables that have greater spatial autocorrelation. This is
potentially a much more serious issue, and we will return to
this later in this paper.

Our goal is to discuss the implications of spatial autocorre-
lation in geographical ecology, especially when using multiple
regression models to choose between alternative mechanisms
driving macro-scale patterns of species richness. We then
apply spatial analysis to evaluate the role of climate in driving
richness gradients, using western Palearctic birds as an
example. Finally, we compare results from standard multiple
regression analyses and a spatial generalized least squares
approach that incorporates autocorrelation in the residuals to
illustrate that changes in regression coefficients cannot be
considered a ‘red herring’, as argued by Lennon (2000), but
simply reflect the well-known scale-dependence of explana-
tions for diversity patterns.

 

THEORETICAL BACKGROUND

Assessing spatial autocorrelation

 

Spatial autocorrelation measures the similarity between
samples for a given variable as a function of spatial distance
(Sokal & Oden, 1978a,b; Griffith, 1987; Legendre, 1993;
Rossi & Quénéhervé, 1998). For quantitative or continuous
variables, such as species richness, the Moran’s 

 

I

 

 coefficient is
the most commonly used coefficient in univariate autocorre-
lation analyses and is given as:

where 

 

n

 

 is the number of samples (quadrats), 

 

y

 

i

 

 and 

 

y

 

j

 

 are the
values of the species richness in quadrats 

 

i

 

 and 

 

j

 

, 

 

Y

 

 is the average
of 

 

y

 

 and 

 

w

 

ij

 

 is an element of the matrix 

 

W

 

. In this matrix, 

 

w

 

ij

 

 = 1
if the pair 

 

i

 

,

 

 j

 

 of quadrats is within a given distance class inter-
val (indicating quadrats that are ‘connected’ in this class), and

 

w

 

ij

 

 = 0 otherwise. 

 

S

 

 indicates the number of entries (connec-
tions) in the 

 

W

 

 matrix. The value expected under the null
hypothesis of the absence of spatial autocorrelation is 

 

−

 

1/(

 

n 

 

− 

 

1).
Detailed computations of the standard error of this coefficient
are given in Griffith (1987) and Legendre & Legendre (1998).

Moran’s 

 

I

 

 usually varies between 

 

−

 

1.0 and 1.0 for maxi-
mum negative and positive autocorrelation, respectively.
Non-zero values of Moran’s 

 

I

 

 indicate that richness values in
quadrats connected at a given geographical distance are more
similar (positive autocorrelation) or less similar (negative
autocorrelation) than expected for randomly associated pairs
of quadrats. The geographical distances can be partitioned
into discrete classes, creating then successive 

 

W

 

 matrices and
allowing computation of different Moran’s 

 

I

 

-values for the
same variable. This allows one to evaluate the behaviour of
autocorrelation as a function of spatial distance, in a graph
called a spatial correlogram, that furnishes a descriptor of
the spatial pattern in the data. In this case, the correlogram as
a whole can be considered significant at a given significance
level 

 

α

 

 if at least one of its coefficients is significant at 

 

α

 

/

 

k

 

,
where 

 

k

 

 is the number of distance classes used (Bonferroni
criterion — Oden, 1984).

The number and definition of the distance classes to be
used in the correlograms is arbitrary, but a general metho-
dological criterion is to try to maximize the similarity in the

 

S

 

-values (number of connections) for the different Moran’s

 

I

 

 coefficients, so that they are more comparable. The other
possible solution is to use constant intervals, but in this case
some of the Moran’s 

 

I

 

 coefficients in the correlograms may be
based on a much smaller number of connections, and this can
sometimes disturb the interpretation of the entire correlo-
gram (see van Rensburg 

 

et al

 

., 2002). The arbitrariness in the
number of distance classes is not important in most cases,
because the purpose of the analysis is to describe a continuous
spatial process.

Three basic correlogram profiles are usually found in
ecological data. The first is obtained when there is positive
autocorrelation in short distance classes, coupled with negative
spatial autocorrelation at large distance classes. In this case,
the correlogram profile can be interpreted as a linear gradient
at macro-scales. A second common type occurs when only
small distance autocorrelation is found, indicating that
spatial variation is structured in patches. In this case, the
distance up to which spatial autocorrelation is observed can be
interpreted as the average patch size in the variable (see Diniz-
Filho & Telles, 2002). Thirdly, if no Moran’s 

 

I

 

 coefficients are
significant, there is no spatial pattern in the data. Of course,
other correlogram profiles are possible (Legendre & Fortin,
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1989; Rossi & Quénéhervé, 1998). For example, clinal
patterns can reverse at large geographical distances.

 

Ecological interpretations and implications: the scale 
dependence of species richness–environmental 
relationships

 

For species richness measured in a grid system or in latitud-
inal bands, positive autocorrelation across short distances can
originate in two ways. First, it can be a simple consequence
of geographical range extension beyond the limits of a single
grid cell, so that nearby cells are similar in species richness
because they share most of the same species (i.e. low species
turnover). Alternatively, the adjacent cells could be similar
because the environmental factors that drive diversity are also
spatially autocorrelated, but adjacent cells do not necessarily
have the same species composition (i.e. high turnover among
adjacent cells). Thus, patterns of spatial autocorrelation in
species richness at small scales are linked strongly with the
statistical distribution of the geographical range sizes in rela-
tion to grid cell size. For example, if most of the species have
small geographical ranges (i.e. smaller than the size of a single
cell), then similarity among adjacent cells must be a function
of similarity of environments. In practice, the two causes of
spatial pattern are expected to be found simultaneously in
most datasets, and both appear as significant correlograms.
However, as we will discuss below, they have completely
different ecological and statistical implications.

For simplicity, let us assume that a single environmental
factor is driving species richness. In the case of low turnover
(large geographical range sizes relative to cell sizes), adjacent
cells are pseudo-replicated units in space (

 

sensu

 

 Hurlbert,
1984) and correlation or regression analyses between species
richness and this environmental factor should be, in principle,
tested with a reduced number of degrees of freedom. This
is necessary because the adjacent cells do not represent
independent realizations of the same ecological process, i.e.
response of the species richness to variation in the environ-
mental factor. This is equivalent to saying that only more
distant cells furnish independent information about the
relationship between richness and the driving environmental
factor.

More importantly, because this environmental factor varies
continuously throughout the geographical space and adjacent
cells have very similar species compositions (because geo-
graphical ranges of most species extend beyond the cell size),
then clearly it cannot explain variation in richness at these
very small scales. So, when regressing species richness
patterns that are generated under this process against this
environmental factor, a positive autocorrelation is expected in
the residuals of the fitted model. In contrast, if similar species
richness even among adjacent cells is caused by similar
responses of different groups of species to the environmental

factor studied, this indicates that even these adjacent cells
are independent realizations of the same ecological processes
of interest, and so the environmental factor does in fact
explain species richness between adjacent cells, and no auto-
correlation is expected in the residuals after fitting the
environmental model. This latter process is the environmental
control model recently simulated by Legendre 

 

et al

 

. (2002).
We emphasize that it would be difficult to distinguish

between the causes of spatial autocorrelation based only on
an analysis of the original variable (species richness), even if
the statistical distribution of geographical range sizes is
known. Positive autocorrelation in the residuals at small
distances can also be caused by not taking into account another
environmental factor that would explain small-scale variation
in species richness if it was included in the model. If different
environmental factors act at different spatial scales (see Willis
& Whittaker, 2002), the inclusion of the relevant environ-
mental factors acting at each scale in the regression model
should be sufficient to completely remove autocorrelation
from the residuals at all scales. This is a spatially hierarchical
version of Legendre 

 

et al

 

.’s (2002) environmental control
model.

Thus, this interactive modelling approach, i.e. including
environmental variables to explain and evaluate the spatial
autocorrelation in the residuals, allows us to treat variation in
species richness at all spatial scales and, at the same time, to
identify any statistical biases caused by pseudoreplication at
smaller distances. By this reasoning, if no spatial autocorrela-
tion is found in the residuals after including environmental
factors in the multiple regression model, then there is no
statistical bias in the overall regression analysis. Note that
this is true independently of the patterns of autocorrelation
in the original variables (for both species richness and the
environmental factors).

However, as stressed frequently in the statistical literature
(Philippi, 1993), caution is always needed when interpreting
the results of any multiple regression. Even if the residuals
from the model are not autocorrelated, there may still be
potential problems related to multicollinearity among pre-
dictor variables, confounding correlation and cause-and-effect,
and biasing model parameter estimation. In fact, macro-scale
analyses are always correlative and can only suggest potential
explanatory factors; they are not strict inferential tests of
causality (Levin, 1992). For example, if a given environmental
factor is correlated strongly with species richness across all
scales (i.e. there is no autocorrelation in the residuals), this
does not ensure that the actual causal factor explaining rich-
ness has been found. It is possible that the environmental
factor is simply correlated with the real causal environmental
factor. It must also be remembered that including many
highly correlated environmental factors in a multiple regres-
sion model hoping to stumble across the ultimate causal
effects will cause instability in the estimation of the partial
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regression coefficients. In this case, a plausible solution would
be to include in the model only variables associated with
theoretical models predicting species richness. Another approach
is to use multivariate techniques (such as principal com-
ponents analyses) to reduce the dimensionality and, conse-
quently, the collinearity among the predictors (Vetaas, 1997;
Badgley & Fox, 2000). The main point is that these problems
associated with the interpretation of multiple regression
models are inherent to the technique itself and have nothing
to do with spatial autocorrelation.

A slightly different problem with observational data is that
it may be difficult to know if the environmental factor indeed
drives species richness throughout the geographical space or
if the two variables (species richness and the environmental
factor) are driven independently by an unique, unmeasured
spatially patterned factor created, for example, by a dynamic
spatial process (e.g. the diffusion of both organisms and envir-
onmental components by vectorial processes driven by water
flow in aquatic ecosystems — Legendre & Troussellier, 1988;
Velho 

 

et al

 

., 2001). In this case, ecological interpretations for
the spatial correlation could be completely spurious, because
there is a strong possibility of no causal link between environ-
ment and richness. Thus, macro-scale spatial patterns should
be controlled for, or taken into account, since explanation for
the correlation between the variables occurs, in fact, at a local
scale. Methods such as partial regression and trend surfaces
analyses, spatial generalized least-squares (GLS) or auto-
regressive models (Legendre & Legendre, 1998) can then be
used and will shift the explanation from macro to local scales
(see below).

When modelling species richness as a function of multiple
environmental factors, different combinations of the prob-
lems discussed above may appear in a single analysis. If
species richness is strongly patterned in space (i.e. possess a
strong pattern of spatial autocorrelation), then the relative
importance of the environmental factors in the multiple
regression (relative magnitude of partial regression coeffi-
cients) could, in principle, be related to the magnitude of
spatial autocorrelation in these environmental factors. This
could occur because some environmental factors, such as
annual temperature (see ‘application’ below) and richness,
are usually correlated mainly when dealing with macro-
spatial scales (not at local scales). Standard errors of these regres-
sion coefficients could be underestimated and, consequently,
there would be an increase in the significance level of the 

 

t

 

-
values associated with partial regression coefficients of these
variables, as discussed previously. Therefore, their relative
importance in the multiple regression model would be over-
estimated. This is what Lennon (2000), using a terminology
derived from time-series analyses, refers to as a ‘red shift’
toward autocorrelated environmental effects, creating a ‘red
herring’ in the interpretation of partial regression coefficients.
He pointed out that ‘… the environmental factors selected by

many studies as explanations for ecological patterns are “red
shifted” relative to the set of potential explanatory factors:
environmental factors with less spatial autocorrelation and
hence bluer spectra are much more likely to be rejected’.
Thus, on one hand, some environmental factors have only
long-distance spatial patterns and can generate spatially auto-
correlated residuals at short scales but, at the same time,
statistical testing should be based on a reduced number of
independent points in the grid (i.e. there is a much lower
statistical power — see Dutilleul, 1993). On the other hand,
other variables that affect species richness only at the local
level will explain only short distance variation, and so long-
distance structures will not be taken into account (thus creat-
ing spatial autocorrelation in the residuals at macro-scales).

It is difficult to predict how multiple regression deals with
this combination of different spatially structured effects,
because coefficients (and standard errors) are all partials.
Lennon’s (2000) simulations, although demonstrating this
‘red shift’, were based on independently generated predictors,
not dealing with the complications created by strong multi-
collinearity of real environmental data.

Detection of the ‘red shift’ proposed by Lennon (2000)
could be based on bias in the standard errors of partial regres-
sion coefficients (indicating a relative bias in the Type I errors
of the different environmental factors), and not on changes in
the standardized partial coefficients (indicating only a scale
shift), after taken into account the spatial structure in data.
As will be demonstrated below, if there is no autocorrelation
in the residuals and no large differential underestimation of
standard errors (after comparing spatial and nonspatial
regression models), Lennon’s (2000) ‘red shift’ reflects only
that highly autocorrelated climatic factors may indeed be
more important at the overall spatial scale of the study.

Controlling for macro-scale autocorrelation, as suggested
by Lennon (2000) and others (see Selmi & Boulinier, 2001),
is not necessarily the solution to the problem, because this
will shift the explanation towards factors that drive species
richness at smaller spatial scales. This should be performed
if one has reason to believe that macro-scale correlations
between environmental factors and species richness are
spurious, and that other ecological processes, acting at small
spatial scales, are the ultimate factors driving species richness
(such as in the diffusion example mentioned previously).
However, our present understanding of the mechanisms driving
species richness in terrestrial ecosystems clearly indicates that
different environmental factors are involved hierarchically
as explanations at different spatial scales (Whittaker 

 

et al

 

.,
2001; Willis & Whittaker, 2002), and no passive diffusion
process could explain the high correlations between climate
and species richness.

We now illustrate the ideas developed above to understand
the factors influencing species richness patterns of western
Palearctic birds. This represents part of a larger dataset being
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used to understand the latitudinal diversity gradient for
terrestrial birds (B.A. Hawkins, E.E. Porter and J.A. Diniz-
Filho, unpublished).

 

APPLICATION: ENVIRONMENTAL 
GRADIENTS AND SPECIES DIVERSITY IN 
WESTERN PALEARCTIC BIRDS

Data

 

Spatial variation in bird species richness was estimated using
range maps for native breeding species in the western Palearctic
(Europe, North Africa and the Middle East (Cramp &
Simmons, 1977, 1980, 1983; Flint 

 

et al

 

., 1984; Cramp, 1985,
1988, 1992; Cramp & Perrins, 1993, 1994a,b) (Fig. 1). The
region was divided into equal area cells 

 

c

 

. 220 km 

 

×

 

 220 km
(2

 

°

 

 

 

×

 

 2

 

°

 

 at the equator), except for coastal cells, in which case
adjacent cells were combined to obtain areas approximately
equal in size to inland cells. This grid represents an intermedi-
ate scale of resolution compared to those generally used in
very macro-scale studies of diversity gradients (Currie &
Paquin, 1987; Currie, 1991; O’Brien 

 

et al

 

., 1998; Rahbek
& Graves, 2001). A species was considered present in a
cell if any part of its range overlapped the cell, and only
species feeding at least partially on terrestrial food were
included.

Five environmental variables that are known to be associ-
ated with regional-scale diversity gradients (see Turner 

 

et al

 

.,
1987; Currie, 1991; Kerr 

 

et al

 

., 1998; Kerr & Packer, 1999;
Lennon 

 

et al

 

., 2000; Rahbek & Graves, 2001) were compiled
from various sources: (1) annual potential evapotranspiration
(PET); (2) annual actual evapotranspiration (AET); (3) mean
daily temperature in the coldest month (MINT); (4) range in
elevation (RELEV); and (5) annual mean temperature
(ANNT). PET (Priestley–Taylor formula) and AET (Thornth-
waite’s) were obtained from http://www.grid.unep.ch/data/
grid (see also Ahn & Tateishi (1994) and Tateishi & Ahn
(1996) for details of how these variables were modelled),
while MINT and ANNT were obtained from http://
www.clarklabs.org/14LINKS/14links.htm. RELEV was
measured as the difference between maximum and minimum
elevations, estimated to the nearest 50 m, in maps from
the Polish Army Topographical Survey, 1968). The environ-
mental data were extracted by overlaying the grid system
over maps showing the distributions of the variables,
including both paper and digitized maps, depending on the
data source.

 

Data analysis

 

We initially estimated the spatial autocorrelation in the orig-
inal data, including both the response variable (species
richness) and the five environmental factors (explanatory

variables). Spatial correlograms were constructed using
Moran’s 

 

I

 

 coefficients at 10 distance classes, using 

 

saap

 

 4.3
(Wartenberg, 1989), as described above. Upper limits for
these distance classes were 660, 1100, 1540 1760, 1980,
2420, 2860, 3080, 3740 and 5280 km.

We initially used a set of ordinary least-squares multiple
regressions (OLS) to identify how spatial autocorrelation in
the residuals was removed successively from the species rich-
ness data after the addition of each environmental variable.
That is, we evaluated scale-specific effects of each environ-
mental variable on spatial variation in species richness.
Because the spatial autocorrelation in the data invalidated
automatic procedures for variable entry into the models, we
used a manual iterative forward-stepwise procedure instead
(Philippi, 1993). At each step, we included each variable
(as well as its quadratic term if the relationship was non-
linear) sequentially, based on the improvement in the coeffi-
cient of determination in relation to the previous regression
model.

We then compared the full OLS multiple regression model
(using all explanatory variables and the relevant quadratic
terms) with a spatial generalized least squares (GLS) model
that incorporates spatial structure in the error term of the
regression model (Selmi & Boulinier, 2001). Different models
of spatial structure (assuming spherical, exponential, Gaus-
sian structure — see Legendre & Legendre, 1998) were tested,
and the best fitting model was defined using the Akaike infor-
mation criterion (Littell 

 

et al

 

., 1996; Hilborn & Mangel,
1997; Selmi & Boulinier, 2001). Parameters were estimated
under restricted maximum likelihood. All these GLS proce-
dures were implemented using the 

 

proc mixed

 

 routine in
SAS (Littell 

 

et al

 

., 1996).
We ranked the variables in each full regression model (OLS

and GLS) based on their relative importance, as indicated by

 

t

 

-values for each partial regression coefficient, and associated
the change in the ranks (difference in ranks between OLS
and GLS) with the magnitude of spatial autocorrelation in
each variable. Using other forms of evaluating the relative
importance of variables in each full model (such as
comparing 

 

R

 

2

 

 after removing the target variable with the 

 

R

 

2

 

of the full model) produced exactly the same variable rank
order.

 

RESULTS

 

Bird species richness is patterned in space (Fig. 1b), with a
north–south gradient that extends throughout Europe. A
reversion in the gradient occurs in North Africa and the
Middle East, such that a quadratic pattern appears for the
entire Western Palearctic. Indeed, the spatial correlogram
for species richness (Fig. 2a) indicates that richness is
positively autocorrelated up to 

 

c

 

. 1600 km, followed by a
continuous decrease in Moran’s 

 

I

 

 coefficients up to 

 

c

 

.

http://www.grid.unep.ch/data/
http://
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3700 km, at which point there is a highly significant negative
autocorrelation coefficient. After this distance, autocorrela-
tion is no longer significant.

For the environmental variables, strong spatial structure in
the first distance class appears for AET, MINT and ANNT.

Moderate short-distance autocorrelation coefficients were
observed for RELEV and PET. MINT, ANNT and PET also
show clear spatial gradients, with short-distance positive auto-
correlation associated with strong negative autocorrelation
at the largest distance classes. For AET, on the other hand, a

Fig. 1 (a) Grid covering the western Paleartic data; and (b) interpolated patterns of species richness for the entire region. Interpolation was
performed using distance-weighted least-squares algorithm (DWLS).
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strong reversion in the gradient appears in the last distance
class, with a positive autocorrelation coefficient. RELEV
shows a more patchy spatial structure, with positive autocor-
relation in the distance classes up to around 1000 km,
followed by nonsignificant coefficients beyond this distance
(Fig. 2c).

The stepwise order of inclusion of the environmental vari-
ables in the OLS regression model based on the relative
improvement of the 

 

R

 

2

 

 was: annual temperature (ANNT),
annual actual evapotranspiration (AET), range in elevation
(RELEV), mean daily temperature in the coldest month
(MINT) and annual potential evapotranspiration (PET). The

first variable added to the model (ANNT plus its quadratic
term) explained 76.9% of the variance in species richness,
and the inclusion of all other variables improved the model to
a final 

 

R

 

2

 

 of 0.868 (

 

F

 

 = 154.6; 

 

P

 

 < 0.001).
After including these environmental variables successively

in the model, spatial autocorrelation in the residuals dis-
appears (Fig. 3). When introducing only ANNT and its
quadratic term, there was a strong reduction in spatial
autocorrelation in the residuals. The only remaining autocor-
relation occurred in the first distance class, and even at this
distance the autocorrelation was reduced from 0.66 (original
richness) to 0.19 (residuals). The overall correlogram, however,

Fig. 2 Spatial correlograms for (a) species richness, (b) AET (annual actual evapotranspiration), (c) RELEV (range in elevation), (d) ANNT
(annual mean temperature), (e) MINT (mean daily temperature in the coldest month) and (f) PET (annual potential evapotranspiration). All
correlograms are significant at P < 0.001 after Bonferroni correction.
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is still significant even applying Bonferroni correction.
This indicates that other variables are necessary to take fully
into account variability at smaller distances (< 700 km).
When AET was introduced in the model, there was an addi-
tional reduction in the Moran’s I in the first distance class,
from 0.19 to 0.07. In the residuals of the final full model
(with all environmental variables), no Moran’s I was larger
than 0.055, and the overall correlogram is not significant
(P = 0.735) according to the Bonferroni criterion (see Fig. 3).
These results are not affected by number and definition of
distance classes in the correlogram, and even at the
smallest possible distance class (equal to cell resolution
i.e. = 220 km), Moran’s I coefficient is not significant
(I = 0.038; P = 0.223).

We can now compare the OLS and GLS full models
(Table 1). The most important variable in the full OLS model
was AET, followed by the quadratic term of ANNT, by
RELEV and by MINT. Linear and quadratic coefficients of
PET and the quadratic coefficient of MINT were not signi-
ficant (Table 1). Note that, due to the multicollinearity
problems, the relative importance of the environmental
variables in the full model is not the same order of entry as in
the stepwise procedure previously described. For example,
PET is not significant in the full model because it has a high
colinearity with other macro-scale climatic variables.

The best-fitting GLS model (Akaike’s information criterion
equal to −821, in contrast with −858 in the OLS model)
incorporated an exponential spatial relationship in the residual

Fig. 3 Spatial correlograms for residual models, after including sequentially the following variables in the OLS regression model: (a) ANNT,
(b) AET, (c) RELEV, (d) MINT and (e) PET. Significance levels of the correlograms after a Bonferroni correction were, respectively, 0.0001,
0.001, 0.003, 0.011 and 0.735.
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covariance matrix. A conspicuous change in the relative
magnitude of regression coefficients was observed in the GLS
model, and RELEV becomes the variable with the highest t-
value, followed by AET. ANNT is still significant in the model
at P = 0.03, but all other variables and quadratic terms
become non-significant at the 5% level.

There is an association between the change in the relative
rank order of importance of environmental variables and
their degree of spatial autocorrelation, as measured by
Moran’s I coefficient in the first distance class (Fig. 4).
RELEV has a relatively low autocorrelation and showed a
great positive change in rank (i.e. gained importance in the
GLS model). On the other hand, MINT, ANNT and AET all

have high autocorrelation structure, and lost relative import-
ance in the GLS model.

DISCUSSION

Grid-based diversity datasets are almost always spatially
autocorrelated (Ruggiero, 1999; Rahbek & Graves, 2001;
Diniz-Filho et al., 2002; van Rensburg et al., 2002), as are
other diversity data obtained in natural or artificial sampling
units at finer spatial scales (Selmi & Boulinier, 2001).
However, some ecologists ignore the inferential problems (i.e.
inflated Type I errors) caused by spatial structure in their data
(Legendre, 1993). Recently, Lennon (2000) called attention to
the problems caused by spatial autocorrelation, focusing not
only on the well-known inflation of Type I errors, but also
arguing that spatial autocorrelation generates widespread
‘red herrings’ in the interpretation of ecological mechanisms
based on geographical data. He concluded that virtually all
geographical analyses had to be redone, taking into account
spatial autocorrelation.

Our results for western Palearctic birds show that Lennon
(2000) is ‘statistically’ correct, although his interpretation is
not necessarily ‘ecologically’ correct. Range in elevation
possesses a relatively low level of spatial structure (using
Lennon’s (2000) terminology, this variable is on the ‘blue’ side
of the spectrum) and is not very important in the OLS model,
in comparison with the other climatic variables that have
strong spatial autocorrelation patterns, such as AET, ANNT
and MINT. However, as will be shown below, we cannot
conclude that spatial autocorrelation has biased the result
against range in elevation. Rather, our analysis indicates that
the climatic variables, as we would expect a priori, are better
explanatory variables for bird richness at the macro-scale,
across the entire region.

It is important to ask what the real statistical problem with
the OLS model in our analyses is. According to Lennon
(2000), the ‘red-shift’ occurs because predictors with strong
autocorrelation would have underestimated standard errors
and, consequently, acquire more importance due to ‘arti-
ficially’ low Type I errors (see also Ver Hoef et al., 2001). In
our analyses, however, standard errors of GLS and OLS are
highly correlated (Spearman’s rank correlation coefficient =
0.98), and shifts in the importance of predictors are due
mainly to changes in partial regression coefficients them-
selves, not to an increase in standard errors creating reduced
t-values (see Table 1). In short, as there is no significant auto-
correlation in the residuals, there is nothing wrong with
the OLS model, and the analysis does not need to be redone or
‘corrected’ for spatial autocorrelation. Therefore, the climatic
variables have taken into account successfully all spatial
structure in the original data (i.e. species richness) and thus
we have strong support for the hierarchical version of the
environmental control model.

Table 1 Coefficients of the multiple regression (b ± SE) and
associated t-tests for bird species richness regressed against
environmental factors in the western Palearctic, according to
ordinary least-squares (OLS) and spatial generalized least squares
(GLS) models. In the GLS model, spatial structure was incorporated
into the model by defining the covariance between pairs of quadrats
as an exponential function of geographical distance

OLS GLS

Factor b ± SE t b ± SE t

MINT −1.574 ± 0.573 2.746** −0.452 ± 0.865 0.522
MINT2 −0.016 ± 0.041 0.390 0.007 ± 0.041 0.171
ANNT 2.822 ± 1.159 2.435* 2.290 ± 1.069 2.142*
ANNT2 −0.175 ± 0.049 3.542** −0.093 ± 0.050 1.863
RELEV 0.004 ± 0.001 3.240** 0.006 ± 0.001 4.843**
AET 0.130 ± 0.014 9.360** 0.065 ± 0.017 3.751**
PET 0.005 ± 0.016 0.344 −0.020 ± 0.012 1.719
PET2 0.000 ± 0.000 0.042 0.000 ± 0.000 1.434

* P < 0.05; ** P < 0.01.

Fig. 4 Relationship between Moran’s I in the first distance class and
the change in rank of importance of the environmental factors
between OLS and GLS regression models.
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We must also ask what was accomplished by using a GLS
model that takes into account spatial autocorrelation in resid-
uals, as suggested by Lennon (2000) and others (see Selmi &
Boulinier, 2001; Hawkins & Diniz-Filho, 2002). In principle,
if residuals are not autocorrelated, OLS becomes a special
case of GLS, and both methods should converge to the same
solution. However, in our analyses, there are small (although
not significant) autocorrelations in the residuals of the OLS
model and, probably, because of differential statistical power
between GLS and spatial correlograms, slight differences
between OLS and GLS appear and must be interpreted.

In principle, one explanation for the difference between
OLS and GLS could be the instability of solutions under
strong multicollinearity that occurs in environmental data, as
previously discussed, but we would like to explore an altern-
ative and more ecologically meaningful explanation for the
difference between the two models. We found that range in
elevation acquires a greater relative importance and becomes
the best predictor of species richness (although annual eva-
potranspiration is still the second most important predictor).
We advocate that the difference between the two approaches
is understandable in terms of spatial scale. In the OLS model,
the relationship is considered at the overall spatial scale under
study (i.e. the entire western Palearctic), and so variables with
strong spatial structure (i.e. climatic variables) should be
considered the main candidate predictors. Note that both species
richness and annual evapotranspiration (the most important
predictor in the full OLS model) show similar correlogram
profiles (Fig. 2), especially because of the increase in the
Moran’s I at the last distance class and, consequently, have
higher covariance at this spatial scale.

When spatial autocorrelation is taken into account in the
GLS model, the residuals are assumed to have an exponential
relationship in terms of spatial distance among quadrats.
Therefore, macro-scale effects were already incorporated into
the error term of the model, and consequently the variation
at finer scales becomes more important simply because of the
larger weight in the residual covariance matrix. This will
cause the increase in the relative magnitude of variables that
are better explanations for diversity at small spatial scales,
exactly as we would predict for range in elevation (Rahbek &
Graves, 2001; van Rensburg et al., 2002).

Once again, we note that GLS de-emphasizes predictors
with strong autocorrelation, such as long distance clines
(Ver Hoef et al., 2001) so, ecologically, it tends to give
more importance to mechanisms acting at local geographical
scales. If higher-order correlation between predictor and
response variables is created simply by long-distance diffusion
(generating two long-distance correlated spatial surfaces,
without a causal relationship at local scales), then the GLS
estimator is clearly a more adequate model. Indeed, this seems
to be the case with the simulation procedure developed by
Lennon (2000), in which spatial patterns were generated as a

fractal structure, self-similar at all scales and independent of
quadrat size or resolution. However, as we mentioned
previously and many recent papers support (Whittaker et al.,
2001; Willis & Whittaker, 2002), macro-scale effects of climate
on species richness are not artefacts, and no diffusion
processes can be invoked to explain the relationships.

It is important to stress that our interpretation does not
mean that spatial autocorrelation should be ignored. We are
just clarifying that the ‘red herrings’ in geographical ecology,
as argued by Lennon (2000), are really a question of deciding
at which spatial scale one is interested in explaining diversity.
Further, if residuals are still autocorrelated at small distance
classes after the regression models, Type I error may indeed be
inflated, because quadrats situated at short spatial distances
apart do not provide independent data points for testing long
distance effects. Mapping residuals of the OLS model could
be used to ascertain other spatially structured environmental
variables not accounted for (see Rahbek & Graves, 2001),
but if autocorrelation still persists, GLS and other spatial
models should be used.

A very simple strategy in this case would be to measure the
average patch diameter in the correlogram of the residuals
(i.e. the geographical distance at which autocorrelation
becomes nonsignificant) (Diniz-Filho & Telles, 2002; see
Bini et al., 2000 and Diniz-Filho et al., 2002; for a similar
approach) and define, based on the grid map, how many data
points can be found that are separated by this distance. Note
that we are not proposing a re-estimation of the model using
a few data points (a valid strategy, but one that loses much
information — Legendre, 1993; Lennon, 2000), only that
any statistical tests should use a more conservative number of
degrees of freedom. A similar and more complex strategy is to
define analytically the number of degrees of freedom based on
the spatial autocorrelation structure in the data, as proposed by
Clifford et al. (1989) and Dutilleul (1993) (see also Legendre
et al., 2002).

As Legendre (1993) pointed out, spatial autocorrelation
must become a new analytical paradigm in geographical ecol-
ogy, both because it allows us to understand spatial patterns,
and because it can help avoid some common pitfalls in multi-
ple regression analyses. The question of autocorrelation is not
new and the message is quite simple: spatial autocorrelation
in the residuals of multiple regression models must always be
checked. If no autocorrelation remains in the residuals of an
OLS model, interpreting a multiple regression is not affected
by autocorrelation in the original variables and the best
predictors usually will be those with macro-scale spatial
patterns. Taking into account or removing spatial patterns
created by macro-scale processes will shift the spatial scale of
the analysis and, obviously, the interpretation of ecological
mechanisms driving spatial variation in species richness. In
short, each approach should be interpreted with awareness of
spatial scale.
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