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Abstract Complex spatial dynamics are frequent in

invasive species; analyzing distribution patterns can

help to understand the mechanisms driving invasions.

We used different spatial regression techniques to

evaluate processes determining the invasion of the

red swamp crayfish Procambarus clarkii. We eval-

uated four a priori hypotheses on processes that may

determine crayfish invasion: landscape alteration,

connectivity, wetland suitability for abiotic and biotic

features. We assessed the distribution of P. clarkii in

119 waterbodies in a recently invaded area. We used

spatially explicit statistical techniques (spatial eigen-

vector mapping, generalized additive models, Bayes-

ian intrinsic conditional autoregressive models)

within an information-theoretic framework to assess

the support of hypotheses; we also analyzed the

pattern of spatial autocorrelation of data, model

residuals, and eigenvectors. We found strong agree-

ment between the results of spatial eigenvector

mapping and Bayesian autoregressive models. Pro-

cambarus clarkii was significantly associated with

the largest, permanent wetlands. Additive models

suggested also association with human-dominated

landscapes, but tended to overfit data. The results

indicate that abiotic wetlands features and landscape

alteration are major drivers of the species’ distribu-

tion. Species distribution data, residuals of ordinary

least squares regression, and spatial eigenvectors all

showed positive and significant spatial autocorrela-

tion at distances up to 2,500 m; this may be caused by

the dispersal ability of the species. Our analyses help

to understand the processes determining the invasion

and to identify the areas most at risk where screening

and early management efforts can be focused. The

comparison of multiple spatial techniques allows a

robust assessment of factors determining complex

distribution patterns.

Keywords A priori inference � Habitat selection �
Isolation � Landscape composition � Spatial

autocorrelation

Introduction

Understand the mechanisms determining the invasion

dynamics can allow us to identify areas where the

risk of establishment and invasion is highest, helping

to tackle the invasion at the earliest stages and

therefore increasing the effectiveness of management

(Hulme 2006). However, invasion dynamics are

determined by multiple processes embedded within

a complex spatial context (McIntire and Fajardo
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2009; Gallien et al. 2010); therefore, the identifica-

tion of ongoing mechanisms can be difficult. Spatial

autocorrelation (SAC) is pervasive in ecological data,

and arises when nearby localities have similar values

for a given parameter. The distribution of invasive

species is often affected by strong, positive SAC, as

presences in one locality are associated with presence

at neighbouring locations. This may occur because

areas close to introduction sites have a higher

probability of being colonized, determining a clus-

tered distribution (Albright et al. 2009), or because

some areas act as ‘‘sources’’ of individuals spreading

across the landscape. In these cases, a positive SAC is

determined by the dispersal processes occurring

during biological invasion (endogenous autocorrela-

tion). SAC can also arise when species distribution

is related to (exogenous) environmental features

(e.g., climate, landscape) which are in turn spa-

tially autocorrelated (exogenous autocorrelation)

(Chapman et al. 2009). SAC has been considered

for long as a ‘noise’ that need to be removed from the

data (Legendre 1993). However, recent developments

of spatial statistics allowed the incorporation of SAC

into models, showing that the analysis of autocorre-

lation can provide important information on ongoing

biological processes (McIntire and Fajardo 2009;

Beale et al. 2010).

Inland waters are highly impacted by invasive

species (Strayer 2010). Multiple mechanisms, involv-

ing both abiotic and biotic parameters, can determine

biological invasions: we considered four hypotheses

formulated to explain biological invasions in inland

waters (Table 1). (1) Connectivity hypothesis: large,

permanent wetlands or rivers can act as sources of

invasive populations, therefore invasion risk is highest

close to these large waterbodies (Cruz and Rebelo

2007; Rahel 2007). (2) Landscape alteration hypoth-

esis: increased environmental disturbance due to

human activities favours synanthropic species includ-

ing many invasive species; furthermore introductions

can be more frequent in human dominated areas.

Therefore, human alteration of landscape can increase

the risk of introduction and invasion (Ficetola et al.

2007; King and Tschinkel 2008; Leprieur et al. 2008;

Cutway and Ehrenfeld 2009). (3) Wetland abiotic

features hypothesis: abiotic features (e.g., size,

hydroperiod) can strongly affect aquatic species,

therefore hydrological and morphological features of

waterbodies can determine the likelihood of estab-

lishment and invasion (Cruz and Rebelo 2007). (4)

Wetland biotic features/vegetation hypothesis: biotic

features such as vegetation within and nearby wet-

lands is a key feature of waterbodies that can have

strong effects on animal communities (Van Buskirk

2005; Stohlgren et al. 2006), and therefore can be

important also for the establishment of invasive

species. Despite not being an exhaustive list of

processes that can determine biological invasions,

the available data suggest that these a priori general

hypotheses may be of primary importance for the

Table 1 A priori hypotheses on processes that may explain the distribution of P. clarkii, and environmental variables recorded to

test these hypotheses

Hypothesis Environmental variables PCA factors

1 Connectivity along hydrographic network/major

waterbodies

Isolation (m)a –

2 Landscape alteration Urban cover (%)b –

3 Wetland abiotic features Maximum depth (cm)a

Surface area (m2)a

Hydroperiod (see text)

Wetland

4 Wetland vegetation features Canopy cover (%)

Shoreline vegetation (%)

Sum of subemergent, emergent and floating

vegetation (%)

Surrounding grass (%)

Surrounding shrub (%)

Vegetation_1,

Vegetation_2

a The variable was transformed using natural logarithms
b The variable was arcsine square root transformed prior to analysis
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study species (see below). Climatic suitability is a

further factor that can be important for successful

invasions, but our analyses are performed at landscape

scale, where climatic heterogeneity is limited; avail-

able data suggest that the whole study area is

climatically suitable for the study species (Capinha

et al. 2011). Teasing apart the processes actually

driving invasions from distribution data can be

complex. Information theory, and recent develop-

ments of spatial statistics constitute a robust frame-

work to develop and test explicit hypotheses on the

mechanisms determining spatial patterns of invasive

species, and can therefore help to identify the

mechanisms driving species invasion (McIntire and

Fajardo 2009).

The red swamp crayfish Procambarus clarkii is

native of Eastern North America, but has been

introduced worldwide because of its economic and

alimentary value. It is considered among the most

important commercial species of crayfish, and is now

invasive in five continents (Huner 1994; Barbaresi and

Gherardi 2000). Multiple features determine the high

invasiveness of P. clarkii: it has great ecological

plasticity, tolerating a wide range of physical, chem-

ical, and biological conditions. Furthermore, P. clarkii

can produce, depending on female size, more than 700

eggs; complex mother-offspring relationships can

enhance offspring survival increasing the demo-

graphic growth of invasive populations (Gherardi

2006; Aquiloni and Gherardi 2008). Procambarus

clarkii can have multiple negative consequences on

native species, ecosystems and human health. It is a

polytrophic and opportunistic crayfish, feeding on

vegetal detritus but also on molluscs, insects, amphib-

ians, fish and macrophytes, and therefore causing

complex changes in food webs and leading to the

decline in the abundance and diversity of several

native species (Gherardi 2006; Souty-Grosset et al.

2006; Cruz et al. 2008; Ficetola et al. 2011).

Furthermore, P. clarkii can spread the crayfish plague

Aphanomyces astaci and outcompete native European

crayfishes, thereby causing their decline (Souty-Grosset

et al. 2006; Gherardi and Panov 2009). Procambarus

clarkii is also able to accumulate heavy metals,

pesticides and toxins of cyanobacteria transferring

them to its consumers, and can spread parasite

helminths of the genus Paragonimus, potentially

pathogenic for humans (Gherardi 2006; Gherardi

and Panov 2009). Moreover, P. clarkii can damage

agricultural areas such as rice plantations, by feeding

on young rice plants, and dams, canals, river and lakes

where with its burrowing activity may destabilize

banks (Barbaresi and Gherardi 2000; Souty-Grosset

et al. 2006; Gherardi and Panov 2009). Its excavation

activities also cause sediment resuspension and nutri-

ent release from the sediment to the water. Submerged

macrophytes are destroyed using chelipads in non-

consumptive actions. Therefore, P. clarkiis acts as an

ecosystem engineer which modifies the flow of

nutrients and alters multiple features of invaded

wetlands (Matsuzaki et al. 2009).

The eradication or control of large, invasive

populations of P. clarkii is challenging (Aquiloni

et al. 2009, 2010). The identification of major

processes determining the invasion of this species

can also help to identify strategies for its manage-

ment. This study analyzed the spatial distribution of

P. clarkii at the invasion front, to understand how

biotic and abiotic environmental features are related

to the spread of this species. We considered four

a priori hypotheses representing different biological

processes that can explain the invasion of P. clarkii

(Table 1). We analysed an area of Northern Italy

where P. clarkii has been introduced only recently;

the study area is at the leading edge of the invasion

range (Barbaresi and Gherardi 2000; Fea et al. 2006).

In this area, the abundance of P. clarkii is currently

limited, therefore our analysis would allow to identify

the mechanisms most important at the early stages of

the invasion, i.e., the stages at which management

and control can be more effective (Hulme 2006).

Methods

Study area and surveys

We considered 119 waterbodies (ponds, slow stream

ditches and small lakes) in Lombardy, Northern Italy,

within the upper plain of the Po river at altitudes of

132–397 m a.s.l. (Fig. 1). The study sites were

selected to cover the different waterbody typologies

proportionally to their abundance; we considered five

non-contiguous areas (Fig. 1) to avoid that our data

represent only a local situation, and for a more

comprehensive assessment of species distribution at

regional scale. This region is rich in wetlands, with a

complex network of lakes, ponds, rivers and canals of

Spatial patterns of invasive Procambarus clarkii 2149
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varying size. The study area is currently at the edge

of the invasion range of P. clarkii; we surveyed areas

with published and unpublished records of P. clarkii

(Barbaresi and Gherardi 2000; Romanò and Riva

2002; Fea et al. 2006), as well as areas where

P. clarkii has not been recorded, but the species

might be present because of proximity to localities of

presence and the existence of potentially suitable

wetlands.

We surveyed each wetland seven times from

March to August to assess the distribution of

P. clarkii. We used multiple techniques to evaluate

species presence, including nocturnal visual encoun-

ter surveys, repeated dip-netting of the wetland

banks, bottom and vegetation, the identification of

burrows and exuviae (Reynolds et al. 2006). Three

surveys were held after sunset, using multiple light

sources to perform night-viewing and four surveys

were performed during daylight. At each survey,

multiple researchers sampled each site for about

20 min. We recorded relative humidity and air

temperature at each survey; data were recorded in

the field using pre-printed tables and a personal

digital assistant equipped with GPS and ArcPad GIS

software.

Environmental variables

We measured 10 environmental variables describing

features of wetlands and the surrounding landscape,

and representing the four a priori hypotheses on

factors determining the diffusion of P. clarkii

(Table 1). Connectivity hypothesis. We measured

the overland distance to the nearest river, lake or

large pond (surface C 1 ha). We used overland

distance because several wetlands were not connected

to the main hydrographic network, and previous

studies on P. clarkii showed that this measure may be

more appropriate than distance along the hydro-

graphic network, particularly in still water (Cruz and

Rebelo 2007). Landscape alteration hypothesis. We

measured urban cover % (i.e., the landscape percent-

age occupied by houses, buildings or human infra-

structures) in a radius of 400 m from the wetland. We

used a 400 m radius as previous studies showed that

landscape features at this scale influence the distri-

bution of other species living in similar wetlands

(Ficetola et al. 2009); preliminary analyses performed

at different scales (100 m; 1,000 m) yielded very

similar results. We measured landscape features

(connectivity, urban cover) on the basis of the

regional Vector Map of Lombardy (2008 land use

maps; www.cartografia.regione.lombardia.it). Wet-

land features hypothesis. For each wetland we

recorded three abiotic features: Maximum depth,

surface area, and hydroperiod (0: temporary, i.e. dry

during at least one survey; 1: retained water during all

the samplings) (Table 1). Vegetation hypothesis. In

May, for each wetland we measured four features

describing the vegetation of the wetland and of the

nearby areas: percentage of canopy cover, percentage

of shoreline and emergent vegetation of the wetland,

cover of grass and shrubs within 30 m from the

wetland. Variables were measured following standard

assessment protocols (Ficetola and De Bernardi 2004;

Van Buskirk 2005; D’Amore et al. 2010). Vegetation

and canopy cover were visually estimated (10%

intervals); shoreline vegetation was measured as the

percentage of the wetland perimeter with presence of

vegetation within 50 cm from the water.

Statistical analyses

A site is surely occupied by a given species if it is

detected at that site, but non detecting a species

during all sampling occasions does not necessarily

indicate the species is absent. Occupancy modelling

uses data on presence/absence collected at the same

locality during multiple sampling occasions, and

Fig. 1 Study area, and sampled wetlands. Crosses: P. clarkii
detected; circles: P. clarkii not detected. Some points are

superimposed due to geographic proximity
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estimates the detection rate of the species, and the

probability of presences in sites where species was

not detected. It is also possible include site and

survey-specific parameters as covariates (MacKenzie

et al. 2006; Sewell et al. 2010). We therefore used the

software PRESENCE (Hines 2006; MacKenzie et al.

2006) to evaluate the probability of occupancy of

sites where we did not detect it. For the analysis, we

assumed that probability of detection can be affected

by Julian date, hour of survey, air temperature, and

relative humidity.

Some of our a priori hypotheses were represented

by multiple environmental variables (Table 1). This

can pose problems for the analyses, because vari-

ables representing the same process are inherently

correlated, and intercorrelated variables can bias

regression estimates (Berry and Feldman 1985).

Furthermore, the number of variables included in an

analysis affects its power and the Akaike’s Informa-

tion Criterion (see below). For this reason, we used

principal component analysis (PCA) to reduce the

variables representing the same hypothesis to a lower

number of uncorrelated components. In our analyses,

we used the variables extracted by PCA instead of the

original variables.

Spatial regression models

Several methods have been proposed for regression

analysis of spatial data. Particularly if the dependent

variable is non-normal, performance can be quite

different among the approaches proposed. Studies

comparing the performance of spatial regression tech-

niques have found mixed results, and some techniques

showed good performance in some but not in all

analyses (Dormann et al. 2007; Bini et al. 2009; Beale

et al. 2010). On the other hand, non-normal data (e.g.,

counts, presence-absence) are extremely frequent in

ecological studies. For these reasons, we built our

models using three different techniques: spatial eigen-

vector mapping (SEVM), generalized additive models

(GAM) and Bayesian intrinsic conditional autoregres-

sive models (BCA). These methods have different

strengths and peculiarities. The comparison among

them can allow a more robust inference.

SEVM is relatively new approach, but is increas-

ingly used for the analysis of ecological data. SEVM

allows the translation of the spatial arrangement of

data points into explanatory variables (eigenvectors)

capturing spatial effects (Dormann et al. 2007). There

are multiple implementations of SEVM, depending on

how the eigenvectors are generated, and how eigen-

vectors included into the models are selected (Bini

et al. 2009; Peres-Neto and Legendre 2010). In our

implementation, we generated eigenvector using

Moran’s Eigenvector Mapping (Dray et al. 2006;

Peres-Neto and Legendre 2010), we selected the

eigenvector(s) best reducing the spatial autocorrela-

tion of residuals, and then included eigenvectors as

spatial predictors into generalized linear models

(Griffith and Peres-Neto 2006; Dormann et al. 2007).

Comparisons among statistical methods showed that

SEVM is flexible and efficient, also when analysing

non-normal data (Dormann et al. 2007; Bini et al.

2009; Peres-Neto and Legendre 2010). Furthermore,

the identity of eigenvectors included into models has

been proposed to describe the scale at which autocor-

relation takes effect (Diniz-Filho and Bini 2005). Our

implementation was different from the one in Beale

et al. (2010), which generated eigenvectors using

principal coordinates of neighbour matrices, and

selected eigenvectors correlated with the dependent

variable. Simulation showed that the approach used

here can be successfully applied for spatial regression

of binomial data (Dormann et al. 2007; see also Peres-

Neto and Legendre 2010).

GAM are semi-parametric extensions of general-

ized linear models, in which the response curves of

independent variables may be data driven. Following

Beale et al. (2010), we incorporated the coordinates of

data in GAM as tensor product smooth terms, using

thin plate regression splines (Beale et al. 2010); we

assumed linear relationships between species distri-

bution and the environmental predictors representing

our hypotheses (Beale et al. 2010). Dormann et al.

(2007) considered GAMs as non-spatial methods,

because they merely account for trends in the data

across geographical distances. Nevertheless, simula-

tions showed that GAMs may be able to correctly

estimate regression coefficients in spatially structured

datasets, with relatively good performance in presence

of violations of model assumptions, such as non-

stationariety of autocorrelation (Beale et al. 2010).

BCA is a hierarchical Bayesian technique using

Markov Chain Monte Carlo (MCMC) to estimate

model parameters. BCA incorporates a spatial random

effect, describing the neighbourhood of each site, into

Bayesian regression models. BCA is therefore

Spatial patterns of invasive Procambarus clarkii 2151

123



extremely flexible and is able to incorporate the effect

of space into the error of the model; simulations

showed that BCA is among the spatial techniques with

the best performance under a variety of conditions

(Latimer et al. 2006; Beale et al. 2010). We built BCA

assuming a Bernoulli error distribution following the

approach of Latimer et al. (2006). To avoid numerical

overflow, we used a stabilized logit function exclud-

ing extreme logit values (Kéry 2010, p. 281). For each

analysis, we run three different MCMC chains, to

ensure convergence. For each chain, we performed a

burnin of 15,000 iterations, followed by 500,000

iterations sampled with a tinning interval of 10. For all

models, examination of plots indicated convergence

of chains in less than 15,000 iterations. We then

calculated the estimates of regression coefficients

beta, and their 90 and 95% highest posterior density

Bayesian credible intervals (HPDI).

We used an information-theoretic approach, fol-

lowing the procedure detailed in Denoël et al. (2009),

to evaluate the support of the hypotheses explaining

the distribution of P. clarkii (Burnham and Anderson

2002; McIntire and Fajardo 2009). First, we built

models relating to presence/absence of P. clarkii to

the variables representing the four a priori hypotheses

(Table 1). We built exploratory models considering

only one hypothesis at each time; subsequently, we

built complex models representing all combinations

of hypotheses. We then calculated the Akaike’s

Information Criterion (AIC) for each model: AIC

trades-off explanatory power versus number of pre-

dictors; parsimonious models explaining more varia-

tion have the lowest AIC values and are considered to

be the ‘‘best models’’. AIC may select overly complex

models (Raffalovich et al. 2008), therefore we con-

sidered a complex model as a candidate model only if

it had AIC less than the AIC of all its simpler nested

models (Burnham and Anderson 2002; Richards et al.

2011; but see also Symonds and Moussalli 2011 for

comments on this approach). For each candidate

model, we calculated the Akaike’s weight w (AIC

weight), representing the probability of the different

models given the data (Lukacs et al. 2007). We

estimated the amount of variation explained by

models using Nagelkerke’s R2 (R2
N), which is a

generalized form of coefficient of determination

that can be applied to maximum likelihood models

(Nagelkerke 1991). This procedure was repeated

twice, with SEVMs and with GAMs; in these models,

we assumed binomial error distribution.

Information criteria such as the Deviance Infor-

mation Criterion can be used to compare Bayesian

models, but are extremely problematic for complex

hierarchical models such as BCA (Latimer et al.

2006; Kéry 2010). For this reason, we did not use the

information-theoretic approach with BCA. Instead,

having identified models with w [ 0.01 in SEVM or

GAM analyses, we built the corresponding BCA

models, and evaluated the correspondence between

the results of the three techniques.

We used variance partitioning to evaluate the

amount of variation explained by the environmental

variables and by ‘‘spatial variables’’, represented by

extracted eigenvector(s) in SEVM, and by the

coordinates included as covariates in GAMs (Cush-

man and McGarigal 2002; Beale et al. 2010).

Finally, we analysed the pattern of spatial auto-

correlation, to evaluate whether it can provide

information about the scale at which the invasion

process occurs. We used Moran’s I to assess at

multiple spatial scales the spatial autocorrelation of

(a) the distribution of P. clarkii; (b) the eigenvector(s)

extracted by the best SEVM model to reduce spatial

autocorrelation, because it has been suggested that

eigenvectors may be indicative of the spatial scale at

which autocorrelation takes effect (Diniz-Filho and

Bini 2005; Dormann et al. 2007); and (c) the residuals

of an ordinary least squares (OLS) logistic model

relating P. clarkii distribution to wetland features and

urban cover (the best model obtained in SEVM and

GAM; see results). OLS is a non-spatial regression

technique, and is clearly not appropriate for the

analysis of our data. However, the variation not

accounted for by environmental variables (i.e., the

residuals) may be affected by intrinsic processes

determining spatial distribution (Dormann 2009). We

performed analyses using R 2.9 (www.r-project.org)

and OpenBugs 3.1.1 (Thomas et al. 2006); we built

correlograms using SAM 3.0 (Rangel et al. 2010).

Results

We detected P. clarkii in 16 out of the 119 wetlands

(Fig. 1). In all wetlands where we detected its

presence, we also detected the presence of juveniles,

2152 M. E. Siesa et al.
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indicating that these constitute reproductive

populations.

The analysis of detectability showed that, for all

sites where we did not observe P. clarkii, the proba-

bility of occupancy was always\0.01; for all wetlands,

four surveys were always enough to detect P. clarkii

with confidence [ 95%. This indicates that our sur-

veys estimated presence/absence with reliability.

For the variables describing wetland features, PCA

extracted a single component representing 49% of

variation of original variables; this variable (hereafter:

WETLAND) was positively correlated to wetland area

(r = 0.56, P \ 0.001), depth (r = 0.83, P \ 0.001)

and permanent hydroperiod (r = 0.68, P \ 0.001).

For the variables describing vegetation features, PCA

extracted two components. The first component

(VEGETATION_1) explained 43% of variance, and

was significantly correlated to riparian vegetation

(r = 0.88, P \ 0.001), surrounding grass (r = 0.90,

P \ 0.001) and shrubs (r = 0.74, P \ 0.001); the

second component (VEGETATION_2) explained

26% of variance, and was significantly correlated to

canopy cover (r = 0.81, P \ 0.001), riparian vegeta-

tion (r = -0.21, P = 0.02), emergent vegetation (r =

0.74, P \ 0.001) and surrounding shrubs (r = 0.24,

P = 0.009).

Exploratory models

Using both SEVM and GAMs, P. clarkii was signif-

icantly associated with less isolated wetlands, and to

large, permanent wetlands (Table 2). Furthermore, in

GAMs P. clarkii was associated with wetlands with

low scores for the variable Vegetation_2, representing

an association with limited canopy cover and abun-

dant emergent vegetation. BCA supported the results

of SEVM, indicating a strong association with the

large, permanent wetlands, and a weaker association

with the less isolated wetlands.

Spatial eigenvector mapping

In all SEVMs, one eigenvector was enough to reduce

spatial autocorrelation to non-significant values and

was included in the models. The eigenvector best

reducing autocorrelation was the same in all models

with high support (eigenvector #3).

The model with the highest AIC weight suggests

that the distribution of P. clarkii is influenced by the

joint effect of wetland abiotic features and landscape

alteration (Table 3a). According to this model,

P. clarkii was significantly associated to the largest,

permanent wetlands (v2
1 = 12.4, P \ 0.001); although

urban cover was included in this model, it did not show

a significant effect (v2
1 = 2.7, P = 0.10). This model

explained a substantial proportion of variation

(R2
L = 0.42). In the best model, the SEVM eigenvector

accounted for most of the explained variation (62%);

wetland features were the environmental variable with

the highest explanatory power, while the contribution

of urbanization was limited (Table 4a). A simpler

model, that did not consider urbanization, had a

slightly lower support (w = 0.41), and explained a

comparable amount of variation. A candidate model

considering isolation only had a lower support

(w = 0.01). Vegetation was not included in candidate

model with high support.

Table 2 Exploratory models considering only one hypothesis

Variables SEVM GAM BCA

B v2
1

P B v2
1

P Median 90% HPDI 95% HPDI

Isolation -0.27 4.24 0.039 -7.74 15.82 <0.001 -0.35 20.69/20.06 -1.19/0.003

Urban cover -2.16 1.94 0.163 -11.18 0.79 0.375 -0.27 -3.35/2.83 -3.97/3.44

Wetlanda 1.61 11.65 <0.001 8.92 419.30 <0.001 1.02 0.08/2.37 0.22/2.09

Vegetation_1a -0.27 0.39 0.531 -0.57 0.89 0.346 -0.06 -0.91/0.76 -1.14/0.95

Vegetation_2a -0.19 0.81 0.367 -2.54 20.33 <0.001 -0.49 -1.42/0.45 -1.26/0.26

For SEVMs and GAMs, significance values are reported

For BCA, estimated beta values along with 90% and 95% highest posterior density intervals (HPDI) are reported; HPDI non

overlapping zero are in bold
a PCA scores. See Table 1
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Generalized additive models

Also with GAMs, the model with the highest weight

(w = 0.69) was the one considering the joint effect of

wetland abiotic features and landscape alteration

(Table 3b). According to this model, P. clarkii was

significantly associated to the largest, permanent

wetlands within the most human-dominated land-

scapes (P \ 0.001 for both variables). A second

model, considering the joint effect of wetland

features and isolation, had a lower support

(w = 0.23; Table 3b). This second model suggests

that P. clarkii was associated to the large, permanent

wetlands less isolated from the major waterbodies.

A simpler model, considering wetland features only,

had a limited support (w = 0.08). All models that

excluded wetland features had very low support.

Vegetation features were not included in models with

high support (Table 3b). Also with GAMs, the spatial

component explained most of variation; wetland

features was the environmental variable with the

highest contribution, while urban cover and isolation

explained a minor proportion of variation (Table 4b,

c). Finally, it should be remarked that when using

GAMs, the best models explained nearly 99% of

variation, suggesting that some form of overfitting

may occur despite the limited number of parameters

(Table 3).

Bayesian conditional autoregressive models

The results of BCA models were in strong agreement

with those of SEVM. If wetland features and urban

cover are included as independent variables in the

same model (models a1 and b1 in Table 3), P. clarkii

was strongly associated with the largest permanent

Table 3 Candidate models explaining the distribution of P. clarkii in 119 wetlands, on the basis of environmental variables

Rank Environmental variables R2
N

K AIC D-AIC w

a: Spatial eigenvector mapping

a1 Wetland featuresa (?**); Urban cover (-), SEVM eigenvector 0.42 4 70.67 0.00 0.581

a2 Wetland featuresa (?**); SEVM eigenvector 0.39 3 71.38 0.71 0.406

a3 Isolation (-*), SEVM eigenvector 0.30 3 78.79 8.12 0.010

b: Generalized additive models

b1 Wetland featuresa (?**); Urban cover (?**) 0.99 7.4 15.36 0.00 0.691

b2 Wetland featuresa (?**); Isolation (-**) 0.99 8.7 17.59 2.23 0.227

b3 Wetland featuresa (?**) 0.99 9.7 19.75 4.39 0.077

a: Models built using spatial eigenvector mapping (SEVM); b: models built using generalized additive models (GAMs). Models are

ranked according to their D-AIC; the model with the lowest D-AIC is the best AIC model. The sign after variable names represent the

sign of regression coefficients. Only models with D-AIC \ 10 are shown

R2
N Nagelkerke’s R2, AIC Akaike information criterion, K number of parameters in the model, D-AIC difference between the AIC of

each model and the AIC of the best model, w AIC weight of the model

* P \ 0.05; ** P \ 0.01
a PCA scores, see Table 1. (?) indicate association with large, permanent wetlands

Table 4 Variance partitioning representing the amount of

explained variation accounted for by the best models

Variable %

a: Spatial eigenvector mapping

Wetland features 26.4

Urban cover 6.9

Space (SEVM eigenvector) 62.1

Joint 4.6

b: Generalized additive models, Model 1

Wetland features 22.3

Urban cover 7.1

Space (coordinates) 63.1

Joint 7.4

c: Generalized additive models, Model 2

Wetland features 22.7

Isolation 12.8

Space (coordinates) 53.8

Joint 10.6
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wetlands (beta = 1.05, 95% HPDI: 0.11/2.26) while

for urban cover the credible intervals overlapped zero

(beta = -1.07, 95% HPDI: -5.25/3.05, 90% HPDI:

-4.54/2.14).

If wetland features and isolation are included as

independent variables in the same model (model b2

in Table 3), P. clarkii was associated with the largest

permanent wetlands, but 95% intervals slightly

overlapped zero (beta = 0.89, 95% HPDI: -0.07/

2.07; 90% HPDI: 0.08/1.86;). For isolation, the

intervals overlapped zero more widely (beta =

-0.20, 90% HPDI: -0.58/0.16).

Spatial autocorrelation

Autocorrelation of species distribution was positive

and significant at distances up to 2,500 m (Fig. 2a).

OLS residuals and the eigenvector extracted by

SEVM showed similar autocorrelation pattern, with

generally positive and significant values at distance

up to 2,500 m, and negative or nonsignificant values

at distances [ 5,000 m (Fig. 2a). Spatial autocorre-

lation was considerably lower for the residuals of

SEVM and GAM (Fig. 2b).

Discussion

Comparison among statistical methods

The use of multiple statistical approaches, integrat-

ing spatial autocorrelation, allowed us to identify

the processes that most likely explain the distribu-

tion of P. clarkii at the early stages of the invasion

(discussed below). There was a strong agreement

between the results of SEVM and those of BCA

(e.g., Table 2). For instance, the regression coeffi-

cients estimated by SEVM were always within the
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Fig. 2 Spatial autocorrelation (Moran’s I), measured at

multiple distance classes. a Distribution pattern of P. clarkii
(black diamonds); residuals of OLS regression relating

P. clarkii distribution to environmental variables (empty
triangles); and eigenvector extracted by SEVM (grey squares).

b residuals of the highest AIC SEVM (black diamonds) and of

the highest AIC GAM (empty triangles). Error bars represent

twice the standard error of Moran’s I; asterisks indicate that

I was positive and significant
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90% HPD intervals of BCA, and the signs of

relationships were always in agreement (Table 2).

BCA was slightly more conservative than SEVM.

However, small differences between the methods

are non unexpected, as Bayesian and inferential

statistics have a completely different underlying

approach (Kéry 2010). Furthermore, the two meth-

ods take into account autocorrelations in different

ways (see methods section). The similarity of the

results of these approaches suggests that the

conclusions about the study system are robust.

Nevertheless, the two approaches have different

strengths. BCA is particularly flexible, because of

the hierarchical Bayesian framework, and because it

incorporates ‘‘space’’ in the error model (Latimer

et al. 2006; Beale et al. 2010; Kéry 2010).

However, the calculation of information criteria

(such as AIC) may be problematic for hierarchical

Bayesian models, limiting the possibility to use the

information theoretic approach (Latimer et al. 2006;

McIntire and Fajardo 2009; Kéry 2010). Strengths

of SEVM include the possibility to analyze the

extracted eigenvectors, which may provide infor-

mation on the scale of ongoing spatial processes

(Diniz-Filho and Bini 2005).

All three techniques identified abiotic wetland

parameters as the most important features for crayfish

invasions. However, results of GAM were somehow

different, as they suggested also a possible strongly

significant role for landscape alteration and isolation,

and coefficient estimates were dissimilar from those

of the other techniques (Table 2). Some debate is

ongoing on the appropriateness of GAMs for spatial

analyses (compare Dormann 2007; Beale et al. 2010).

The situation may be particularly complex with

binomial dependent variables; further simulation

studies will have to assess their performance under

these conditions. The spatially-explicit analysis of

binary data is complex and still relatively uncommon

in ecology, and to date there is not a ‘‘best technique’’

that can be applied under all conditions. Presence/

absence data are among the most easily available data

on species distribution, are invaluable to understand

ecological processes, but often need to be analyzed

within a spatially explicit framework. The use of

multiple statistical approaches, and the comparison of

results, can help a robust assessment of factors

actually determining the spatial distribution of

species.

Invasion processes

All models suggested that the suitability for abiotic

features is the most likely driver of the distribution of

P. clarkii. Procambarus clarkii is a generalist species

that can occupy a wide range of wetlands, including

small temporary waterbodies; it has been suggested

that habitat characteristics can have only marginal

significance (Gherardi 2006; Cruz and Rebelo 2007).

Nevertheless, our analyses showed that, at the early

stages of the invasion, wetland features can be

extremely important for crayfish distribution:

P. clarkii was strongly associated to large and

permanent wetlands. Wetland hydroperiod is known

to be a limiting factor for the presence of this species:

P. clarkii can also be found in temporary wetlands, but

in such habitats it needs shelter, like boulders, wood

debris, crevices or a silt substrate to make burrows and

retain the humidity, allowing their survival (Correia

and Ferreira 1995; Ilhéu et al. 2003; Cruz and Rebelo

2007). Furthermore, wetlands should have a hydro-

period longer than 4 months for the persistence of

P. clarkii (Gutiérrez Yurrita and Montes 1999). Large,

permanent wetlands can therefore act as major sources

of P. clarkii, and the proximity to such wetlands is a

key factor determining crayfish presence in temporary

biotopes (Cruz and Rebelo 2007). In our study, we

have detected a significant effect of isolation in

exploratory univariate models (Table 2), but the

support of the isolation hypothesis was limited in

multivariate models (Table 3). The difference

between our results and the ones of Cruz and Rebelo

(2007) may be related to differences in statistical

modelling. In our analyses we included predictors

describing the spatial arrangement of data. These

‘‘spatial predictors’’ were extremely important in

explaining crayfish distribution and accounted for

most of the variation explained by models ([50%;

Table 4). Therefore, we do not argue that proximity to

potentially source areas is unimportant. Instead, the

analysis of spatial autocorrelation helps to explicitly

assess the scale at which isolation may take effect,

influencing wetland occupancy.

Spatial autocorrelation is pervasive in species

distribution, and can be caused by exogenous and

endogenous processes (Wagner and Fortin 2005;

Beale et al. 2010). Discriminating between exogenous

and endogenous autocorrelation is challenging; in

principle, exogenous autocorrelation can be removed
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from models if all relevant autocorrelated predictors

are considered. Although it is always possible that

some relevant, unidentified predictor is missing, the

analysis of residual autocorrelation, or the analysis of

‘‘spatial predictors’’ removing autocorrelation (e.g.,

SEVM eigenvectors), can provide insight on endog-

enous processes determining species distribution

(Diniz-Filho and Bini 2005; Dormann et al. 2007;

Van Teeffelen and Ovaskainen 2007; Chapman et al.

2009; Dormann 2009). In our analysis, species distri-

bution was positively autocorrelated at distances up to

2,500 m (Fig. 2); this indicates that wetlands that are

less than 2,500 m apart tend to have similar occu-

pancy. In other words, the presence of occupied

wetlands within 2,500 m increases the likelihood of

occurrence of P. clarkii. The pattern of autocorrelation

was similar for raw species distribution data, for the

residuals of OLS models and for the SEVM eigenvec-

tors (Fig. 2); the similarity of results obtained through

different approaches suggests that autocorrelation may

be linked to some endogenous process. Dispersal is a

major source of endogenous autocorrelation (Beale

et al. 2010). Procambarus clarkii shows physiological

and ethological adaptations allowing a remarkable

dispersal ability (Barbaresi and Gherardi 2000; Payette

and McGaw 2003; Gherardi 2006). It can disperse both

in water and overland; the overall locomotory activity

can even exceed 3 km per day (Barbaresi and Gherardi

2000; Gherardi et al. 2002). Therefore 2,500 m might

correspond to the distance at which dispersal influ-

ences the distribution of populations; analyses per-

formed in the Iberian peninsula using logistic

regression yielded comparable results, and showed

that the likelihood of presence of P. clarkii increases if

there are occupied wetlands at distances B2,000 m

(Cruz and Rebelo 2007). In this respect, the analysis of

spatial autocorrelation may be more flexible and

appropriate than logistic regression to identify such

distance, because it is a spatially explicit approach,

while logistic regression has constraints limiting its

capability to detect threshold distances (Ficetola and

Denoël 2009). Furthermore, dispersal is often context

dependent, and individuals can cover different dis-

tances in diverse environments (Cruz and Rebelo

2007; Olden 2007). Lastly, natural dispersal is not the

only possible explanation of the autocorrelation

pattern. Procambarus clarkii is sometime captured

by fishermen that may release it in nearby wetlands

(i.e., human assisted dispersal). It is also possible that

our analyses lack relevant autocorrelated predictors

that influence species distribution.

Both global and landscape analyses showed that

human impact and landscape alteration are key drivers

of the distribution of invasive species (Ficetola et al.

2007; King and Tschinkel 2008; Leprieur et al. 2008;

Cutway and Ehrenfeld 2009). The results of GAM

were in agreement with this hypothesis (Table 3).

Landscape alteration may facilitate the presence of

alien species through multiple, nonexclusive mecha-

nisms. First, proximity to urban areas increases the

possibility that humans introduce alien species into

new wetlands (Cruz and Rebelo 2007; Cutway and

Ehrenfeld 2009; Hirsch 2009). Furthermore, wetlands

in altered landscapes can have simplified communities

with a reduced number of species and different

predators (Pickett et al. 2001; Didham et al. 2007).

Generalist invasive predators with high tolerance to

human disturbance, such as P. clarkii, can take

advantage of these environmental features, reaching

high densities and potentially disperse to more natural

environments (Didham et al. 2007; Cutway and

Ehrenfeld 2009). Nevertheless, the other approaches

(SEVM and BCA) did not clearly support this hypoth-

esis, and in all models landscape alteration explained a

limited amount of variation (Table 4), suggesting that

the other processes may be more important.

It has been proposed that biotic factors are key

parameters for the establishment of invasive species

(Stohlgren et al. 2006). However, some studies

performed in freshwaters showed that the distribution

of alien species is most strongly related to abiotic

features, suggesting a minor role for biotic features

(Quinn et al. 2011). Our analyses are in agreement

with these findings: vegetation was much less

important than abiotic parameters for P. clarkii.

Clearly, the importance of vegetation can be different

for other invasive species.

Finally, it should remarked that our analysis

considered only one time interval. Spatial analyses

focusing on one snapshot can quickly provide useful

information on dynamics (Chapman et al. 2009),

helping to set up immediate conservation actions.

Nevertheless, multi-year analyses are needed for a

more accurate assessment of invasion processes, and

allow to validate the findings of snapshot studies

(Ficetola et al. 2010).
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Conservation implications

Our analyses suggest that crayfish invasion can be

favored by the colonization of large, permanent wet-

lands (e.g., small lakes, large ponds), where it can

establish numerous and stable populations. These

waterbodies can act as a source for the dispersal and

colonization of nearby smaller, temporary or isolated

wetlands (Gherardi et al. 2002; Cruz and Rebelo 2007;

Keller et al. 2008). Prevention of new introductions

would certainly be the optimal strategy to limit the

spread of this species (Keller et al. 2008). Unfortunately,

new introductions continue: the identification of major

factors determining the early stages of invasion may

help to set up protocols for early monitoring, and we feel

that our analyses help to identify areas most at risk and

where screening can be focused. Early detection when

crayfishes are at low densities may allow for the

establishement of control strategies that maintain low

densities (Hein et al. 2007; Aquiloni et al. 2009;

Aquiloni et al. 2010), and therefore limit the dispersal

into nearby but isolated waterbodies.
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