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 Abstract. Issues of residual spatial autocorrelation (RSA) and spatial scale are critical to
 the study of species-environment relationships, because RSA invalidates many statistical
 procedures, while the scale of analysis affects the quantification of these relationships.
 Although these issues independently are widely covered in the literature, only sparse attention
 is given to their integration. This paper focuses on the interplay between RSA and the spatial
 scaling of species-environment relationships. Using a hypothetical species in an artificial
 landscape, we show that a mismatch between the scale of analysis and the scale of a species'
 response to its environment leads to a decrease in the portion of variation explained by
 environmental predictors. Moreover, it results in RSA and biased regression coefficients. This
 bias stems from error-predictor dependencies due to the scale mismatch, the magnitude of
 which depends on the interaction between the scale of landscape heterogeneity and the scale of
 a species' response to this heterogeneity. We show that explicitly considering scale effects on
 RSA can reveal the characteristic scale of a species' response to its environment. This is
 important, because the estimation of species-environment relationships using spatial
 regression methods proves to be erroneous in case of a scale mismatch, leading to spurious
 conclusions when scaling issues are not explicitly considered. The findings presented here
 highlight the importance of examining the appropriateness of the spatial scales used in
 analyses, since scale mismatches affect the rigor of statistical analyses and thereby the ability
 to understand the processes underlying spatial patterning in ecological phenomena.

 Key words: landscape context; omitted variable bias; scale; spatial autocorrelation; spatial regression;
 spatially lagged predictor; species-environment relationships.

 Introduction

 Understanding the relationships between organisms
 and their environment is of paramount importance for
 understanding the mechanisms behind (spatial) varia
 tion in ecological phenomena (Currie 2007, de Knegt et
 al. 2007, 2008, Mcintire and Fajardo 2009). Critical to
 this understanding are issues of pattern and scale (Levin
 1992), because two general characteristics inherent to
 ecological data can complicate analyses of species
 environment relationships. First, ecological phenomena
 are often spatially autocorrelated, leading to problem
 atic statistical inference if left unaccounted for (Cliff and
 Ord 1981, Legendre 1993, Dormann et al. 2007).
 Second, organismal response to environmental cues
 hinges on the scales that individuals can perceive and
 respond to, leading to sensitivity in the quantification of
 species-environment relationships to the spatial per

 Manuscript received 27 July 2009; revised 6 November 2009;
 accepted 9 November 2009. Corresponding Editor: H. H.
 Wagner.

 5 E-mail: hdeknegt@hotmail.com

 spectives chosen (Levin 1992, Wu 2007, Mayor et al.
 2009). Hence, the importance of spatial autocorrelation
 (SAC) and spatial scale in the study of species
 environment relationships has stimulated much research
 over the past decade. Unfortunately, integration be
 tween these fields has been limited, although different
 processes may create SAC at different scales depending
 on the scales of an organism's response to its environ
 ment (Wagner 2004, Wagner and Fortin 20?5). Here, we
 attempt to facilitate the integration between these
 important issues, as we argue that their interaction
 offers possibilities to achieve a more thorough under
 standing of species-environment relationships.

 Ecological data may exhibit SAC due to "endoge
 nous" (or "inherent") community or demographic
 processes (e.g., dispersal, conspecific attraction), or
 spatial dependence of organisms to the underlying
 environmental conditions that are spatially structured
 (i.e., "exogenous" or "induced" SAC; Cliff and Ord
 1981, Legendre 1993). If the sources of SAC are not fully
 accounted for in analyses (due to failure to include an
 important environmental driver, inadequate capture of
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 its nonlinear effect, or failure to account for endogenous
 processes), the unexplained spatial pattern will appear in
 the residual errors, leading to residual spatial autocor
 relation (RSA). Consequently, the assumption of
 independently and identically distributed (i.i.d.) errors
 common to most statistical procedures is violated,
 creating biased Type I error estimates due to inflation
 of degrees of freedom (Clifford et al. 1989, Legendre et
 al. 2002). Moreover, parameter estimates may be biased
 or their sign even inverted (Lennon 2000, K?hn 2007,
 Bini et al. 2009).

 Recent studies analyzing the scale sensitivity of
 species-environment relationships have formed the idea
 that species have "characteristic scales" of response to
 their environment (Dormann and Seppelt 2007). These
 studies typically analyze the importance of landscape
 characteristics by regressing response data against
 landscape variables measured at various spatial scales
 (i.e., ambit radii) around sampling locations (e.g., Van
 Langevelde 2000, Steffan-Dewenter et al. 2002, Holland
 et al. 2004, Mayor et al. 2007). Hence, the influence of
 the scale of landscape context (i.e., the characteristics of
 the landscape surrounding a site) on the phenomenon
 under study is being investigated (Brennan et al. 2002).
 However, these studies generally do analyze neither the
 spatial structure of the environmental predictors (Dor
 mann and Seppelt 2007) nor the spatial structure in the
 model residuals (i.e., RSA).

 Yet, since organisms respond to environmental
 characteristics at specific (but often unknown) scales,
 the spatial patterns resulting from a species' response to
 extraneous predictors may differ from the spatial
 structure of the landscape (Wagner and Fortin 2005).
 This potentially leads to RSA and problematic inference
 when the scale of analysis does not match the scale at
 which the focal species responds to its environment
 (Gotway and Young 2002). Thus, in order to account
 for the sources of SAC in ecological phenomena, scaling
 issues need to be considered. Moreover, because
 understanding the mechanisms that maintain the ob
 served spatial patterns critically depends on our ability
 to decompose the spatial pattern into the contributions
 of different processes affecting it (Legendre et al. 2009),
 understanding the interactions between SAC and the
 spatial scaling of species-environment relationships is
 urgently required. Although several authors have
 studied the influence of the scale of environmental

 SAC on analyses of organismal response (e.g., Lennon
 2000, Beale et al. 2007, Diniz-Filho et al. 2007, Hawkins
 et al. 2007), analyses regarding the influence of the
 scaling of a species' response to exogenous predictors on
 RSA have not yet been carried out.

 This paper therefore focuses on the interplay between
 RSA and the spatial scaling, of species-environment
 relationships. We use a hypothetical species and artificial
 environmental data to examine this interplay by making
 statistical issues explicit. The use of artificial data allows
 us to vary, independently, the scale of analysis, the scale

 of the species' response, and the scale of environmental
 heterogeneity, as well as to control the relationship
 between the species and its environment. We frame our
 analyses around three central issues: (1) the link between
 RSA and the spatial scale of analysis, given the scale of a
 species' response and the scale of environmental
 heterogeneity, (2) the consequences of a scale mismatch
 for parameter estimation in regression analyses, and (3)
 the robustness of several spatial regression methods,
 devised to account for the effects of RSA, when
 analyzing data at incorrect scales.

 Methods

 A virtual data set

 We used the data set of Dormann et al. (2007), which
 contains a regular grid with 1108 cells and two artificial
 explanatory variables: rain and jungle cover, hereafter
 referred to as R and ?>, respectively. The predictor
 variables are based on an elevation model of the
 Maunga Whau Volcano in New Zealand, where R is
 highly dependent on elevation (including a rain shadow
 in the east) and thus strongly autocorrelated, whereas D
 is dominated by a high noise component (Fig. 1;

 Dormann et al. 2007). The two variables are uncorre
 lated (Pearson's r = 0.013, = 1108, = 0.668), thus
 avoiding model instability due to correlated predictors.
 Both predictors were normalized to zero mean and unit
 variance prior to analyses.
 We distributed a hypothetical species over this

 landscape based on the two predictor variables, while
 setting the spatial scale of its response. We did this by
 averaging the predictor variables in a circular focal
 neighborhood (or moving window) centered on each
 grid cell, with ambit radius or buffer size / Hence, we
 refer to "scale" here as the radius within which the

 predictor variables are measured, thus being a measure
 of the area or inference space represented by each data
 point.

 To simplify the modeling process and interpretation,
 we distributed the virtual species based on R with f=0,
 thus using only local grid cell information; however, its
 response to D was modeled using a radius of three cells
 (D? with f = 3; Fig. 1). Spatial scaling of the species'
 response to D is not associated to a specific spatial
 causation here, but one could interpret the species'
 response to D in relation to, for instance, proximity to
 nesting sites, risk contagion due to proximity of habitats
 associated to predators, or the ability to detect
 predators.

 The abundance (y) of the virtual species in each grid
 cell was modeled as

 y = ?0 + ?,/? + ?2Df + e e ~ #(0, 2) ( 1 )

 where ?0 = 15, ?! = 1, ?2 = -4.29, /= 3, and e is a
 spatially uncorrelated (i.i.d.) Gaussian error term
 ("white" noise). We choose the parameter values in
 such manner that both predictors exerted equal influence
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 Distance Distance Distance
 Fig. 1. Maps and corresponding correlograms for the predictor and response variables: (a) rain (R); (b) jungle cover (D); (c) D

 averaged within a circular focal neighborhood with a radius of three distance units (i.e., Df with/ = 3); (d) simulated density of our
 hypothetical species (y; Eq. 1 and 2); (e) residuals of an ordinary least-squares (OLS) model using only local information (i.e., R
 and D); (f) residuals of an OLS model using local and contextual information at the correct scales (i.e., R and D/ with/ = 3). The
 scale bar in panel (a) depicts 10 distance units.

 on the response variable (i.e., equal standardized
 coefficients). We conducted analyses where we changed
 the signal-to-noise ratio, through varying the variance of
 the error term relative to the variance of the determin

 istic part of Eq. 1, such that (error ) : (deterministic )
 = 0.10, 0.25, or 0.50.

 Analyses

 We analyzed the abundance of our virtual species by
 regressing it against the two environmental predictor
 variables using ordinary least-squares (OLS) regression,
 and compared the parameter estimates to their "true"
 values for different scenarios. We used all grid cells in
 the statistical analyses. The spatial patterns in the
 residuals were examined using residual maps and
 correlograms that plot Moran's I coefficients (e.g.,
 Fortin and Dale 2005) as a function of separation
 distance between paired observations up to a distance of
 30 distance units (Fig. 1). All analyses were carried out
 in the statistical software R (R Development Core Team
 2009), using the libraries spdep (Bivand 2009), ncf
 (Bjornstad 2009), nlme (Pinheiro et al. 2008), and
 RandomFields (Schlather 2008).

 Spatial scaling and RSA

 In order to make the link between SAC and the spatial
 scaling of species-environment relationships explicit, we
 write Eq. 1 equivalen ti y as a spatial cross-regressive
 model. Essentially, Eq. 1 is a nonspatial regression
 model augmented by a cross-regressor in the form of a
 spatially lagged explanatory variable:

 y = ?0 + ?,/? + ?3D -f XWD + e (2)

 where is the regression coefficient of the spatially
 lagged predictor D connected through the spatial weight

 matrix W (here a row-standardized binary contiguity
 matrix with non-zero elements if the distance between

 grid cell centroids is less than or equal to three distance
 units), ?3 = ?2/(? + 1) ~ -0.17 and = $2/( + 1) ~
 -4.12, where is the number of neighborhood cells.
 Hence, the species' response to its environment does not
 only depend on the characteristics within the grid cell (R
 and D, hereafter referred to as "local" environmental
 characteristic), but also on the characteristics of the
 surrounding landscape regarding D up to a distance of
 three distance units (i.e., WZ); the "landscape context"
 or neighborhood). We can thus refer to ?3 and as the,
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 respectively, local and contextual landscape effects
 regarding D.

 Hence, correlating the distribution of our virtual
 species to the predictor variables using only local
 information leads to the omission of the effect of
 landscape context (WD). Thus, the actual regression
 becomes

 y=% + $xR + foD + \i
 where

 = e + WD. (3)
 Consequently, the statistical model is misspecified,
 because it is inconsistent with the data-generating
 process (Eq. 1 and 2). The error term contains the
 omitted variable (WD), thus any spatial pattern in WD
 will be reflected in the residual errors, leading to RSA.
 Alternatively, analyzing the distribution of our virtual
 species in relation to both predictors while including the
 effect of landscape context regarding D, but at a scale
 larger than the species' scale of response to D, leads to
 spatial smoothing of data and hence RSA (Gotway and
 Young 2002, Keitt et al. 2002, Diniz-Filho et al. 2003,
 Dormann et al. 2007).

 Thus, a mismatch between the spatial scale of analysis
 and the scale of organismal response results in
 misspecification of the statistical model and RSA.
 Hence, we expect that plotting the level of RSA as
 function of the scale of analyses provides a clue
 regarding the characteristic scale of the species' response
 to its environment: that is the scale where the level of

 RSA is minimized. We therefore analyzed the distribu
 tion of our virtual species in relation to both R and D,
 using only local information regarding R, while varying
 the buffer size for predictor D from 0 up to six distance
 units. At each scale, the predictors D^(with/= [0-6]) are
 uncorrelated with R (all Pearson's | r \ < 0.035 and >
 0.2, = 1108). Following Kissling and Carl (2008), we
 quantified the total level of RSA (RSAtot) as the
 summation of the absolute Moran's / values of the
 correlogram up to a distance of 30 distance units.
 Furthermore, we also analyzed Akaike's information
 criterion (AIC) values for the different scales. Note that
 the analyses carried out at different scales were not
 independent tests, but served to determine at which scale
 RSAlot and AIC were minimized. We replicated these
 analyses 1000 times, each time with a different
 realization of the error term e.

 Scale effects on parameter estimation

 In spatially structured landscapes, the presence of
 spatially lagged explanatory predictors can induce
 correlation between predictors (in our case, between D
 and WD), even if the environmental predictors them
 selves (R and D) are uncorrelated (Haining 2003). This
 could encumber analyses and threaten their statistical
 and inferential interpretation (Graham 2003). Thus,
 besides resulting in RSA, model misspecification due to

 the erroneous omission of spatially lagged predictors is a
 typical example of the omitted variable problem in a
 spatial context (Florax and Folmer 1992). Consequent
 ly, the OLS estimator of the regression coefficients may
 be biased, the residual variance overestimated, and
 inference procedures invalid (Florax and Folmer 1992,
 Anselin et al. 2004).

 In the case of our virtual species, the local information
 regarding D and its spatially lagged counterpart WD are
 only moderately correlated (Pearson's r = 0.09, = 1108,
 = 0.002). However, as even low levels of correlation

 between predictors can bias analyses (Graham 2003), we
 expect that analyzing our virtual species in relation to R
 and D while omitting WD results in an over-estimation
 of the regression coefficient for D.
 Moreover, the level of correlation between local and

 spatially lagged predictors depends on the scale at which
 a species responds to the environmental predictors and is
 modified by the scale of SAC of the landscape variable
 (e.g., Gotway and Young 2002, Wong 2009). Hence, the
 bias that results from omitting a spatially lagged
 predictor depends on both the scale of environmental
 SAC and the scale of the species' response to the
 environmental predictor. To quantify this bias, we
 simulated landscapes similar in function as D, but with
 a varying spatial scale of SAC, which we refer to as the
 dominant scale (DS) of landscape heterogeneity (e.g., de
 Knegt et al. 2008). Then, through omitting the spatially
 lagged predictor and comparing the estimated regression
 parameters to their "true" values, we quantified the
 influence of the interaction between the DS of landscape
 heterogeneity and the scale of organismal response on
 the regression analyses. We simulated landscapes with a
 DS of 0.5, 2, and 10 distance units, and a virtual species
 whose scale of response (/) to the simulated landscapes
 ranged from 1 to 6 distance units (with an i.i.d. error
 term with [error ] : [deterministic ] = 0.1). For each
 combination of DS and /, we quantified: (1) the
 correlation between local and contextual information;
 (2) the difference in AIC values (AAIC) between a
 spatial model with landscape context at the correct scale
 and a nonspatial model that uses only local information;
 (3) the difference in regression coefficients between the
 nonspatial and spatial OLS models (A? = ?oLSns -
 ?oLSs); and (4) the total level of RSA when omitting
 landscape context as measured by RSAtot. All analyses
 were iterated 1000 times, with different realizations of
 the simulated landscapes and error term.

 Dealing with RSA resulting from a scale mismatch

 Ecologists facing RSA commonly rely on regression
 based approaches that are intended either to live with
 the problem (e.g., by spacing sampling locations further
 apart, adjusting the degrees of freedom, or adjusting the
 effective sample size; see, e.g., Dutilleul 1993, Holland et
 al. 2004, Fortin and Dale 2005), or to model the spatial
 process causing the autocorrelation as part of the
 regression analysis. The latter approach allows a
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 correction of the parameter estimates, and resulted in
 the development of various forms of spatial regression
 that are increasingly becoming part of the standard
 toolbox for ecologists. Given their widespread use, we
 tested several of these techniques for their reliability in
 estimating the species-environment relationships when
 analyzing the distribution of our hypothetical species.

 We confined ourselves to two techniques widely used in
 ecological studies: methods based upon simultaneous
 autoregression (SAR) and generalized least squares
 (GLS); and a relatively new and emerging spatial
 approach belonging to the class of eigenvector-based
 spatial filtering techniques: spatial eigenvector mapping
 (SEVM). We refrain from technical discussion of these
 techniques here and only provide a nontechnical
 synopsis, since many of them have received exhaustive
 review, comparison and discussion elsewhere (Cliff and
 Ord 1981, Keitt et al. 2002, Fortin and Dale 2005,
 Schabenberger and Gotway 2005, Griffith and Peres
 Neto 2006, Dormann 2007, Dormann et al. 2007,
 Kissling and Carl 2008, Anselin 2009, Bini et al. 2009).

 SAR models operate with spatial weight matrices (viz.
 W in Eq. 2) that specify the strength of interaction
 between neighboring sites. Depending on where this
 spatial interaction is thought to occur, SAR models
 specify the relationship between the response variable
 (SAR-lag) or residual errors (SAR-error) at each
 location and those at neighboring locations (Anselin
 2002, 2009, Schabenberger and Gotway 2005, Dormann
 et al. 2007). As demonstrated by Kissling and Carl
 (2008), the performance of SAR models depends on the
 neighborhood distance and coding styles of the spatial
 weight matrices used. Because it is difficult to decide a
 priori which neighborhood structure is most efficient,
 Kissling and Carl (2008) recommended to test a wide
 variety of SAR model specifications, and to identify the
 best model based on AIC and RSAtot. Hence, we fitted
 both SAR-lag and SAR-error models using five different
 neighborhood sizes (1 to 3 distance units with incre
 ments of 0.5) and three coding styles (binary, row
 standardized, and variance stabilized), and used both
 AIC and RSAtot to evaluate these model specifications.

 Methods based on GLS include spatial interaction in
 the regression model by incorporating SAC explicitly
 into the variance-covariance structure, assuming a
 parametric correlation function as estimated from a
 semi-variogram of the OLS residuals (Keitt et al. 2002,

 Dormann et al. 2007). Three frequently used correlation
 functions are exponential, Gaussian and spherical
 representations (Dormann et al. 2007). We analyzed
 our data set using these three representations, and
 evaluated their performance using AIC and RSAtot.

 Eigenvector-based spatial filtering techniques seek to
 avoid the complications involved in estimating autore
 gressive parameters, as well as to exploit established
 OLS theory. They are based on the eigenfunction
 decomposition of spatial connectivity matrices, either
 binary or distance based (Griffith and Peres-Neto 2006,

 Dormann et al. 2007). The resulting spatial filters
 translate the spatial arrangement of data points into
 explanatory variables that capture spatial effects at
 different scales, which can be included in regression
 analyses to capture the dependencies among the
 residuals (Borcard and Legendre 2002, Borcard et al.
 2004, Diniz-Filho and Bini 2005, Griffith and Peres
 Neto 2006, Tiefelsdorf and Griffith 2007). We used the
 distance-based eigenvector procedure as described by
 Griffith and Peres-Neto (2006) and Dormann et al.
 (2007), and included eigenvectors as spatial predictors
 into the linear model until RSA was no longer
 significant at a = 0.05.
 We used these spatial regression methods to analyze

 the distribution of our virtual species when only using
 local information (Eq. 3). We iterated the analyses of the
 SAR and GLS models 1000 times, each time with a
 different realization of the error term (with [error

 ] : [deterministic ] = 0.10). However, the analyses
 using SEVM were iterated 100 times, since these were
 computationally intensive. We compared the parameter
 estimates to their "true" values, assessed model fit using
 AIC, and checked for residual SAC using RSAtot.
 Moreover, we tested how the different spatial methods
 behave in case of a scale mismatch under varying DS and
 /, with DS = 0.5, 2, and 10 distance units and/ ranging
 from 2 to 6 distance units, while analyzing the deviance
 of the estimated regression coefficients from their true
 values ( ?). We iterated each combination of DS and /
 500 times for the SAR and GLS models, yet 15 times for
 SEVM, due to its time-consuming computations.

 Results

 Spatial scaling and RSA

 When omitting' WD, only 51% of the variation was
 explained by the predictor variables (Appendix), and the
 residuals exhibited strong SAC (Table 1, Fig. le).
 Because WD is uncorrelated with R (Pearson's r =
 0.034, = 1108, = 0.261) the OLS estimator was
 unbiased regarding the influence of R 1; Table 1).
 However, since WD is correlated to D, the erroneous
 omission of WD led to an overestimation of the
 influence of D: ?3 ~ -0.25 (cf. -0.17; Eq. 2, Table 1).

 Including both R and D in the analysis, while varying
 the scale of analysis for D, showed a pronounced scale
 dependency of RSAtot (Fig. 2). The scale where RSAtot
 was minimized corresponds to the scale at which the
 virtual species was set to respond to D, i.e., a buffer size
 of three cells. Only when analyzing the distribution of
 our virtual species at this scale could 99% of the
 variation be explained by the predictor variables
 (Appendix), while yielding the i.i.d. noise that we
 included in Eq. 1 and 2 (Fig. If), as well as the correct
 estimates of regression coefficients (Table 1). A scale
 mismatch thus not only induced RSA, but also reduced
 overall model fit as measured by AIC (Fig. 2).

 A larger contribution of the noise term led to lower
 levels of RSAlot in case of a scale mismatch (Fig. 2),
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 Table 1.
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 Summary statistics of the regression models analyzed using 1000 iterations (except for SEVM: 100 iterations).

 Model

 Spatial OLS
 Nonspatial OLS
 GLS
 SAR-error
 SAR-lag
 SEVM

 15.00***
 14 99***

 0.00013
 0.00013

 15.05*** ? 0.00026
 15.00***
 1.18***

 0.00020
 0.00120

 14.99*** ? 0.00043

 1.00***
 O 97***
 1.00***
 093***
 0 j 5***
 0.80***

 0.00014
 0.00014
 0.00048
 0.00055
 0.00009
 0.00090

 -0.165*** ? 0.00013
 -0.253*** ? 0.00013
 -0.007ns ? 0.00015
 -0.014ns ? 0.00015
 -0.033t ? 0.00014

 0.019t ? 0.00041

 Notes: The unstandardized regression coefficients (mean ? SE) refer to Eq. 2, and / is the Moran's / coefficient for the first
 distance class. The top row shows the regression parameters for the correct model (i.e., landscape context included at the correct
 scale), whereas the other rows depict models that use only local information. The significance levels are based on the number of
 iterations yielding significant effects (with a = 0.05). Abbreviations are: AIC, Akaike information criterion; RSAtot, total level of
 residual spatial autocorrelation.

 t < 0.1; *** < 0.001; ns, not significant.

 since it was set to be i.i.d. However, RSAtot and AIC All spatial models were able to reduce RSA to
 showed similar patterns in their dependency on the scale nonsignificant levels and simultaneously yielded lower
 of analysis in qualitative terms. The level of RSA as AIC values than the OLS model when omitting WD.
 measured by RSAtot showed no dependency on the However, they also showed bias (i.e., underestimation)
 signal-to-noise ratio when our virtual species was in the estimated magnitude of the effect of D on the
 analyzed at the correct scale. abundance of our virtual species, with SEVM even

 Scale effects on parameter estimation

 The correlation between the local and contextual
 information increased with increasing DS of landscape
 heterogeneity, yet decreased with increasing scale of a
 species' response (Fig. 3). This was due to the increase in
 environmental SAC with increasing DS, while the
 similarity between observations separated in space
 decreased with increasing/. Consequently, the difference
 in model fit between a spatial and nonspatial model
 (AAIC) showed exactly the opposite pattern, because
 erroneously omitting landscape context resulted in less
 information loss with increasing DS or decreasing /.

 The bias in regression coefficient ( ?) when errone
 ously omitting the influence of landscape context
 resulted from a trade-off between the level of correlation
 between local and contextual information on the one
 hand, and the relative influence of the omitted variable
 in determining the response variable on the other hand.

 With increasing /, the importance of landscape context
 relative to the focal cell increased, whereas the level of
 correlation decreased. Hence, since the level of correla
 tion between local and contextual characteristics was

 positively linked to DS, ? showed a hump-shaped
 response relative to /, and increased with increasing DS
 (Fig. 3).

 Dealing with RSA resulting from a scale mismatch

 For the SAR models, a neighborhood structure with
 row-standardized coding for a distance of 1.5 cells (a
 "queen" contiguity matrix) explained the data best,
 yielding the lowest AIC and RSAtot values for all tested
 specifications. For the GLS models, a spherical rela
 tionship between the error term and geographical
 distance gave the best performance as measured by
 AIC and RSAtot. Below, we report only the results using
 the best configuration for each modeling approach. The
 results are summarized in Table 1.

 4Ja

 -1-1-1-1?

 4-lb
 Characteristic scale

 Buffer size

 Fig. 2. Model diagnostics as function of the spatial scale
 used while regressing the species' distribution against D: (a)
 RSAtot, i.e., the summation of absolute Moran's / values up to
 a distance of 30 units; and (b) Akaike's information criterion
 (AIC) values. The different lines represent different signal-to
 noise ratios ( 5/ ). Means (?SE) are shown based on 1000
 iterations. The vertical dotted lines represent the scale at which
 the virtual species was set to respond to its environment.
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 Table 1. Extended.

 AIC  RSAtf  /

 -4.11st  0.0173  -1105.6
 3100.3
 1500.0
 1547.6
 1584.4
 1391.3

 1.49
 0.29
 0.75
 0.72
 0.70
 2.22

 0.19 ? 0.00089
 3.90 ? 0.00106
 0.44 ? 0.00067
 0.34 ? 0.00046
 0.30 ? 0.00047
 0.32 ? 0.00201

 -0.003ns ? 0.00049
 0.710*** ? 0.00009
 -0.079ns ? 0.00015
 -0.071ns ? 0.00013
 -0.057ns ? 0.00013

 0.006ns ? 0.00028

 estimating a positive relationship as opposed to the true
 negative relationship. Although most tested methods
 yielded appropriate estimates of the intercept and the
 effect of R on the species' abundance, application of
 SAR-lag yielded shifts in both estimates.

 Analyses of the distribution of our virtual species,
 with varying / and DS, in relation to only local
 information using the spatial methods showed that the
 bias in regression coefficients ( ?) varied between the
 different methods used, and depended on both / and DS
 for GLS and SEVM (Fig. 4). The SAR models
 performed relatively well in landscapes with large DS,
 yet, in relative terms, their estimates were still more than

 30% off. Note that comparing the different spatial
 methods to the results of a non-spatial OLS drastically
 changes the results, yet both the nonspatial OLS as well
 as the tested spatial regression methods essentially used
 a mis-specified model to estimate the species-environ
 ment relationships.

 Discussion

 In this paper, we have focused on the influence of a
 scale mismatch on the estimation of species-environ

 ment relationships, as it is important to understand the
 way such analyses are affected by the use of data at
 inappropriate scales (Gotway and Young 2002). Our
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 Fig. 3. Interactions between the spatial scale of a species' response (buffer size) and the spatial scale of spatial autocorrelation
 (SAC) in the environmental predictor (DS): (a) the correlation (Pearson's r) between local and contextual information; (b) the
 difference in Akaike's information criterion (AIC) values between a spatial (i.e., with landscape context at the correct scale) and
 nonspatial (i.e., using only local information) model; (c) the difference in regression coefficients between a spatial and nonspatial
 model; and (d) the total level of residual spatial autocorrelation (RSAlol) when omitting landscape context. Means (?SE) are
 shown based on 1000 iterations.
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 Fig. 4. Deviance of the coefficient estimates from their
 "true" values, for different models using only local information,
 as function of the scale of a species1 response, and for
 landscapes with a scale of autocorrelation (DS) of (a) 0.5, (b)
 2, and (c) 10 distance units. Means (?SE) are shown based on
 500 iterations (except SEVM: 15 iterations). Abbreviations for
 methods: OLS, ordinary least squares; SAR, simultaneous
 autoregression; GLS, generalized least squares; SEVM, spatial
 eigenvector mapping.

 analyses show that a scale mismatch leads to a reduction
 in the part of variation explained by landscape
 predictors and induces RSA. Although RSA is often
 seen as problematic, it implies structure in the residuals
 and therefore information about the processes not
 captured by the current model (Haining 2003, Fortin
 and Dale 2005, Mclntire and Fajardo 2009). Thus, RSA
 is something one might not want to discard or correct

 for: the problem is not its presence, but the absence of an
 explanation (Cliff and Ord 1981, Dormann 2007).
 Unfortunately, while RSA can be quantified, its origins
 cannot directly be identified: it may be the end product
 of an amalgam of interacting processes, with different
 processes creating patterns that may be observationally
 equivalent (Wagner and Fortin 2005, Anselin 2009).

 Inferring relevant scales from residuals

 As shown in Eq. 3, analyzing response data errone
 ously using only local information is essentially a type of
 model misspecification due to an omitted variable
 problem. This omitted variable, WD in case of our
 virtual species, contains two scale components: (1) the
 spatial structure of the landscape predictor D that is
 included at the wrong scale and (2) the spatial scale of
 the species' response to the predictor as captured by W.

 Hence, the pattern of RSA is the result of the interaction
 between these scale components, thus the scale of
 species-environment relationships cannot directly be
 inferred from spatial patterns in the residuals alone
 (Wagner and Fortin 2005, Dormann 2009), even when
 RSA exclusively stems from a scale mismatch.

 However, because RSA can bear the fingerprint of a
 scale mismatch, varying the scale of analysis while
 analyzing RSA can reveal the scale of the species'
 response (Fig. 2). Using scales larger or smaller than the
 scale of a species' response leads to spatial smoothing or
 the omission of landscape context, respectively. While
 the influence of spatial smoothing on RSA has been
 noted by other authors (Gotway and Young 2002, Keitt
 et al. 2002, Diniz-Filho et al. 2003, Dormann et al. 2007,
 Tiefelsdorf and Griffith 2007), the influence of omitting
 landscape context has received only sparse attention
 (but see Florax and Folmer 1992, Wagner and Fortin
 2005). In the following, we will therefore focus on this
 issue.

 Parameter shifts

 Besides leading to RSA, erroneously ignoring land
 scape context leads to a biased OLS estimator. However,
 this is not the result of RSA, but due to the non-zero
 covariance between regressor (D) and error ( ; Eq. 3)
 stemming from the correlation between local (D) and
 contextual (WD) information (Table 1, Fig. 3). This
 leads to the violation of one of the assumptions of
 regression analyses (i.e., zero covariance between the
 explanatory variables and error term), and therefore to
 overestimation of the parameter of interest and hence
 forth faulty conclusions (Ebbes et al. 2005, Luskin
 2008). Note that OLS residuals (but not the errors) are,
 by definition, uncorrelated to the predictors; this
 violation is thus difficult to diagnose. Moreover, the
 magnitude of the regressor-error correlation is depen
 dent on the scale of landscape heterogeneity, as well as
 on the scale of the species' response (Fig. 3).

 While several authors have argued that RSA may well
 bias coefficient estimation (e.g., Lennon 2000, Dormann
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 2007, K?hn 2007), other studies found nonspatial OLS
 models to be robust and unbiased (Diniz-Filho et al.
 2003, Beale et al. 2007, Hawkins et al. 2007). Our
 findings support the latter view, since we found unbiased
 coefficient estimates under RSA for predictors uncorre
 lated to the error term. This is consistent with statistical

 literature (Cressie 1991, Legendre et al. 2002, Schaben
 berger and Gotway 2005, Hawkins et al. 2007,
 Tiefelsdorf and Griffith 2007). Note, however, that
 there is no doubt that RSA inflates the chance of Type I
 errors, so that coefficients obtained by OLS are not
 minimum variance estimators (Fortin and Dale 2005,
 Hawkins et al. 2007).

 Dealing with RSA resulting from a scale mismatch

 Since RSA due to a scale mismatch is an issue of data

 analysis, constrained by the resolution and extent of the
 data, analyzing the data at appropriate scales suffices as
 remedial action against RSA and the error-regressor
 dependency. This is where our simulations diverged
 from those of other studies on the influence of SAC on

 regression analyses (e.g., Dormann et al. 2007, Kissling
 and Carl 2008). These studies typically focus on
 endogenous SAC by adding an aggregation mechanism
 to the error term such that it is uncorrelated with the

 predictor variables (Dormann 2009), and conclude that
 making a correction for RSA through applying one of
 the spatial regression methods is important since these
 show good type I error control and precise parameter
 estimation (e.g., Keitt et al. 2002, Dormann et al. 2007,
 Kissling and Carl 2008).

 However, although all our tested spatial methods
 yielded a better model fit than nonspatial OLS and
 decreased RSA to insignificant levels, parameter estima
 tion turned out to be problematic in case of a scale

 mismatch. All tested methods underestimated the
 influence of ?>, both in terms of regression coefficient
 as well as significance. Why our analyses yielded biased
 coefficient estimates has a dual explanation. First, GLS
 and SEVM, like OLS, suffer from space-environment
 confounding when the error term is correlated with a
 regressor (Ebbes et al. 2005, Griffith and Peres-Neto
 2006, Ayinde 2007, Hawkins et al. 2007, Kissling and
 Carl 2008, Luskin 2008, Betts et al. 2009). Second, the
 spatial methods test for marginal effects of environmen
 tal predictors after controlling for SAC due to an
 unknown spatial process, thereby leading to a reduction
 in the strength of environmental effects if the response is
 controlled by exogenous predictors (Segurado et al.
 2006, Curde 2007).

 Our simulations thus emphasize what several authors
 (Lennon 2000, Haining 2003, Wagner 2004, Anselin
 2006, Van Teeffelen and Ovaskainen 2007, Dormann
 2009) warned against: using "rough and ready" methods
 to improve model fit can yield rough and ready answers
 that may be quite wrong. Moreover, even the most
 advanced and computer-intensive statistical procedures
 are no guarantee for improving our understanding of

 ecological responses, as such methods often do not give
 straightforward information about the underlying pro
 cesses (Borcard et al. 2004, Dormann et al. 2007). Thus,
 spatial regression methods should not be used as a quick
 fix for modeling spatial data: as the species-environment
 relationships are scale dependent and this is not
 incorporated in the analysis, this may be a more severe
 threat to the interpretation of RSA than an inflated
 Type I error (Haining 2003, Wagner 2004, Van Teeffelen
 and Ovaskainen 2007). Discounting the results of
 nonspatial OLS in favor of that of spatial models when
 the coefficients differ is thus not tenable (Bini et al.
 2009).

 Differentiating the sources of SAC

 Instead, researchers should focus on the sources of
 RSA and hence on what causes the differences between

 spatial and nonspatial methods. Although little emphasis
 has been put on disentangling the sources of RSA (Van
 Teeffelen and Ovaskainen 2007), understanding species
 environment relationships can only be achieved by
 distinguishing between endogenous and exogenous SAC
 (Wagner and Fortin 2005, Fortin and Dale 2009). This is

 mostly done by partitioning the spatial pattern into a pure
 environmental component, a pure spatial component, a
 partition shared by environmental and spatial influence,
 and an unexplained portion (Borcard et al. 1992, 2004,
 Legendre et al. 2005, 2009, Peres-Neto et al. 2006,
 Lalibert? et al. 2009). Scale influences the amount of
 variation explained by environmental predictors (Lali
 bert? et al. 2009, Legendre et al. 2009), where erroneously
 ignoring landscape context leads to a downward-biased
 contribution of environmental predictors and an upward
 biased contribution of pure spatial influences (Appendix).
 Consequently, conclusions regarding the contributions of
 exogenous and endogenous processes based on such
 analyses are thus scale-dependent: a scale mismatch
 leaves room for the inference that endogenous processes
 are at play even when only exogenous factors are driving
 the response variable. Much weight thus rests upon
 rationales used in the selection of appropriate spatial
 scales; yet they are often selected based on data
 availability, convenience, or our human perception of
 the system (Mayer and Cameron 2003, Dormann 2007,

 Wheatley and Johnson 2009).

 Generality and caveats

 Although we have framed our analysis in terms of the
 relationships between species distributions and land
 scape predictors, our arguments are not limited to such
 analyses only, but apply to a large array of ecological
 investigations where ecological responses are regressed
 against landscape predictors. Our analyses were kept
 simple for the purpose of demonstration, yet more
 complex analyses can be conducted within the frame
 work outlined in this paper, e.g., by including distance
 decay relationships in the specification of the spatial
 weight matrix W. However, we do not claim that
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 explicitly considering scale effects necessarily increases
 our understanding of ecological phenomena, since
 ecological analyses are mostly correlative and are thus
 not strict inferential tests of causality: they can only
 suggest potential explanatory factors (Diniz-Filho et al.
 2003). Moreover, cross-scale correlations can confound
 the interpretation of species-environment relationships,
 since predictors at one scale might be correlated with
 predictors at other scales (Mayor et al. 2007).

 Conclusion

 We conclude that a scale mismatch decreases the
 portion of spatial variation explained by landscape
 predictors, while elevating the level of RSA and thereby
 obstructing inferential tests. Moreover, it leads to error
 regressor correlations resulting in problematic parameter
 estimation. Because accurately describing the strength
 and significance of species-environment relationships is
 central to understanding the functioning of ecosystems,
 conserving biodiversity and managing ecosystems, we
 argue that explicitly considering scaling issues should be
 part of the formal framework within which proper
 estimation and inference are carried out. Doing so could
 contribute to a better understanding of spatial patterns
 in ecological phenomena by avoiding false inferences.

 The simplicity, power and many important potential
 applications make the approach outlined in this paper a
 useful addition to ecologists' toolbox.

 Acknowledgments

 We thank Carsten Dormann for sharing the data set
 employed in this paper as well as valuable insights. We also
 thank Mike Peel, Edward Kohi, Sip van Wieren, Raymond
 Florax, and two anonymous referees for stimulating and
 constructive comments on draft manuscripts. This study was
 financially supported by The Netherlands Foundation for the
 Advancement of Tropical Research (WOTRO) of The Nether
 lands Organization for Scientific Research (NWO).

 Literature Cited

 Anselin, L. 2002. Under the hood. Issues in the specification
 and interpretation of spatial regression models. Agricultural
 Economics 27:247-267.

 Anselin, L. 2006. How (not) to lie with spatial statistics.
 American Journal of Preventive Medicine 30:S3-S6.

 Anselin, L. 2009. Spatial regression. Pages 255-275 in A. S.
 Fotheringham and P. A. Rogerson, editors. The SAGE
 handbook of spatial analysis. SAGE Publications, Los
 Angeles, California, USA.

 Anselin, L., R. J. G. M. Florax, and S. J. Rey. 2004. Advances
 in spatial econometrics: methodology, tools and applications.
 Springer-Verlag, Berlin, Germany.

 Ayinde, K. 2007. A comparative study of the performances of
 the OLS and some GLS estimators when stochastic
 regressors are both collinear and correlated with error terms.
 Journal of Mathematics and Statistics 3:196-200.

 Beale, C. M., J. J. Lennon, D. A. Elston, M. J. Brewer, and
 J. M. Yearsley. 2007. Red herrings remain in geographical
 ecology: a reply to Hawkins et al. (2007). Ecography 30:845
 847.

 Betts, M. G., L. M. Ganio, M. M. P. Huso, . A. Som, F.
 Huettman, J. Bowman, and . A. Wintle. 2009. The
 ecological importance of space in species distribution models:
 a comment on Dormann et al. Ecography 32:374-378.

 Bini, L. M., J. A. F. Diniz-Filho, T. F. L. V. B. Rangel, and
 T. S. B. Akre, et al. 2009. Coefficient shifts in geographical
 ecology: an empirical evaluation of spatial and non-spatial
 regression. Ecography 32:193-204.

 Bivand, R. 2009. spdep: spatial dependence: weighting schemes,
 statistics and models. R package version 0.4-34. (http://cran.
 r-project.org/web/packages/spdep/)

 Bjornstad, O. N. 2009. ncf: spatial nonparametric covariance
 functions. R package version 1.1-2. (http://cran.r-project.
 org/web/packages/ncf/)

 Borcard, D., and P. Legendre. 2002. All-scale spatial analysis of
 ecological data by means of principal coordinates of
 neighbour matrices. Ecological Modelling 153:51-68.

 Borcard, D., P. Legendre, C. Avois-Jacquet, and H. Tuomisto.
 2004. Dissecting the spatial structure of ecological data at
 multiple scales. Ecology 85:1826-1832.

 Borcard, D., P. Legendre, and P. Draqeau. 1992. Partialling out
 the spatial component of ecological variation. Ecology 73:
 1045-1055.

 Brennan, J. M., D. J. Bender, T. A. Contreras, and L. Fahrig.
 2002. Focal patch landscape studies for wildlife management:
 optimizing sampling effort across scales. Pages 67-91 in J.
 Liu and W. W. Taylor, editors. Integrating landscape ecology
 into natural resource management. Cambridge University
 Press, Cambridge, UK.

 Cliff, A. D., and J. K. Ord. 1981. Spatial processes: models and
 applications. Pion, London, UK.

 Clifford, P., S. Richardson, and D. Hemon. 1989. Assessing the
 significance of the correlation between two spatial processes.
 Biometrics 45:123-134.

 Cressie, N. A. C. 1991. Statistics for spatial data. John Wiley
 and Sons, New York, New York, USA.

 Currie, D. J. 2007. Disentangling the roles of environment and
 space in ecology. Journal of Biogeography 34:2009-2011.

 de Knegt, H. J., T. A. Groen, C. A. D. M. Van de Vijver,
 H. H. T. Prins, and F. Van Langevelde. 2008. Herbivores as
 architects of savannas: inducing and modifying spatial
 vegetation patterning. Oikos 117:543-554.

 de Knegt, H. J., G. M. Hengeveld, F. Van Langevelde, W. F.
 De Boer, and K. P. Kirkman. 2007. Patch density determines
 movement patterns and foraging efficiency of large herbi
 vores. Behavioral Ecology 18:1065-1072.

 Diniz-Filho, J. A. F., and L. M. Bini. 2005. Modelling
 geographical patterns in species richness using eigenvector
 based spatial filters. Global Ecology and Biogeography 14:
 177-185.

 Diniz-Filho, J. A. F., L. M. Bini, and B. A. Hawkins. 2003.
 Spatial autocorrelation and red herrings in geographical
 ecology. Global Ecology and Biogeography 12:53-64.

 Diniz-Filho, J. A. F., A. Hawkins, L. M. Bini, P. De Marco,
 and M. Blackburn. 2007. Are spatial regression methods a
 panacea or a Pandora's box? A reply to Beale et al. (2007).
 Ecography 30:848-851.

 Dormann, C. F. 2007. Effects of incorporating spatial
 autocorrelation into the analysis of species distribution data.
 Global Ecology and Biogeography 16:129-138.

 Dormann, C. F. 2009. Response to Comment on "Methods to
 account for spatial autocorrelation in the analysis of species
 distributional data: a review." Ecography 32:379-381.

 Dormann, C, et al. 2007. Methods to account for spatial
 autocorrelation in the analysis of species distributional data:
 a review. Ecography 30:609-628.

 Dormann, C. F., and R. Seppelt. 2007. Do organisms use
 landscape at certain spatial scales? A null model for diversity
 pattern in relation to the spatial extend of landscapes. Pages
 35-42 in B. Shchr?der, H. I. Reuter, and . Reineking, editors.

 Multiple scales in ecology. Peter Lang, Internationaler Verlag
 der Wissenschaften, Frankfurt am Main, Germany.

 Dutilleul, P., P. Clifford, S. Richardson, and D. Hemon. 1993.
 Modifying the t test for assessing the correlation between two
 spatial processes. Biometrics 49:305-314.

This content downloaded from 130.89.47.23 on Thu, 18 Jul 2019 13:42:38 UTC
All use subject to https://about.jstor.org/terms



 August 2010 SPATIAL AUTOCORRELATION AND SCALING 2465

 Ebbes, P., M. Wedel, U. B?ckenholt, and T. Steerneman. 2005.
 Solving and testing for regressor-error (in)dependence when
 no instrumental variables are available: with new evidence for

 the effect of education on income. Quantitative Marketing
 and Economics 3:365-392.

 Florax, R. J. G. M., and H. Folmer. 1992. Specification and
 estimation of spatial linear regression models: Monte Carlo
 evaluation of pre-test estimators. Regional Science and
 Urban Economics 22:405-432.

 Fortin, M. J., and M. R. T. Dale. 2005. Spatial analysis: a guide
 for ecologists. Cambridge University Press, Cambridge, UK.

 Fortin, M. J., and M. R. T. Dale. 2009. Spatial autocorrelation.
 Pages 89-103 in A. S. Fotheringham and P. A. Rogerson,
 editors. The SAGE handbook of spatial analysis. SAGE
 Publications, Los Angeles, California, USA.

 Gotway, C. A., and L. J. Young. 2002. Combining incompat
 ible spatial data. Journal of the American Statistical

 Association 97:632-648.
 Graham, M. H. 2003. Confronting multicollinearity in ecolog

 ical multiple regression. Ecology 84:2809-2815.
 Griffith, D. A., and P. R. Peres-Neto. 2006. Spatial modeling in

 ecology: the flexibility of eigenfunction spatial analyses.
 Ecology 87:2603-2613.

 Haining, R. P. 2003. Spatial data analysis: theory and practice.
 Cambridge University Press, Cambridge, UK.

 Hawkins, . A., J. A. Diniz-Filho, L. M. Bini, P. De Marco,
 and . M. Blackburn. 2007. Red herrings revisited: spatial
 autocorrelation and parameter estimation in geographical
 ecology. Ecography 30:375-384.

 Holland, J. D., D. G. Bert, and L. Fahrig. 2004. Determining
 the spatial scale of species' response to habitat. Bioscience
 54:227-233.

 Keitt, . ., . N. Bjornstad, P. M. Dixon, and S. Citron
 Pousty. 2002. Accounting for spatial pattern when modeling
 organism-environment interactions. Ecography 25:616-625.

 Kissling, W. D., and G. Carl. 2008. Spatial autocorrelation and
 the selection of simultaneous autoregressive models. Global
 Ecology and Biogeography 17:59-71.

 K?hn, I. 2007. Incorporating spatial autocorrelation may invert
 observed patterns. Diversity and Distributions 13:66-69.

 Lalibert?, E., A. Paquette, P. Legendre, and A. Bouchard. 2009.
 Assessing the scale-specific importance of niches and other
 spatial processes on beta diversity: a case study from a
 temperate forest. Oecologia 159:377-388.

 Legendre, P. 1993. Spatial autocorrelation: trouble or new
 paradigm? Ecology 74:1659-1673.

 Legendre, P., D. Borcard, and P. R. Peres-Neto. 2005.
 Analyzing beta diversity: partitioning the spatial variation
 of community composition data. Ecological Monographs 75:
 435-450.

 Legendre, P., M. R. T. Dale, M. J. Fortin, J. Gurevitch, M.
 Hohn, and D. Myers. 2002. The consequences of spatial
 structure for the design and analysis of ecological field
 surveys. Ecography 25:601-615.

 Legendre, P., X. Mi, H. Ren, K. Ma, M. Yu, I. F. Sun, and F.
 He. 2009. Partitioning beta diversity in a subtropical broad
 leaved forest of China. Ecology 90:663-674.

 Lennon, J. J. 2000. Red-shifts and red herrings in geographical
 ecology. Ecography 23:101-113.

 Levin, S. A. 1992. The problem of pattern and scale in ecology:
 the Robert H. MacArthur Award lecture. Ecology 73:1943
 1967.

 Luskin, R. C. 2008. Wouldn't it be nice ...? The automatic
 unbiasedness of OLS (and GLS). Political Analysis 16:345
 349.

 Mayer, A. L., and G. N. Cameron. 2003. Consideration of
 grain and extent in landscape studies of terrestrial vertebrate
 ecology. Landscape and Urban Planning 65:201-217.

 Mayor, S. J., J. A. Schaefer, D. C. Schneider, and S. P.
 Mahoney. 2007. Spectrum of selection: new approaches to
 detecting the scale-dependent response to habitat. Ecology
 88:1634-1640.

 Mayor, S. J., J. A. Schaefer, D. C. Schneider, and S. P.
 Mahoney. 2009. The spatial structure of habitat selection: a
 caribou's-eye-view. Acta Oecologica 35:253-260.

 Mclntire, E. J. B., and A. Fajardo. 2009. Beyond description:
 the active and effective way to infer processes from spatial
 patterns. Ecology 90:46-56.

 Peres-Neto, P. R., P. Legendre, S. Dray, and D. Borcard. 2006.
 Variance partitioning of species data matrices: estimation
 and comparison of fractions. Ecology 87:2614-2625.

 Pinheiro, J. C, D. Bates, S. DebRoy, and D. Sarkar. 2008.
 nlme: Linear and nonlinear mixed effects models. R package
 version 3.1-90. (http://cran.r-project.org/web/web/packages/
 nlme/)

 R Development Core Team. 2009. R: a language and
 environment for statistical computing, version 2.8.1. R
 Foundation for Statistical Computing, Vienna, Austria.
 (www.R-project.org)

 Schabenberger, O., and C. A. Gotway. 2005. Statistical
 methods for spatial data analysis. Chapman and Hall, Boca
 Raton, Florida, USA.

 Schlather, M. 2008. RandomFields: simulation and analysis of
 random fields, R package version 1.3.35. (http://cran.
 r-project.org/web/packages/RandomFields/index.html)

 Segurado, P., M. B. Ara?jo, and W. E. Kunin. 2006.
 Consequences of spatial autocorrelation for niche-based
 models. Journal of Applied Ecology 43:433-444.

 Steffan-Dewenter, I., U. Munzenberg, C. Burger, C. Thies, and
 T. Tscharntke. 2002. Scale-dependent effects of landscape
 context on three pollinator guilds. Ecology 83:1421-1432.

 Tiefelsdorf, M., and D. A. Griffith. 2007. Semiparametric
 filtering of spatial autocorrelation: the eigenvector approach.
 Environment and Planning A 39:1193-1221.

 Van Langevelde, F. 2000. Scale of habitat connectivity and
 colonization in fragmented Nuthatch populations. Ecogra
 phy 23:614-622.

 Van Teeffelen, A. J. A., and O. Ovaskainen. 2007. Can the
 cause of aggregation be inferred from species distributions?
 Oikos 116:4-16.

 Wagner, . H. 2004. Direct multi-scale ordination with
 canonical correspondence analysis. Ecology 85:342-351.

 Wagner, . H., and M. J. Fortin. 2005. Spatial analysis of
 landscapes: concepts and statistics. Ecology 86:1975-1987.

 '"Wheatley, M., and C. Johnson. 2009. Factors limiting our
 understanding of ecological scale. Ecological Complexity 6:
 150-159.

 Wong, D. 2009. The modifiable areal unit problem (MAUP).
 Pages 105-123 in A. S. Fotheringham and P. A. Rogerson,
 editors. The SAGE handbook of spatial analysis. SAGE
 Publications, Los Angeles, California, USA.

 Wu, J. 2007. Scale and scaling: a cross-disciplinary perspective.
 Pages 115-136 in J. Wu and R. J. Hobbs, editors. Key topics
 in landscape ecology. Cambridge University Press, Cam
 bridge, UK.

 APPENDIX

 The influence on omitting landscape context when partitioning the variance of our virtual species into environmental and spatial
 contributions (Ecological Archives E091-177-A1).
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