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Proposed radioactive waste repositories require long residence times within deep

geological settings for which we have little knowledge of local or regional subsurface

dynamics that could affect the transport of hazardous species over the period of

radioactive decay. Given the role of microbial processes on element speciation and

transport, knowledge and understanding of local microbial ecology within geological

formations being considered as host formations can aid predictions for long term

safety. In this relatively unexplored environment, sampling opportunities are few

and opportunistic. We combined the data collected for geochemistry and microbial

abundances from multiple sampling opportunities from within a proposed host formation

and performed multivariate mixing and mass balance (M3) modeling, spatial analysis and

generalized linear modeling to address whether recharge can explain how subsurface

communities assemble within fracture water obtained from multiple saturated fractures

accessed by boreholes drilled into the crystalline formation underlying the Chalk River

Laboratories site (Deep River, ON, Canada). We found that three possible source

waters, each of meteoric origin, explained 97% of the samples, these are: modern

recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years

before present) and a putative saline source assigned as Champlain Sea (also ca.

12000 years before present). The distributed microbial abundances and geochemistry

provide a conceptual model of two distinct regions within the subsurface associated

with bicarbonate – used as a proxy for modern recharge – and manganese; these

regions occur at depths relevant to a proposed repository within the formation. At the

scale of sampling, the associated spatial autocorrelation means that abundances linked

with geochemistry were not unambiguously discerned, although fine scale Moran’s

eigenvector map (MEM) coefficients were correlated with the abundance data and

suggest the action of localized processes possibly associated with the manganese and

sulfate content of the fracture water.
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autocorrelation
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INTRODUCTION

A goal of ecology is to relate population densities from within a
region of interest to local or regional environmental conditions,
however, analyses of spatially distributed sampling locations can
be complicated by autocorrelation (Dormann et al., 2007; Gilbert
and Bennet, 2010) or a lack of independence between nearby
sampling locations. This characteristic, if not recognized, can
lead to incorrect conclusions for population and environment
interrelationships. When modeling population densities within a
region of interest, autocorrelation can be caused by, for example,
distance relationships in biological processes such as dispersal,
by assuming an incorrect relationship between abundances and
environment within a model, or by not accounting for an
important environmental determinant that in itself is spatially
structured and thus causes spatial structuring in the response
(Dormann et al., 2007). Discovery of distance-relationships
associated with biological processes provides an important and
interesting insight on community patterns while the assumptions
made when modeling population abundances can lead to
incorrect conclusions by having model residuals that are not
randomly distributed, and so are themselves autocorrelated
(Dormann et al., 2007).

Within the volume of proposed geologic repositories for
hosting waste with inventories of long-lived radionuclides,
information on the microbial abundances within an undisturbed
setting at depth can help formulate conceptual models for long-
term subsurface dynamics over the expected inventory decay
period. A microbial community is defined as an assemblage of
potentially interacting taxa that co-occur over space and time
(Nemergut et al., 2013). Differences in abundances over space
and time can occur through a combination of processes such as
by abiotic selection and biotic competition or by speciation and
drift between unconnected communities (Hubbell, 2001; Vellend,
2010). Microbial distributions in natural water systems also tend
to be dispersed (Bliss and Fisher, 1953; El-Shaarawi et al., 1981;
Haas and Heller, 1986; Hilbe, 2011; Harrison, 2014); occurring as
clusters of cells or associated with suspended particles.

In this study, distributions of the total and viable count
data and the geochemistry data were derived from sampling
multiple saturated fractures that were accessed from boreholes
drilled into overlapping bedrock assemblages underlying the
Chalk River Laboratories (Deep River, ON, Canada) site. Data
collection was part of a siting assessment for a potential
future geologic waste management facility at the CRL site
(Thompson et al., 2011). The locations of these boreholes
are shown in Figure 1. Previous studies performed within
this formation (Stroes-Gascoyne et al., 2011; Beaton et al.,
2016) showed that bacterial taxa were numerically dominant in
the fracture water and that these bacteria displayed nitrogen
metabolism with episodes of sulfur metabolism. This finding
is akin to other crystalline subsurface environments hosting
microbial communities that display metabolic activity such as
nitrate, iron and sulfate reduction (Kieft, 1990; Jain et al.,
1997; Haveman et al., 1999; Sahl et al., 2008; Nyyssönen
et al., 2012). Although the bacteria were mainly uncultured, the
closest cultivated representatives were from the phenotypically

diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes,
Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa
were identified but only a few were found in abundance (>1%)
across all 16S rRNA assemblages. A decay of phylogenetic
similarity with distance up 1.5 km was evident within sampling
locations separated by up to 5 km of rock (Beaton et al., 2016).
We propose that this decay distance is related to dispersal within
vertical oriented fractures. To test for the possible influence
of recharge and metabolism on total and viable abundances
we extend our findings for nitrogen metabolism and sulfate
reduction (Stroes-Gascoyne et al., 2011) and for the distance
decay of similarity (Beaton et al., 2016) by analyzing the relative
influences of the fracture water on microbial abundances and
viability; an aspect of this subsurface habitat that had not been
evaluated previously. Isotopic analysis of the dilute fracture
water indicates it is of meteoric origin – with no significant
rock-water interactions (King-Sharp et al., 2016); Supplementary
Figure S1 shows the stable isotope composition for hydrogen
and oxygen in the fracture water relative the Vienna Standard
Mean OceanWater (VSMOW). This recharge provides a possible
source of soluble species for microbial processes and is a medium
for dispersal. Porewater analysis from rock cores (Peterman
et al., 2016) identified nitrogen compounds within the porewater
composition that were not detected within the fracture water,
so despite the stable isotope compositions relative to VSMOW
(Supplementary Figure S1), rock-water interactions relevant to
microbial abundances may still be occurring.

To gauge interrelationships between subsurface microbial
abundances with the geochemistry we combined the abundance
and geochemical data from multiple sampling opportunities
and performed modeling to address whether recharge can
explain how subsurface communities assemble within these
fractures. The chemical species within the fracture water were
evaluated for their significance as explanatory variables by a
multivariate approach in which the fracture water compositions
were compared with the compositions of known and derived
compositional end-members. The explanatory power of the
end-member compositions provide insight into probable source
waters and, therefore, insight into the history of recharge,
mixing and other geological processes (Laaksoharju et al., 1999;
Laaksoharju et al., 2008) that may have shaped the current
fracture water compositions. Moran’s I was used to determine
spatial autocorrelation between sampling locations and the
fracture water components were evaluated by a generalized
linear model (GLM) (Venables and Ripley, 2002) for their
significance as possible metabolic substrates associated with
microbial abundances. Positive Moran’s eigenvector map (MEM)
coefficients were included as independent variables in the GLM
to gauge for spatial autocorrelation within the model residuals.

MATERIALS AND METHODS

Fracture Water Sampling and Analysis
Fracture water was collected using a WestbayTM Multilevel
Groundwater Monitoring System (Schlumberger Water
Services). Supplementary Figure S2 shows a schematic of a
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FIGURE 1 | Fracture water sampling locations, Chalk River Laboratories,

Deep River, ON, Canada. Boreholes CR-9 and CR-18 were drilled into the

bedrock ca. 1980, boreholes CRG-1 through CRG-7 were drilled into the

bedrock since 2005. All boreholes except CR-18 were sealed and isolated

into multiple intervals using WestbayTM Systems. Borehole CR-18 is an open

borehole. The shaded area transects the boreholes used for visualizing the M3

results shown in Figure 3.

borehole with an installed Westbay System R©. This Figure
illustrates how the Westbay tubing and packers isolate multiple
zones within the borehole thus preventing unnatural vertical
fracture water flow within the borehole itself. The tubing fluid
is isolated from the formation fluid. In this arrangement,
ambient formation fluid flow can pass through the annulus.
From inside the tubing, formation fluid can be accessed by
lowering a Westbay sampler and container assembly (also
shown) to normally closed valved ports positioned between
the packers. A larger schematic illustrates a deployed Westbay
sampler assembly that is engaged at a selected port. Once the
sampler is positioned and engaged, the remotely operated
control valve in the sampler is opened to allow formation fluid
from the zone to flow into the empty container. The process is
monitored by observing changes in fluid pressure during the
sequence of operations (see a typical trace of pressure vs. time
in Supplementary Figure S2). Once the container is filled, the
sampler valve is closed to seal the formation fluid inside the
container at in situ pressure. The assembly is disengaged from
the port (the port valve automatically closes) and the fluid in the
sealed container is retrieved to the surface for further handling.

The fracture water sampler consists of four 250 mL stainless
steel tubes connected in series by tubing and Swagelok fittings.
Prior to each sampling, the tubes were sterilized by autoclave and
the fittings were sterilized by washing them with 70% ethanol.
Validation of the sterilization and transport procedures was
performed using sterilized water and PCR with bacterial rRNA
16S primers (Muyzer et al., 1993). Since the tube assemblies
contacted only the interior of the casing surface, the probability

of introducing surface microbes into the sampled volumes was
minimal.

The borehole locations within the study site region of interest,
and their names, are shown in Figure 1. These sampling locations
are situated between the geological boundaries created by the
Maskinonge Lake fault, the Mattawa fault (Ottawa River) and
by East-West trending diabase dykes that traverse the study site
along the boreholes CR-9, CRG-3 and CRG-6. Fracture water was
collected from sealed borehole CRG-1, CRG-2, CRG-3, CRG-
4A, CRG-6 and CR-9. Fracture water from an open unsealed
borehole, CR-18, was also sampled. Depths of the sampled
fracture water ranged from 35 to 780m (137 to−800m elevation,
relative to sea level).

The fracture water pH [Beckman PHI 265 pH/Temp/mV
meter (Beckman Coulter, Inc.)] and conductivity [YSI Model 30
ConductivityMeter (YSI Inc., Yellow Springs, OH, United States)
were measured and aliquots for elemental analysis were filtered
through a 0.45 µm filter (isopore polycarbonate, Millipore,
Billerica,MA, United States) then immediately preserved in nitric
acid (ultra-trace grade, SeastarTM, Baseline R©, Fisher Scientific,
Ottawa, ON, Canada). Elemental composition of the fracture
water was determined by inductively coupled plasma-mass
spectrometry (ICP-MS, using either a Varian 820-MS (Agilent
Technologies, Inc.) or an Element XR (Thermo Scientific)) and
by inductively coupled plasma atomic emission spectroscopy
(ICP-AES, Optima 3300, Perkin Elmer). Anion concentrations
were determined using a Dionex 3000 ICS ion chromatograph
(Dionex, Sunnyvale, CA, United States). Dissolved organic
(DOC) and inorganic carbon (DIC) were determined using a
Dohrmann, model Phoenix 8000-UV Persulfate TOC Analyzer
(Teledyne Teckmar, Mason, OH, United States).

Total and viable microbial densities were determined by
fluorescence microscopy with a Nikon E600 microscope and a
Zeiss Axiophot microscope after filtering the separate stained
samples onto black polycarbonate filters (Fisher Scientific,
25 mm, 0.22 µm pore size); at least fifteen fields of view and at
least 300 cells were counted per filter for a coefficient of variation
of 5.8% per filter. Direct counts for total cell densities were
determined in triplicate 1 mL volumes – within 4 h of sampling
at the formation pressure and within 1 h of opening the sample
tubes including a 30 min incubation time. Total cell densities
were determined using the DNA intercalating dye, Sybr Green II
(Life Technologies); because separate aliquots were shipped to a
another laboratory, total cell counts were also determined within
24 h of opening the sample tubes, in this case, using Acridine
Orange (Sigma–Aldrich) to emulate the procedure employed
at the receiving laboratory; the two dyes and two time points
gave similar results. Direct counts for viable cell densities were
determined in triplicate 1 mL volumes, also within 1 h of opening
the sampling tubes, using dyes that are sensitive to different
characteristics of viable microbial cells: the soluble 5-cyano-2,3-
ditolyl tetrazolium chloride (CTC, Sigma–Aldrich) was used to
evaluate respiratory activity within the microbial population as
detected by the reduction of CTC to the insoluble fluorescent
CTC-formazan (Schaule et al., 1993); the lipophilic cation,
rhodamine-123 (R123 Sigma–Aldrich) (McFeters et al., 1998;
Fuller et al., 2000) was used to evaluate cells within the microbial
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population that display a membrane potential difference; and
carboxyfluorescein diacetate (CFDA, Sigma–Aldrich) was used to
evaluate enzymatic activity (Schaule et al., 1993).

Multivariate Mixing and Mass Balance
Analysis
The fracture water components sodium (Na+), calcium (Ca2+),
magnesium (Mg2+), bicarbonate (HCO3

−), chloride (Cl−),
sulfate (SO4

2−) and the isotopes tritium, deuterium and stable
oxygen, δ18O, were used as input data for the multivariate,
mixing and mass balance analysis model (M3, performed by
3D Terra, Montreal, Quebec). The M3 model consists of
four steps: a principal component analysis (PCA); selection
of reference waters (end-members) followed by calculations
of mixing proportions; and finally mass balance calculations
(Laaksoharju et al., 1999; Laaksoharju et al., 2008).

Three end-members were found to describe the fracture water;
these are referred to as: (1) ‘recharge,’ (2) ‘Champlain Sea’ (or
‘saline’), and (3) ‘glacial melt’ (not shown). The stable isotope
values for the melt water end member were taken from the
literature: the δ18O value from Frape and Fritz (1987) and
Remenda et al. (1994). The deuterium value was determined
by Rozanski et al. (1993). The tritium value, which governs the
proportion of recharge, was considered decayed to zero. The end-
member referred to as ‘Champlain Sea’ was obtained from nearby
sediment pore water from this period in the site history that had
a salinity of 6.1% (Torrance, 1988). The end-member referred to
as modern recharge was calculated as an average of the chemistry
of the upper section of boreholes CRG-2, CRG-3, CRG-4A and
CRG-6-1 and CR-9-1. The software, Surfer (Golden Software),
was used to create 2D cross section maps.

Generalized Linear Model with a
Negative Binomial Distribution
The replicate values for microbial cell densities and geochemistry
were averaged for each borehole interval sampling location.
Supplementary Figure S3 shows a comparison of quantile-
by-quantile plots for the total cell count distribution against
theoretical normal and negative binomial distributions. The
environmental and spatial data were evaluated as explanatory
variables using the glm.nb() function from the R package
‘MASS’ (Venables and Ripley, 2002). Significant variables were
determined by stepwise modeling. Model selection was based
on minimizing the Akaike information criterion (AIC). Analysis
of variance was applied to the reduced model to determine the
significance of the retained variables. Only those values with
p < 0.05 were considered significant. All of the model results are
provided in an Excel file in the Supplemental Information.

Spatial Autocorrelation and Moran’s
Eigenvector Map Coefficients
Moran’s eigenvector map were created by principle coordinates
of neighbor matrices (Borcard and Legendre, 2002; Dray et al.,
2006) fromwithin the R packages ‘sdep’ and ‘adespatial’. Amatrix
of spatial eigenvectors was built from a distance matrix of
Easting and Northing, zone 18, Universal Transverse Mercator

coordinates for each borehole interval. The functions used to
create the spatial weightings matrix were nbtri(), that converts
the spatial coordinates of the sampling locations into a distance
neighbors map, and the function nb2listw() that creates the
weightings matrix from the neighbors map. The eigenvectors for
positive values for Moran’s I reveal different spatial structures
over the entire range of scales encompassed by the geographical
sampling area. The first MEM values generated in the analyses
represent broader spatial structures, and the last MEM values
represent finer spatial structures. Values for Moran’s I at each
sampling location were compared to a null distribution of the
global Moran’s I using the function localmoran(). The resulting
z-values were plotted to display locations with spatial correlations
that were more than two standard deviations from the null mean.

RESULTS

Multivariate Mixing and Mass Balance
(M3) Modeling
The results from the PCA are shown in Figure 2. The PCA
results are displayed three times to illustrate modeling results
for mixing of the three fracture water compositional end-
members; these were the percent mixing proportion for glacial
melt water (Figure 2, upper left panel), the percent mixing
proportion for Champlain Sea (Figure 2, upper right panel), and
the percent mixing proportion for modern recharge (Figure 2,
bottom panel). The first and second principal components
accounted for 71% of the variance in the geochemistry. The
area encompassed by the three end-members (Figure 2, triangle
joining the three compositional end-members) explains over 97%
of the fracture water samples; most of the individual fracture
water compositions plot between the three reference waters.
The fracture water samples that plot outside the region of the
three end members are listed as open circles (Figure 2, all three
panels). The explanatory power of glacial melt, Champlain Sea
andmodern recharge may indicate that these waters have affected
the present fracture water composition and thus represent
historical events that could have influenced the fracture water
microbial populations. The modeled mixing proportions of the
three source waters suggests that fracture water sampled from
boreholes CRG-1, CRG-2, CRG-3, CRG-4A, CRG-6, and CR-
18 contain mainly modern recharge with a small glacial melt
mixing proportion of up to ∼40%. Fracture water sampled from
borehole CR-9 includes proportions from these source waters
and an additional mixing proportion from a saline water source,
referred to here as Champlain Sea. Fracture water accessed from
intervals 11 and 12 from borehole CR-9 have mainly a saline
water type signature of ∼70%. By this model, the fracture water
from CR-9-3, CR-9-8 and CR-18 is a mixture of Champlain Sea,
melt water and modern water. Distributions of the three possible
water sources is represented in cross section in Figure 3 (left
panel) for modern recharge (top left panel), glacial melt (middle
left panel) and Champlain Sea (bottom left panel). The depth
and orientation profiles for boreholes CR-9, CRG-1 and CRG-3
are also shown. These boreholes form an East-West transect
across the study site (depicted by the shaded area in Figure 1);
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FIGURE 2 | M3 Principal Component analysis of the major fracture water ions and stable oxygen δ18O. The results are shown in relation to the M3 modeling results

for source water mixing proportions: glacial melt, saline and recharge waters.

the sampling locations within these boreholes that were used
for microbial abundance determinations are shown in Figure 3

as white dots. The visualizations were created by 2-D kriging
interpolating between the sampling locations within each of these
boreholes and do not account for the fractures that would provide
the water flow paths throughout the rock matrix. The left-hand
side of Figure 3 shows the mixing proportion by prospective
source water and the right-hand side of the Figure 3 shows the
distributions of geochemical signatures that correspond to these
water sources: bicarbonate (Figure 3, top right panel) for modern
recharge; measured δ18O values (Figure 3, middle right panel) for
glacial melt water and chloride (Figure 3, bottom right panel) for
a saline source water. These components of the fracture water,
therefore, may represent a signature for source water in a GLM.

Spatial Autocorrelation
Spatial autocorrelation refers to similarities in attributes between
adjacent locations compared to the attributes between more
distant locations (Miller, 2004). Spatial autocorrelation in
abundance data can be informative of processes that drive

community patterns. Spatial autocorrelation in model residuals,
however, can lead to incorrect interpretation of the processes
that drive community patterns. To test for spatial autocorrelation
within the sampled fracture water, MEM coefficients were
calculated and those coefficients associated with positive Moran’s
I were added to the GLM as independent variables. These
coefficients may represent unknown processes occurring locally
within the projected area. Local values for Moran’s I were
also compared with a null distribution of the global Moran’s
I to identify attributes at sampling locations (for example cell
counts) with Moran’s I values that were more than two standard
deviations from the null mean. A local Moran’s I for an attribute
that is more than two standard deviations from the null mean
in the positive direction indicates that the spatial distribution
of that attribute is more clustered than would be expected if
underlying spatial processes were random; in this case, the null
hypothesis of random distribution of a given ‘attribute’ would be
rejected. A local Moran’s I for an attribute that is more than two
standard deviations from the null mean in the negative direction
indicates the spatial distribution of high and low values for that
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FIGURE 3 | M3 results for source water end members (left) and a candidate signature associated with the source water (right). The results are shown in cross

section referenced to the boreholes CR-9, CRG-1, and CRG-3.

attribute were more spatially dispersed than would be expected if
underlying spatial processes were random; in this case, the null
hypothesis would also be rejected.

The z-values calculated for the distribution of the various
‘attributes’ – namely, the cell count densities, concentrations of
soluble compounds, pH and the positive MEM coefficients – are
shown in Figure 4; the sampling locations are listed by borehole
and interval following a West-to-East direction from borehole
CR-18 to borehole CRG-2 (see Figure 1). The dashed gray lines
and the solid gray lines mark where the first and second standard
deviations from the null mean lie. The bars for attributes that
extend beyond the mark for the second standard deviation, in
the positive or negative direction, identify the sampling locations

with spatially non-random attributes. From the plots in Figure 4,
the deeper sampling locations within borehole CR-9 at intervals
8, 11, and 12, display non-random attributes relative to the
global distribution of cell counts, or clustering as lower total
cell counts; lower bicarbonate concentrations and higher sulfate
and manganese concentrations; and by the MEM coefficients
labeled MEM5, MEM7 and MEM10. These intervals are also the
sampling locations with a saline signature (Figures 2, 3, bottom
left panel); even so, the chloride was not identified as being
spatially autocorrelated.

The total cell counts from the shallow sampling location
within the same borehole, located at interval 2, is dispersed
compared to the null mean of spatially distributed counts values;
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FIGURE 4 | Spatial autocorrelation by sampling location [borehole and interval listed in a West-to-East direction starting with borehole CR-18 (see Figure 1)]. (Left):

total and viable cell densities. (Middle): soluble components of the fracture water. (Right): Positive Moran’s eigenvector map coefficients. The bars represent the

z-values calculated by subtracting the local Moran’s I value from the null mean value and normalizing by the null standard deviation. Those locations with z-values

more than two standard deviations from the null mean are significant. The gray lines mark first (dashed line) and second (solid line) standard deviations from the null

mean.

and the MEM coefficient, MEM1. Only two other sampling
locations had cell count densities that were outside the bounds
of the null spatial distribution: interval 7 of borehole CRG-4A
and interval 14 of borehole CRG-6. For these locations, interval
7 of borehole CRG-4A is elevated with respect to: the CTC
positive counts; the concentration of bicarbonate; and the MEM
coefficients, MEM2 and MEM5. Interval 14 of borehole CRG-6
is reduced with respect to: R123 positive counts; and the MEM
coefficient MEM4. These deviations from the global Moran’s I for
all the sampling locations suggest there are local processes that
influencing the microbial abundances.

Distribution of the Count Data
Values for total and viable cell densities in fracture water sampled
from each borehole are provided in Supplementary Table S1. How
the cell densities distribute across the sampling locations is shown
in Figure 5 as histograms and as boxplots by borehole arranged in
a West to East direction (from borehole CR-18 to borehole CRG-
2 as shown in Figure 1). The cell densities within boreholes CR-
18, CR-9, CRG-1 and CRG-2 form the lower density part of the
histograms and the cell densities within boreholes CRG-3, CRG-6
and CRG-4A form the higher density part of the histograms. The
same data is plotted as scatter plots by sampling location elevation
relative to sea level (Supplementary Figure S4, left panel) and by
the Longitude value for the borehole collar, were the borehole
enters the subsurface (Supplementary Figure S4, right panel;

these two figures show that borehole location show a wider range
of cell densities than does elevation.

To help identify possible drivers for the microbial abundances,
the distribution patterns for the total and viable cell densities
were also compared with the distributions of the fracture water
geochemistry (using data taken from Supplementary Table S1)
and to the rock porewater components: sulfate, bicarbonate,
ammonia, nitrate and nitrite (from Peterman et al., 2016). The
resulting quantile-by-quantile plots are shown in Supplementary
Figures S5–S8 and in Figure 5 beside the histograms for the cell
densities. Quantile-by-quantile plots allow for the distribution
patterns between two datasets to be compared; if the datasets
follow a similar distribution the data points plot along a straight
line; if the datasets do not follow a similar distribution pattern,
the points diverge from a straight line. We find from these
comparisons that the microbial cell densities distribute within the
subsurface like that for the fracture water and porewater sulfate,
the porewater ammonia and for the fracture water manganese,
but not for the fracture water bicarbonate or for the porewater
bicarbonate.

Supplementary Figure S5 show the cell density distributions
with the fracture water and porewater sulfate. The total cell
count data appear to have a distribution like that for the fracture
water sulfate while the CTC and R123 cell density distributions
deviate from the straight line (Supplementary Figure S5, top
panel). The opposite patterns are seen for porewater sulfate;
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FIGURE 5 | Distribution of total and viable cell counts. The boxplots are listed by borehole in a West-to-East direction starting with borehole CR-18 (see Figure 1).

Also shown are quantile-by-quantile plots for cell density distributions compared to the distributions for fracture water manganese, sulfate and bicarbonate.

the distributions for total cell count and the porewater sulfate
deviate from a straight line while the CTC and R123 cell densities
appears to have distributions like that for the porewater sulfate
(Supplementary Figure S5, bottom panel).

Comparisons with the distributions of fracture water and
porewater bicarbonate (Supplementary Figure S6) and of fracture
water manganese (Supplementary Figure S7) show that the count
data distributions are not like that for bicarbonate in the lower
quantiles (Supplementary Figure S6, top panel for fracture water,
bottom panel for porewater) but they are distributed that for like
manganese (Supplementary Figure S7).

Supplementary Figure S8 show the quantile-by-quantile plots
for the distributions of cell density the porewater nitrogen
compounds: ammonia, nitrite and nitrate. These components
of the porewater were not detected within the fracture water.
The plot shows that the distributions for total and CTC cell
densities are roughly linear with the distribution for ammonia
(Supplementary Figure S8, top panel). The total, CTC and
R123 cell densities are also roughly linear with the distribution
of nitrate concentrations but there is flattening in the middle
quantiles for nitrate. The plot comparing the cell densities
with porewater nitrite suggest these datasets follow different
distributions across the formation (Supplementary Figure S8,
bottom panel).

Generalized Linear Modeling of the
Count Data
The geochemical and descriptive data used for the GLM are
given in Supplementary Table S1. The negative binomial GLM
function within the R package ‘MASS’ (Venables and Ripley,
2002) provides a model to assign linear predictors (β) and a
description of the random error distribution of the count data.
The total and viable count data across all the sampling locations

were each used as response variables. Data for the geochemical
and positive MEM coefficients across all sampling locations were
used as the dependent variables. Unmeasured environmental
variables associated with the microbial cell density distribution
would form part of the random component of the resulting linear
model.

The independent variables were evaluated first for
model selection then stepwise model fitting was performed.
Metabolically relevant components of the geochemistry were:
pH; dissolved organic carbon (DOC); bicarbonate; sulfate; iron;
manganese; and phosphate. Bicarbonate ion is also a possible
signature for modern recharge (Figure 3). Data for chloride
ion were included as an explanatory variable for a saline source
water component, and the stable oxygen isotope (δ18O) data
were included as an explanatory variable for a glacial melt source
water component. The spatial weightings matrix identified 11
positive MEM coefficients; these were also included in a model.
The resulting coefficients (β) and the 5% confidence interval
values for the significant explanatory variables are listed in
Supplementary Table S2 (total counts), Supplementary Table S3
(CTC counts), Supplementary Table S4 (R123 counts) and
Supplementary Table S5 (CFDA counts). Only those explanatory
variables with a significance of p < 0.05 or lower are shown.

When the models were run with the geochemistry – without

the positive MEM coefficients – bicarbonate and manganese
were identified as the predictors of total (Supplementary Table

S2), CTC (Supplementary Table S3) and R123 (Supplementary
Table S4) cell counts. When the model was run with the
positive MEM coefficients – without the geochemistry – between
two and four coefficients were significant: MEM2 and MEM4
were identified for both total and viable cell counts; and either
MEM1, MEM5, MEM7 or MEM10 were identified depending
on the count data (Supplementary Tables S2–S5). An analysis
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of the model residuals for the total count data are provided in
Figure 6: environmental variables (Figure 6A), the positiveMEM
coefficients (Figure 6B) and the measured variables and spatial
coefficients (Figure 6C). These plots show that the distribution of
the residuals and fitted total count are more randomly distributed
when the positive MEM coefficients are included in the model
(Figure 6B) than when the model included only environment
(Figure 6A). Combining spatial and environmental inputs did
not improve the distribution of the model residuals (Figure 6C).

DISCUSSION

The concept of geological radioactive waste repositories is
to provide secure locations over long residence times within
deep geological settings allowing for the decay of long-lived
radionuclides to background levels. The feasibility of emplacing
a repository relies on having knowledge of local and regional
subsurface dynamics that would form the basis of predicting
the transport of hazardous species from a repository over the
period of radioactive decay. Given the role of microbes on
element speciation and transport and their effect on element
retention by microbial-derived metal oxides (Kennedy et al.,
2011), knowledge and understanding of local microbial ecology
within prospective host formations can aid predictions used
for making long term safety cases. To gauge interrelationships
between subsurface microbial abundances with the geochemical
data we combined the abundance data obtained from multiple
sampling opportunities from within the crystalline formation
underlying the Chalk River Laboratories site (Deep River, ON,
Canada) and performed multivariate mixing and mass balance
(M3) modeling, spatial analysis and GLM. We considered the
dual role of fracture water – as the medium for transport of
soluble species suitable for microbial metabolism and its role as
the medium for dispersal.

In our analyses, we identified possible sources of the fracture
water and evaluated the fracture water composition as predictors
of total and viable microbial cell densities within these fractures
including their distribution patterns. The dilute character of
the fracture water (King-Sharp et al., 2016) compared to other
sites on the Canadian Shield is thought to reflect recharge
that occurred at the end of the last glaciation followed by
a gradual recharge with meteoric water. The fracture water
ages date from 5000 to 10,000 years (King-Sharp et al., 2016).
Modern recharge does not appear to extend deeper than
approximately 100 m (King-Sharp et al., 2016). We therefore
performed modeling to address whether recharge can explain
how subsurface communities assemble within these fractures.
The main findings from M3 modeling were that three possible
meteoric source waters account for 97% of the samples: glacial
melt water, a saline source and modern recharge. The mixing
proportion for modern recharge and glacial melt water describe
most of the samples; the mixing proportion of a saline source
water is localized to deeper fractures transected by boreholes
CR-9 (Figure 3).

Although the stable isotope data for oxygen and hydrogen
align with the VSMOW (Supplementary Figure S1), supporting

the notion of recharge as a main driver of microbial assembly,
rock water interactions may still be important in explaining the
fracture water microbiology. A porewater analysis of the drilled
rock cores identified nitrogen compounds (Peterman et al., 2016)
that were not detected within the fracture water; a finding that
corroborates both the measured nitrogen metabolism within the
fracture water (Stroes-Gascoyne et al., 2011) and the identified
taxa within the fracture water (Beaton et al., 2016) whose cultured
relatives encompass the complete nitrogen cycle, including
nitrogen fixation. In a study of the component taxa (manuscript
in preparation), nitrogen metabolism was detected within all
sampling locations; sulfate reduction was detected only within
borehole CRG-6.

Recharge into fractures is topology driven. An analysis of
the cell density distribution patterns identified location specific
patterns and patterns that were generalized across the sampling
locations. The total and viable cell densities fell into two
categories: those locations with lower cell densities (location
within boreholes CR-9, CR-18, CRG-1, CRG-2) (Figure 5 and
Supplementary Figure S4) and those locations with higher
cell densities (locations within boreholes CRG-3, CRG-4A and
CRG-6). The sampling locations with the lowest total cell counts
were those locations that had the highest mixing proportions of
a saline source water (Figure 2) and the sampling locations with
the highest total cell densities were those locations with higher
mixing proportions of modern recharge (Figure 2). Variation
in the count data appears to be localized to the region around
each of the boreholes and not to the elevation of the sampling
locations (Supplementary Figure S4). If the abundance data
can be linked to recharge, the influences of local conditions
on recharge may need to be accounted for by, for example,
overburden thickness and hydraulic conductivity. In a study
of modern recharge into another fractured crystalline aquifer
that is overlain by variable thicknesses of overburden (Gleeson
et al., 2009), the authors conclude that overburden thickness and
hydraulic conductivity were major parameters that controlled
modern recharge into the underlying bedrock aquifer and that a
thicker overburdenmeant modern recharge was slower andmore
widespread (Gleeson et al., 2009). A slower recharge rate and
higher surface area of unconsolidated overburden would favor
higher cell densities.

The distributions of the abundances and the geochemistry
were more generalized across the site. The quantile-by-quantile
plots show that the total cell count distributions aligned with the
distributions of fracture water sulfate, fracture water manganese,
porewater sulfate, porewater ammonia and porewater nitrate
(Figure 5 and Supplementary Figures S5, S7, S8). The viable cell
count distributions also aligned with the distributions of sulfate,
manganese, ammonia and nitrate while their distributions
compared with bicarbonate were heavy tailed in the lower
quantiles – namely, those sampling locations within borehole
CR-9; a region of the subsurface found to be distinct in the M3
modeling (Figure 3).

Analysis of spatially distributed sampling locations can reveal
distance-relationships in abundance data (Dormann et al., 2007).
The assumptions made when modeling population abundances
can lead to incorrect conclusions if the model residuals are
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FIGURE 6 | Spatial autocorrelation in the model residuals for the total cell count. (A) Significant environmental explanatory variables from Supplementary Table S1

(bicarbonate and manganese). (B) Significant spatial explanatory variables from Supplementary Table S1 (MEM1, MEM2, MEM4 and MEM5). (C) Significant

environmental and spatial explanatory variables from Supplementary Table S1 (manganese, MEM1, MEM2 and MEM5).

not randomly distributed (Dormann et al., 2007). We therefore
performed a spatial analysis to test for a role for meteoric water
recharge on total and viable abundances by comparing a null
distribution of the global Moran’s I value (Figure 4) and by
adding the resulting eigenvector map coefficients into a GLM
(Figure 6). The GLM identified bicarbonate and manganese as
significant predictors of microbial abundances (Supplementary
Tables S2–S5). Both bicarbonate andmanganese also show spatial
autocorrelation at sampling locations within borehole CR-9;
as does sulfate (Figure 4). In our analysis, bicarbonate was
considered as a proxy for modern recharge; the proxy for a
saline source recharge, chloride, was not identified as significant
(Supplementary Tables S2–S5) and, despite the M3 modeling
showing the localization of this saline signature (Figures 2, 3),
chloride was not spatially clustered with the bicarbonate,
manganese and sulfate (Figure 4).

The GLM also identified positive MEM coefficients of
which four coefficients clustered within borehole CR-9 and two

coefficients, MEM2 and MEM4, were randomly distributed.
The improved GLM residuals with these coefficients suggest that
the significance of the bicarbonate and manganese was due to
the localized and distinct fracture water conditions that exist
within borehole CR-9 and further suggests that their significance
in the GLM reflects this spatial correlation. Inclusion of theMEM
coefficients within the GLM improved the distribution of the
GLM residuals. The finer scale influences represented by these
coefficients may indicate unmeasured/unknown processes; the
distribution pattern similarities observed with the quantile-by-
quantile plots may help reconcile these processes.

CONCLUSION

The main findings of this work are that M3 modeling identified
three possible meteoric sources water for recharge; of these three,
modern recharge appears to be the most likely source water to
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explain, in part, microbial abundances within the projected area
of the sampling locations. Chloride, as a proxy for a saline source
water, was not a significant explanatory variable for the total or
viable count data. Stable oxygen isotope (δ18O), as a gauge of
glacial melt water, was also not a significant explanatory variable
of microbial abundance distributions.

Spatial autocorrelation analysis show that low total cell counts
co-localize with lower bicarbonate, higher manganese and higher
sulfate. These locations are associated with the saline source
water signatures. The spatial correlation of both the bicarbonate
and the manganese suggest that their significance in the GLM
reflects this spatial correlation and not a direct effect onmicrobial
abundances, per se. Inclusion of positive MEM coefficients into
the GLM improved the distribution of the model residuals.
The finer scale influences represented by the significant MEM
coefficients suggest there are unmeasured/unknown processes
occurring within these sampling locations.

While the fracture water is dilute, and of mainly meteoric
origin (King-Sharp et al., 2016), the prospect of porewater
sulfur and porewater nitrogen (Peterman et al., 2016) potentially
leaching from the host rock suggest there may be localized
processes that are separate from a role of source water recharge
in explaining microbial abundance distributions within the
projected area of the sampling locations.
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