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Abstract

In this paper, we study the problem of large scale im-
age retrieval by developing a new class of bag-of-features
to encode geometric information of objects within an im-
age. Beyond existing orderless bag-of-features, local fea-
tures of an image are first projected to different directions
or points to generate a series of ordered bag-of-features,
based on which different families of spatial bag-of-features
are designed to capture the invariance of object translation,
rotation, and scaling. Then the most representative features
are selected based on a boosting-like method to generate a
new bag-of-features-like vector representation of an image.
The proposed retrieval framework works well in image re-
trieval task owing to the following three properties: 1) the
encoding of geometric information of objects for captur-
ing objects’ spatial transformation, 2) the supervised fea-
ture selection and combination strategy for enhancing the
discriminative power, and 3) the representation of bag-of-
features for effective image matching and indexing for large
scale image retrieval. Extensive experiments on 5000 Ox-
ford building images and 1 million Panoramio images show
the effectiveness and efficiency of the proposed features as
well as the retrieval framework.

1. Introduction
In recent years, large-scale image retrieval is receiv-

ing increasingly significant attention owing to its great po-
tential in both industry applications and research prob-
lems [12, 13]. Inspired by the success of Web search, most
existing works represent images by bag-of-features (BOF)
models and index histogram features of images by inverted
files [2, 5, 9, 12, 13, 14]. Although this framework has
demonstrated to be simple and efficient, it still suffers from
the accuracy and scalability problems, which are very im-
portant to many computer vision problems [16, 5].

To improve retrieval accuracy, many approaches have
been proposed, e.g. large vocabularies [9, 12], soft quan-
tization [11], and query expansion [2]. A major limita-
tion of such approaches is that they often ignore spatial in-
formation of local features, which has been observed very
helpful in improving retrieval accuracy [12]. To overcome
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this limitation, several research attempts have been made
to utilize spatial information to improve retrieval accuracy.
Among these attempts, RANSAC-based image reranking
achieved the state-of-the-art result in terms of retrieval ac-
curacy [2, 12]. However, to rerank top image search results,
it requires random access to raw features of these images,
and inevitably increases the memory cost and slow down the
search speed. “Bundling features” can address this problem
to some extent by encoding local spatial information in sta-
ble regions in inverted index [14]. But the ranking process
requires feature order information, which makes distance
measure no longer an L1 or L2 distance, and thus cannot be
further accelerated by indexing technologies such as local-
ity sensitive hashing[1]. Spatial pyramid matching [6] and
visual phrase [15] encode spatial information to inverted in-
dex from another way by either enforcing the spatial distri-
butions of local features belonging to the same category to
be globally coherent, or considering local adjacency of vi-
sual words. However, as the encoded spatial information is
too weak, the search precision is not as good as that of the
RANSAC-based approach.

As an effective technology proven by web search en-
gines e.g. Google and large-scale image search [9, 12], in-
verted index has another important property. That is, it is
essentially a representation of high dimensional sparse vec-
tors, and provides an efficient mechanism for fast cosine
similarity computation. This property makes it possible to
further improve its efficiency and scalability by index com-
pression or dimension reduction. For example, [5] proposed
an efficient way to compress inverted files, and [16] pro-
posed a framework to efficiently approximate cosine simi-
larity computation by conducting dimension reduction and
leveraging residual error information.

Based on these studies, in this work we develop a new
class of features for large-scale image retrieval to meet two
design goals: 1) the new features should have the same for-
mat as current bag-of-features (i.e. histogram-like features),
and 2) the new features are able to effectively encode spatial
information. The first goal is to guarantee that the new fea-
tures can be indexed by mature inverted index techniques.
Therefore, if we achieve these goals, we are able to effec-
tively and efficiently organize local features and their spatial
relationships in one inverted index. As a result, the system
can search images accurately and fast.

The basic idea could be supported by the spatial proper-
ties of local features of images. As shown in Fig. 1, scene
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Figure 1. Illustrations of embedded spatial configurations in ob-
jects and natural scenes

images, e.g. buildings or sea, have horizontal and vertical
relationships among local features, while objects, e.g. sun
and flowers, have circle-like relationships. Therefore, pro-
jecting features onto certain lines or circles are able to cap-
ture basic geometric information in images. In this way, we
obtain a kind of so-called ordered bag-of-features. This is
a generalization of the spatial pyramid matching idea [6].
However, in terms of utilizing of spatial constraints, these
features are too rigorous to handle typical transformations
of objects, i.e., translation, rotation, scaling. Therefore, we
further process the ordered bag-of-features to obtain a kind
of so-called spatial bag-of-features by some operations for
histogram features, i.e. calibration, equalization and decom-
position.

To tune parameters and select the most effective features,
a boosting-based method is introduced. Since the proposed
spatial-bag-of-features are in the same format as the tradi-
tional bag-of-features, we adopt the inverted file technique
to index images [13, 12]. Without increasing the memory
cost of index, all information used in ranking is able to
be packed in inverted files. This property guarantees the
ranking could be accomplished instantly. Extensive exper-
iments on benchmark datasets show the effectiveness and
efficiency of the proposed spatial bag-of-features as well as
the retrieval framework.

2. Ordered Bag-of-Features
In this section, we introduce two families of ordered bag-

of-features which can weakly capture some geometric in-
formation of images. These representations are the founda-
tions of the spatial bag-of-features which will be introduced
in the next section. It should be noted that features refers to
quantified local descriptors in this work.

2.1. Motivations
Our target is to design bag-of-features-like representa-

tions for images to 1) encode objects’ geometric informa-
tion, and 2) enable efficient retrieval. On the one hand,
the orderless bag-of-features totally ignore geometric re-
lationships of local descriptors. On the other hand, the
two-dimension spatial information of local descriptors of
an image is difficult to be directly encoded into the bag-
of-features models. To address this problem, we propose
to project the local descriptors which reside on a two-
dimensional space to a one-dimensional space. The pro-

(a) (b)

Figure 2. Illustration of ordered bag-of-features generated by lin-
ear and circular projections. Markers represent quantified local
features. From (a) linear projection or (b) circular projection, cer-
tain geometric information could be preserved to some extent.
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Figure 3. Toy examples of constructing linear and circular ordered
bag-of-features. Stars, triangles, and circles represent three kinds
of features. (a) Linear projection: all features are projected onto
a line with angle θ and resolution L = 4, and then the features
within each spatial bin are counted. (b) Circular projection: we
locate the center at (x, y) and evenly divide the space into L = 8
sectors, and then count features within each sector.

jected features could weakly capture the geometric informa-
tion of objects, while they are still a kind of bag-of-features.

Two projection strategies, i.e. the linear projection and
the circular projection, are used to generate the ordered bag-
of-features according the following reasons:

1) Line and circle are two basic elements to represent
an object. Both natural objects, e.g. mountains, sun and
flowers, and man-made objects, e.g. buildings, windows and
chairs, could be simply sketched out using lines and circles.

2) The ordered bag-of-features based on these two kinds
of projections could reflect some basic geometric informa-
tion of objects. As shown in Fig. 2, the linear projection
captures the intrinsic order of features in one direction; the
circular projection preserves the feature alignment in a polar
coordinate system.

3) The ordered bag-of-features have the same represen-
tations as the traditional bag-of-features, which could serve
as the foundations of spatial bag-of-features introduced in
the next section.

2.2. Linear ordered bagoffeatures

Locality is one of the fundamental spatial information to
depict the configuration of an image. As shown in Fig. 3(a),
we project features in a two-dimensional space (i.e. the im-
age plane) onto a line with an arbitrary angle, by which the
locality of each feature is transformed to a one-dimensional
coordinate along the line. Inspired by “subdivide and dis-
order” techniques [4, 6], we divide this line into equal seg-



ments1. Each segment is considered as a bin, and a his-
togram statistics (or say sub-histogram) is leveraged to rep-
resent the features inside this bin. All L bins are connected
to be a long histogram, which is named as linear ordered
bag-of-features. This projection has two degrees of free-
dom, i.e. the angle θ, which represents the specific orienta-
tion we want to preserve, and the number of bins L, which
control the resolution of dividing the line. Based on this
method, a long histogram with L connected sub-histograms
could be generated for each image, which encodes the rough
locality information along the direction of θ.

By enumerating different angles and resolution levels,
we get a family of linear ordered bag-of-features. Obvi-
ously, the traditional orderless bag-of-features is a special
case of this representation with L being 1. The spatial pyra-
mid matching (SPM) [6] could be considered as a combi-
nation of a set of this kind of features, i.e. with vertical
(θ = 90◦) and horizontal (θ = 0◦) projections under some
resolution levels. Moreover, this representation could also
capture other slantwise directions that SPM cannot handle.

2.3. Circular ordered bagoffeatures
In order to capture the geometric information of object

sketched by more complex curves, and tolerate object rota-
tion variance2, circular projection is used to design a new
family of ordered bag-of-features. As shown in Figure 3(b),
after locating a center, it evenly divides the two-dimensional
space into sectors with the same radian. Similar to linear
projection, each sector is considered as a bin and a sub-
histogram is used to represent the features in the sector.
This projection has two parameters, i.e. the center (x, y)
and the number of bins L. By this mean, the locality re-
lationship in the polar coordinate system with its focus at
(x, y) could be captured from a circular projection, and the
locality precision in this polar coordinate system is deter-
mined by L. In the same manner as linear projection, dif-
ferent centers and resolutions are enumerated to deal with
multiple situations.

2.4. Image matching using ordered bagoffeatures
To simplify the notations, we use Θ to represent the pa-

rameters of linear projection {L, θ} and circular projection
{L, (x, y)}. For any histogram HΘ generated by either a
linear or a circular projection with parameter Θ and resolu-
tion L, it is concatenated by L sub-histograms:

HΘ = [h1,Θ, h2,Θ, · · · , hL,Θ] (1)

where hi,Θ is the sub-histogram in the i-th bin of the projec-
tion parameterized by Θ. Let P and Q be two images that
need to be compared. Their similarity under this feature is
defined as:

< HΘ
P ,HΘ

Q >=
∑L

i=1
Sim(hi,Θ

P , hi,Θ
Q ) (2)

1The start and the end of this line are the projective points of the left-
most and right-most corners (edges) of the original image.

2See Section 3.2 for details of encoding rotation variance based on cir-
cular ordered bag-of-features.
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Figure 4. Illustration of the mismatching of two images using lin-
ear ordered bag-of-features caused by translation. Squares and cir-
cles in the two images represent two objects. Before calibration,
histograms on each feature channel are quite dissimilar. After his-
togram calibration, the spatial bag-of-features of two images be-
come much more similar.

where Sim(·, ·) could be any histogram similarity measure,
e.g. cosine similarity or histogram intersection. Since the
histograms are very sparse, these operations are very effi-
cient. The computational complexity is linear to the num-
ber of features [6]. It is noted that we only measure the
similarity between histograms generated from an identical
projection. By enumerating multiple projections, a family
of histogram representations could be obtained for each im-
age.

3. Spatial Bag-of-Features
Although the ordered bag-of-features could encode ba-

sic spatial information of local descriptors of an image, they
are too rigorous to tolerate different spatial variations of ob-
jects. For example, as shown in Fig. 4, 5 and 6, they will
fail to match two images with object translation, rotation, or
scaling, etc. Therefore, based on the two families of ordered
bag-of-features, we propose three variant features which are
designed to tolerate the variances on features caused by ob-
ject translation, rotation, and scaling, respectively. More-
over, we introduce a strategy to avoid heavy clusters and
conflicts between our representations. The new feature rep-
resentations are named as spatial bag-of-features.

It should be noted that different spatial bag-of-features
are designed for tolerating different spatial variance. Each
parameterized spatial bag-of-features could be hoped to
weakly capture certain aspect of the geometric information
of objects. We will rely on a surprised mechanism to select
a powerful subset of features to compose the final bag-of-
features-like representations to handle complex cases.

3.1. Translation invariance
From Fig. 4 we can see that, if one object is located in

different positions of two images, the same visual features
of the object will be located into different bins for the two
images using aforementioned linear projection method. To
make the proposed spatial bag-of-features more robust to
object translation, we adopt a kind of histogram calibration
strategy to encode the translation invariance into the spacial
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Figure 5. Illustration of the mismatching of two images using cir-
cular ordered bag-of-features caused by rotation. A circular object
is composed of three major features denoted by triangles, circles
and stars. Due to a rotation transformation, corresponding parts lo-
cate in different bins. After calibration, all corresponding sectors
are matched.

bag-of-features.
Let HΘ denote a histogram generated by a linear pro-

jection. If there are V features in the quantified dictionary,
there will be V feature channels3 with length L, where L is
the number of bins in HΘ. For each feature v, its channel is
denoted by HΘ

v :

HΘ
v = [h1

v, h
2
v, . . . , h

m−1
v , hm

v , hm+1
v , · · · , hL

v , ] (3)

where hi
v is the term frequency of word v in bin i (We use

hi
v to denote hi,Θ

v for short). Denote m = argmaxi{hi
v}.

We reorder this vector by making it start from the position
m to get a new histogram as follows:

TΘ
v = [hm

v , hm+1
v , · · · , hL−1

v , hL
v , h

1
v, . . . , h

m−1
v ] (4)

A new histogram TΘ could be obtained by grouping
TΘ
v , v = 1, 2, ..., V to be one new long histogram by the

inverse process of extracting HΘ
v , v = 1, 2, ..., V from HΘ.

By this new representation (see Fig. 4 for an illustration),
two images with the same object at different positions could
have similar distribution on their feature channels.

3.2. Rotation invariance
Similar to the histogram calibration of linear ordered

bag-of-features, we can also calibrate the histogram of cir-
cular ones to get a new representation to deal with rotation
transformation, which is denoted as RΘ. We omit the gen-
erating process of RΘ due to space limitation, since it is
similar to Section 3.1. See Fig. 5 for an illustration.

3.3. Scaling invariance
Considering two images containing an identical object

with different sizes, if we project them onto a line, the two
histograms will have similar distribution curves but with
different widths, which causes that the same visual features
will fall into different bins. In order to make our features
robust to object scaling, a kind of histogram equalization
technique is adopted.

3In this work, a feature channel represents the sub-histogram extracted
from the whole histogram if we only considered the distribution of one
specific feature (or say visual word).

New channel 1

Old channel 1

Figure 6. Illustration of the mismatching of two images using lin-
ear ordered bag-of-features caused by diverse scales. A triangle is
composed of 4 local features represented by stars. Due to different
scales, only the left-most feature is matched. By equalization, the
histograms expand to the whole space (with the same distribution)
and all the corresponding parts are matched.

query target distractor

bin 1 bin 2 bin 1 bin 2 bin 1 bin 2

Figure 7. Illustration of false positive caused by heavy clutters.
The left image contains a query object (square) and clutters. If we
adopt the global histogram, both the target and the distractor have
three common features with the query picture. By only selecting
the first bin, the distractor is excluded.

We follow the notations in Section 3.1. The term fre-
quency ht

v which originally belongs to bin t is relocated to

bin s by s = ⌈
∑t

i=1 hi
v∑L

i=1 hi
v

⌉, by which adjacent bins could be
merged together in some feature channels. In this way, we
can obtain a new histogram SΘ, in which the distribution
of each feature channel extends to the whole space and the
new spatial bag-of-features are less sensitive to scaling. As
shown in Fig. 6, after equalization, all the parts of the iden-
tical object in different sizes are matched.

We can also apply this scheme to circular ordered bag-
of-features, which is omitted due to space limitation.

3.4. Long histogram decomposition
Although we have encoded the invariance of differ-

ent spatial transformations into different spatial bag-of-
features, each of them is actually designed for one sin-
gle case and thus could be considered as a weakly spatial-
transformation invariant feature of an whole image. When
combined together, if severe conflict exists, the total de-
scriptive power may degenerate. The main reason is that
it is still too strict to apply a single rule on the whole im-
age. Our solution is not to select the whole connected his-
togram, instead, to directly find a combination of individual
bins, which is still a histogram. The similarity measure of
the final representation is given by:

< HP ,HQ >=
∑
Φ∈S

αΦsim(hΦ
P , h

Φ
Q) (5)

where Φ = {Θ, k(k <= L)}, in which L is the number of
bins of the projection (with or without encoding invariance)
parameterized by Θ, and k is the id of the bin. S represents
the selected projection set learnt by a supervised manner.



This new mechanism is more flexible, since it decom-
poses the global spatial constraint into several partial spatial
constraints. However, it is not a compromise, for it still has
the ability to present the global one if all bins of a projection
are selected. In fact, it becomes stronger to describe more
complex cases and has a larger chance to avoid conflicts be-
tween different types of spatial bag-of-features.

Another advantage is that it discards some insignificant
information, which could simplify the final representation
and speed up the system a lot. This method has its practical
explanation. In real retrieval tasks, heavy clutters or occlu-
sions are unavoidable. This strategy has potential to make
the final representation be more concentrated on potential
target parts, while neglects meaningless or distractive parts.
See Fig. 7 for an illustration.

4. Retrieval Framework
In this section we introduce the overall framework of our

retrieval system in detail.

4.1. Feature extraction and quantization
We adopt similar local features as other retrieval systems

[12, 14]. To detect salient regions, we adopt the affine-
invariant region detection techniques proposed in [8]. For
each detected region, a 128D SIFT descriptor[7] is com-
puted. Generally, a high resolution image (e.g. 1024× 768)
produces around 3000 local features.

The quality of feature quantization is quite important for
a retrieval system [12, 11]. We use the approximate k-means
proposed in [12] to generate large vocabularies, which is
much faster than traditional k-means methods.

4.2. Selection of spatialbagoffeatures
We have proposed a series of spatial-bag-of features with

different parameters. However, not all of them are useful
for a given dataset. We adopt the RankBoost algorithm [3]
to select the most effective configurations. We assume that
there is a training set, i.e. query images which have some
labeled search results4. Given a query image, we can order
images in the training set according to their relevance to the
query. In this way, we can construct many ordered image
pairs. The objective function of RankBoost in each iteration
is to select the best weak ranking function which minimizes
the number of disordered pairs.

In the learning framework, each feature is regarded as a
weak ranker, and cosine is adopted to calculate the ranking
scores. For linear projection, we enumerate 10 equidistant
angles in [0◦, 180◦]. For circular projection, we try all reg-
ular grid points (5 × 5 = 25) in the plane as centers. With
respect to the histogram resolution L, we set 4 levels (3, 7,
15 and 31). Totally, there are (10 + 25) × 4 = 140 origi-
nal feature histograms. Since we add three extra variances
for translation, rotation and scaling, we can get a family
of 140 × 3 = 420 spatial-bag-of-features (the translation

4In case there is no manually labeled ground truth, we proposed an
empirical approach in our experiments.
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Figure 8. Compressed inverted file structure.

and the rotation only contribute one to the last multiplier,
the other two represent the original form and the scaling).
Since each long histogram is decomposed to be single bins,
as introduced in Section 3.4, instead of 140 long histograms,
there are totally (10+ 25)× 3× (3+ 7+ 15+ 31) = 5880
sub-histograms to be further selected.

By running the iteration for N times, we obtain a set
of best spatial-bag-of-words, S. Each one in S defines a
similarity function and a corresponding weight α. Let HP
and HQ be the final representations of images P and Q, the
visual similarity between P and Q is given by Equation 5.

4.3. Indexing structure
Inverted file is a well-studied technique to index high-

dimensional sparse feature vectors [12, 13]. Unlike in pre-
vious systems, in which an image is often represented by a
single histogram and some extra features used for rerank-
ing (e.g. spatial information of local features) [10, 12, 14],
in our system, an image is represented by a set of selected
sub-histogram, while no extra features are needed in rank-
ing process. Therefore, all spatial-bag-of-features, i.e. his-
tograms, can be compressed in a single inverted file. We
design a data structure for each node in an inverted list as
shown in Fig. 8. It takes 4 bits to save the weight of an ap-
peared word of an image under one feature configuration.
We uniformly quantize the real value of a histogram entry
to be 16 level5. In our experiments on large dataset, we
select 8 different spatial-bag-of-features. Thus, the extra
memory cost is 4 bytes per feature, and the size of the new
compressed inverted file is exactly the same with classical
inverted file for bag-of-features. With a 8GB memory com-
puter, we can keep all inverted files of 1 million images in
memory. A search can be finished within 0.1 second in our
experiments.

5. Experiments
A series of experiments were conducted to evaluate the

proposed spatial bag-of-features (SBOF). First, several vari-
ations of SBOF were evaluated, Second, SBOF was com-
pared with standard bag-of-features (BOF) and BOF with
RANSAC reranking (BOF+RANSAC) [12] on Oxford5K
dataset. Third, a large scale dataset, i.e. Panoramio1M was
leveraged to test the effectiveness and scalability of SBOF,
followed by some analysis and visualization of the learnt

5Actually, previous research demonstrate that binary weights are good
enough to represent words in case the vocabulary is very large [5].
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Figure 9. Performance comparison of different combinations of
SBOF. The labels on x-axis show the combination type. Mix
means both linear and circular projections are used. T, R, and S are
abbreviations of translation, rotation, and scaling, which indicate
corresponding type of spatial-bag-of-features. D means that long-
histogram decomposition is used. Except “Mix+D” and “All”, all
other combinations did not use long-histogram decomposition.

spatial bag-of-features. Finally, a transfer learning exper-
iment was conducted to show the performance of SBOF
without specific training data.

5.1. Datasets and evaluation measure
Oxford5K was first introduced in [12] and have become

an evaluation benchmark. It contains 11 different Oxford
landmarks and other distractors, totally 5062 high resolu-
tion images retrieved from Flickr.

Panoramio1M is provided as distractors. It contains 1
million medium resolution images crawled from the most
popular tags in Panoramio. We mixed it with Oxford5K
to stress test the performance of the proposed SBOF and
retrieval framework on large scale collections.

Paris was first introduced in [11] as a similar dataset to
Oxford5K to train an independent visual vocabulary. We
adopted it as a training set in RankBoost step to simulate the
real-life situation that both the query and the target images
are unknown to the retrieval system beforehand.

As in [12], the performance of all experiments is eval-
uated by the mean average precision (mAP). See [12] for
details of mAP.

5.2. Comparison of different SBOF
As aforementioned, several families of SBOF have

been proposed with different parameters, and each long-
histogram SBOF is decomposed into independent sub-
histogram SBOF (or say bins) to avoid severe conflict from
different SBOF and improve descriptive power. We first try
to use single bin without supervised learning as the feature
to retrieve images. The experimental results have shown
that for each category in Oxford5K, there will be certain sin-
gle bin that performs better than BOF, with 1.1% to 223.8%
(34.8% on average) improvements for different categories,
details of which is omitted here due to space limitation. This
result shows that there exists some descriptive SBOF for
each category. However, for the whole Oxford5K dataset,
single bin did not bring much improvements, i.e. only 1%
improvement using the best bin. This observation motivates
us to combine descriptive bins together in a supervised man-
ner to capture the spatial properties of different categories
for general retrieval tasks.
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SBOF 0.515 0.570 0.644 0.655
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Figure 10. Performance comparison of different algorithms under
different vocabulary sizes.

The first two queries of each category in Oxford5K are
used as the training query set, and the other queries are used
as the testing set. The following combinations are com-
pared in the training set: 1) original BOF without spatial
information (BOF), 2) linear ordered BOF without long-
histogram decomposition (Linear), 3) Circular ordered BOF
without long-histogram decomposition (Circular), 4) Lin-
ear+Circular (Mix), 5,6,7) “Mix” method with translation
(Mix+T), rotation (Mix+R), scaling (Mix+S) invariance re-
spectively, 8) “Mix” method with long-histogram decom-
position (Mix+D), and 9) all spatial bag-of-features fami-
lies with long-histogram decomposition (All). As shown in
Fig. 9, by introducing ordered-bag-of-features to capture
geometric information of locality or rotation, the precision
has a great improvement over the orderless BOF. Transla-
tion, rotation and scaling invariances encoded by SBOF can
also enhance the retrieval quality. Another large improve-
ment is caused by long-histogram decomposition to avoid
conflicts and heavy clusters. At last, a selection from the
complete SBOF family achieves the best precision, which
will be used in the following sections. It should be noticed
that in spite of using the complete SBOF family, only 10
bins are selected by RankBoost, the dimension of the final
feature representation of which was the same as or less than
other combinations.

5.3. Comparison with other methods
We compared the proposed SBOF with other methods

on Oxford5K under different vocabulary sizes (50K, 100K,
500K and 1M). In order to make our baseline comparable
to the results in [12], we adopted their source SIFT descrip-
tors and 1M vocabulary. We also chosen the same AKM
method to train other three vocabularies and implemented
the same RANSAC algorithm for reranking. The baseline
curves of BOF and BOF+RANSAC implemented by us are
quite close to the reported results. For each vocabulary, we
used Rankboost to select a combination of 10 bins on the
same training set in Section 5.2. We report the performance
on both all queries and the unseen queries in Fig. 10.



Five methods are compared, which are traditional bag-
of-features (BOF), two BOF models with spatial informa-
tion, i.e. BOF+RANSAC and spatial pyramid matching
(SPM), the proposed spatial-bag-of-features (SBOF), and
SBOF with RANSAC reranking (SBOF+RANSAC). Sev-
eral conclusions could be drawn from Fig. 10. First, in spite
of encoding spatial information, SPM is much worse than
BOF. This result is reasonable since SPM was particularly
designed for natual scene categorization, and the horizon-
tal and vertical divisions in spatial space are improper at all
for general image retrieval problem. Second, the proposed
SBOF outperforms traditional BOF a lot, which shows
the effectiveness of the encoding of spatial information in
SBOF. Third, compared with BOF+RANSAC, in spite of
the lower performances using 50K and 100K vocabularies,
with large vocabularies such as 500K and 1M, SBOF has
an equal or superior performance. The reason is that, in a
smaller vocabulary, quantified features are less discrimina-
tive, which affects the precision of capturing correct spatial
configurations. Combined with the strength of retrieval ef-
ficiency brought from bag-of-feature representation, SBOF
outperforms of BOF+RANSAC on 500K or larger vocabu-
laries. Moreover, the performance of BOF+RANSAC de-
pends a lot on the precision of the top results of BOF, which
causes the limitation of BOF+RANSAC where the perfor-
mance of BOF decreases a lot, e.g. in large scale image
retrieval (see Section 5.4 for detailed experiments). Further-
more, since SBOF encodes spatial information into the bag-
of-features-like representation itself, it is orthogonal to any
reranking methods. Therefore, we also tested our method
combined with RANSAC reranking, which achieved the
best performance on all vocabulary sets. We find that the
improvement of SBOF+RANSAC over SBOF decreases as
the vocabulary grows, which indicates that on large vo-
cabulary such as 1M, the spatial information encoded by
RANSAC reranking has almost been captured by SBOF.

5.4. Comparison on a large scale dataset
Since the proposed SBOF is designed for supporting

large scale image retrieval, we tested its performance on
Oxford5K + Panoramio1M. The 1M images are added as
pure outliers. After feature detection and quantization, this
dataset contains totally 1,183,640,886 features, 1184 per
image on average. We used an Intel 4×2.4G GHz Quad
machine with 32GB memory to conduct our test. For BOF
method, we adopted the classical inverted-file index data
structure. For SBOF, we used a compressed one men-
tioned in Section 4.3 to store top 8 selected representa-
tions from Oxford5K. Thus the size of the index file is
6,555,743,616 bytes = 6.1GB. The average response time
of BOF is 0.042 second, while the time of our method is
0.056 second per query. The results have shown that both
the time complexity and the memory cost of the proposed
spatial-bag-of-features are comparable to traditional bag-
of-features. The performances compared with BOF and
BOF+RANSAC are provided in Fig. 11. Notice that al-
though the performances of BOF and BOF+RANSAC are
drawn in the figure, they are actually not related with the
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Figure 11. Performance comparison on Oxford5K +
Panoramio1M. In the table we provide performances of
BOF+RANSAC under our results, where the numbers in the left
collum represent the number of used top candidates for reranking.

Figure 12. SBOF Visualization. On the first row, we list one single
non-invariant SBOF and its examples. Points in the images show
features preserved by this SBOF, which indicate the locality in-
formation of some characters (a unique sculpture or tower on the
top) is captured. On the second row, 5 non-invariant SBOF learned
from Oxford5K are applied on a query image. As we can see, this
combination could roughly sketch the key structures of this bridge.

horizontal axis which represents the number of selected
SBOF. From the results we can see that, SBOF not only
significantly outperforms BOF, but also significantly out-
performs BOF+RANSAC with less than 1000 candidate
images for reranking. Although with more than 100,000
candidates, the performance of BOF+RANSAC approaches
to SBOF, its time cost is more than 146 times comparing
to SBOF. The inferior performance of BOF+RANSAC is
caused by the precision drop of BOF in large scale dataset,
which cannot provide enough positive images in top results
to RANSAC. Actually in real applications, such kind of spa-
tial verifications can only apply on few top images for time
concern. However, our method indexes the spatial informa-
tion of the whole dataset, and thus the precision is higher.

5.5. Spatial configuration visualization

An interesting fact observed during experiments is that,
Rankboost usually first selects several invariant representa-
tions (i.e. ordered BOFs with translation, rotation, or scal-
ing transformations) to handle the most general cases in the
dataset. Then at the rest stage of iterations, non-invariant
representations (i.e. ordered BOFs without spatial trans-
formations) are chosen to capture specific configurations in
this dataset. We reconstruct non-invariant representations
learned from 1M vocabulary. Since these spatial informa-
tion is fixed on each images, it could be regarded as a pro-
totype generated from Oxford5K, which summarizes the
common spatial configurations among all the positive ex-
amples. We apply it on query images and find that it sketch
some essential structures (see Fig. 12 for details).
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Figure 13. Performance comparison on Oxford5K + Paris.

Figure 14. Illustrations of top retrieved images. For each query, the
first line is our result, and the other is obtained from BOF. Yellow
line makrs a query object and red line means a false positive.

5.6. Transfer learning
In real situations, we may face the case that there is not a

specific training set exactly as the same as users’ queries. In
this case, we can add some existing training images roughly
related with users’ queries to the image dataset. Thus, we
designed a transfer learning experiment to test the applica-
bility of our representations. In detail, we use Paris dataset
to guide the selection of SBOF and test the selected SBOF
on the overall queries of Oxford5K. Five major categories
of Paris dataset are used and in each category the top 30 im-
ages whose content is apparently consistent with its tag are
selected. For each category, 5 images are used as queries,
and other ones are thrown into Oxford5K as target images.
10 most powerful SBOF are learnt and the queries in Ox-
ford5K are tested using these SBOF.

We compared the transferred result with the SBOF
learned from Oxford5K set, as shown in Fig. 13. We can
see that, the top several learnt SBOF using Paris dataset also
achieve good performance for Oxford5K queries. How-
ever, more than several selections, the performance slightly
drops. It is reasonable and also consistent with the observa-
tion in Section 5.5 that, at first both of the two RankBoost
trainers select the general knowledge for retrieving build-
ings. Then after encoding enough common spatial informa-
tion of buildings, the trainers then select features to fit for
the specific spatial information of each dataset.

6. Conclusions and future work
We have demonstrated a novel technique which is able

to adapt the orderless bag-of-features to a so-called spatial-
bag-of-features. The new feature has two major merits: 1)

it has the same format as the traditional bag-of-features,
and 2) it can effectively encode spatial information. Own-
ing to these merits, an effective and efficient index solution
were designed, in which all information utilized in ranking
is packed in a single inverted index.

In the experiments, the proposed approach obtained
comparable accuracies on benchmark dataset as state-of-
the-art approaches, and achieved significant improvement
both in precision and search time in large scale applications.
In the future, we are interested in developing a more prin-
cipled framework of our feature family and applying SBOF
in recognition tasks.
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