
Spatial Bayesian surveillance for small area case event data

Chawarat Rotejanaprasert1, Andrew Lawson1, Susan Bolick-Aldrich2, and Deborah Hurley2

1Department of Public Health sciences, Medical University of South Carolina, USA

2South Carolina Central Cancer Registry, South Carolina Department of Health and 
Environmental Control, USA

Abstract

There has been little development of surveillance procedures for epidemiological data with fine 

spatial resolution such as case events at residential address locations. This is often due to 

difficulties of access when confidentiality of medical records is an issue. However, when such data 

are available, it is important to be able to affect an appropriate analysis strategy. We propose a 

model for point events in the context of prospective surveillance based on conditional logistic 

modeling. A weighted conditional autoregressive model is developed for irregular lattices to 

account for distance effects, and a Dirichlet tessellation is adopted to define the neighborhood 

structure. Localized clustering diagnostics are compared including the proposed local Kullback–

Leibler information criterion. A simulation study is conducted to examine the surveillance and 

detection methods, and a data example is provided of non-Hodgkin’s lymphoma data in South 

Carolina.
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1 Introduction

The analysis of disease maps has received considerable attention over the last two decades. 

The need to consider prospective changes in disease risk is great given increases in public 

awareness of disease risk related to environmental insults (such as cluster alarms) and 

increased risks from bioterrorism.1,2 This latter focus has led to an increase in availability of 

testing methodology but little evidence of novel developments in modeling.1 This is 

particularly true of Bayesian approaches to map surveillance, while there has been some 

development focusing on temporal approaches.3,4 Recently, developments in this area have 

focused on small area count disease incidence.3,5
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While count data are an important focus area, it is also often important to consider finer 

spatial scale events such as events at residential addresses. This may be because of fine scale 

environmental effects acting over short distances (1–10 km) or to localized high impact 

insults such as a bioterrorism event (aerosol anthrax; nuclear radiation). Development in this 

area has been hampered by the difficulties related to patient confidentiality, when case 

addresses are used. Point process models have been examined previously.6,7 In those 

examples, point process models (log Gaussian Cox processes) are employed and a smoothly 

varying separable spatial and temporal model is assumed for background and covariance 

structure in space–time. Exceedence probability surfaces are estimated for examination of 

‘unusual’ space–time risk anomalies. This approach has some limitations as it relies heavily 

on sophisticated modeling with attendant heavy computational load. It also focuses on 

overall modeling of risk without recourse to individual level modulation by covariates. 

Examination was not made as to the surveillance capabilities of the method in terms of 

average run length or false alarm rate.

In our approach, we exploit the fact that we have individual level information about cases 

but also wish to model overall variation in space–time risk. Unlike earlier work, we adopt a 

conditional logistic spatial model for the covariate linkage conditioning on the point process 

superposition of cases and controls. This allows for the rich structure of cancer registry 

information to be accommodated at the individual level. In addition, it allows the 

surveillance to be performed on the binary logistic model directly and this allows natural 

inclusion of individual level covariates.

2 Spatio-temporal modeling for case event data

When a bivariate realization of cases and controls are available, it is possible to make 

conditional inference on this joint realization (see Lawson,8 chapter 5). A usual choice of 

formulation for intensity is the conditional logistic model which leads to logit(pi) = ηi, 

where pi is the probability of ith case. Components in the endemic part include individual 

covariates and random effects as  where xi is the covariate vector with 

the corresponding coefficient vector β. To describe variation in the endemic part, the prior 

distributions are defined as follows. Each covariate coefficient is assumed to have a zero 

mean Gaussian prior distribution with variance . ui and vi are employed to capture 

spatially correlated and unstructured extra variation in the model. It is often important to 

include both structured and unstructured random effects in a spatial analysis since without 

prior knowledge unobserved confounding can take various forms (see Lawson,8 chapter 5). 

The uncorrelated random effect is described by a zero mean Gaussian prior distribution with 

variance . The spatially correlated effect is assumed to have the intrinsic conditional 

autoregressive model (ICAR) model proposed by Besag et al.9 That is, conditionally, 

 where u−i is the vector containing the correlated effect of all 

regions except the ith area. δi,  and  are a set of spatial neighbors, cardinality and the 

mean of the neighborhood of the ith tract, respectively, and  is the spatial component 

variance. The ICAR model requires the first-order neighboring information specified by a 

common boundary, i.e., adjacency information is needed. There are a number of ways to 
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define neighborhoods. The Dirichlet tessellation partitions a study region into polygons such 

that each divided small area contains only one data point and every point in a given area is 

closer to its generating point than to any other. The neighborhood set of each point can then 

be derived. The partition can be created by the R function DELDIR.10

To capture the temporal trend a random walk is assumed. In general, a random walk is 

assumed to have a prior distribution as a Gaussian distribution with mean the previous time 

point which can be both positive and negative. Then the temporal trend is specified as

which allows for a type of non-parametric temporal trend effect. All variances in Gaussian 

prior distributions are described by a relatively non-informative Uniform distribution as 

, where . Hence, the full 

specification of the binomial model for case event surveillance is shown as follows

2.1 Weighted conditional auto regression

The convolution model proposed by Besag et al.9 including a correlated effect based on an 

ICAR model and uncorrelated Gaussian random effects is the most popular choice in 

Bayesian disease mapping for small area count data. Although the ICAR model has been 

criticized for over smoothing the risk surface, studies have shown the convolution model 

perform very well in many situations including disease clusters.11–13 ICAR can have 

variants of correlation or covariance structure depending on neighborhood definitions. The 

traditional ICAR is defined based on adjacent neighboring areas only. Rodrigues and 

Assunção14 introduced a highly parameterized approach to allow the neighbor structure to 

be estimated in the parameter space.

For case event data, the convolution model was proposed by Lawson15 to be used with 

Dirichlet tessellation to determine adjacency. White and Ghosh16 suggested a stochastic 

neighborhood model for a irregular lattice which was extended from the family of Gaussian–

Markov Random Fields by Hrafnkelsson and Cressie.17 The neighborhood sizes were 

estimated by assuming that there is an unknown cutoff distance. The weights within the 

proximity distance are equal and sum to one, and decrease exponentially outside the range. 

In this paper, we extend the ICAR specification to include distance information as follows.
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Denote a set of irregular non-overlapping areas i = 1, …, I within a study region. The 

general specification of a CAR model can be in a form of

provided I − C is non-singular and . Denote [I − C]−1M = Σu. We 

need to ensure that Σu is symmetric; i.e.,  where cij is an element in C. Often 

cij is parameterized as ρwij where wij is an element in W and ρ indicates spatial dependence. 

Note that ρ is not a correlation parameter. W is known as the proximity or weight matrix 

with wij ≥ 0 for i ≠ j and wij = 0 for i = j. A common choice is to specify wij = 1 for adjacent 

neighbors. Denote W is the standardized weight matrix by the row sums (over its neighbors); 

i.e., . Let . Then

where D = diag(1/w1+, …, 1/wI+).

The intrinsic CAR is equivalent to specifying ρ = 1. Although the ICAR is an improper 

distribution, the specification has a practical meaning. The mean of ui is an average of its 

neighbors with weights in the matrix W. Usually, the weights are assigned equally to be one. 

In contrast, adding the ρ, although it remedies singularity, we do not have the interpretation 

of the mean as an average, but proportional to the average. Furthermore, the ICAR is a more 

common choice of the prior distribution for a spatial effect due to its simplicity and ease of 

computation. We extend the ICAR formulation to account for the distance effect in irregular-

shape or case event data. Here, we incorporated distance information into the weight matrix 

using a distance function, and define a weighted conditional auto regression (WCAR) model 

as

where , . For instance, we can consider exponential decay 

as the distance function. That is , αj > 0, and . 

From the specification of WCAR, ICAR is a special case of WCAR when wij = 1. To 

demonstrate the WCAR model, two distance functions are assumed: an exponential decay 

(WCARexp; K(dij, α) = exp(−αjdij)) and inverse distance (WCARinv; K(dij,α) = 1/αjdij). 

Note that there are possibilities of distance specifications including kernel functions; the two 

functions are commonly used in practice. For simplicity of model demonstration,αj is 

assumed to be one. However, it could also be treated as a random parameter and assumed to 

have a prior distribution.
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3 Local concentration diagnostics

To evaluate clustering behavior, a number of local measures of goodness of fit are examined. 

These include leave-one-out cross-validation and individual information criteria.

3.1 Conditional predictive ordinate

An influential measure proposed by Geisser and Eddy18 using the leave-one-out cross-

validation predictive density is known as the conditional predictive ordinate (CPO). The 

CPO is defined as CPOi = f(yi|y\i) = f(yi|θ) f(θ|y\i)dθ and is estimated from a sampler by 

, where yi is the ith observation of y and y\i is y after omitting yi and G 

is the sampler sample size. The CPO is a convenient posterior predictive checking tool 

because it is easily implemented using MCMC and can be used to identify outliers, 

influential observations across different non-nested models. A larger value implies a better 

fit of the model to the observation and a low value suggests that the observation is an outlier 

or influential observation.

3.2 Local information criteria

Information criteria are measures of the relative goodness-of-fit of a statistical model and 

developed with a target to select models with good predictive abilities. In general, we have 

only one data set, no validation data. Unlike in cross validation where the data are portioned 

and refitted, the data are used in both parameter estimation and prediction. This leads to the 

double use of the data. Akaike suggested the Akaike information criterion (AIC) in the form 

of deviance (predictive ability) plus a penalty term (bias correction) using the maximum 

likelihood estimator (MLE) as the plug-in estimator for prediction and introduced the 

penalty term as 2k, where k is the number of parameters the model to asymptotically correct 

the bias from using the data twice. The AIC also shown to be equivalent to cross validation 

in a large sample setting.19 However, in hierarchical models, the prior distribution can 

reduce the degree of freedom of the number of parameters since the parameters tend to be 

correlated in the prior levels. Thus, the free number of parameters in not clear.

Deviance information criterion (DIC), an important variant of information criteria in 

hierarchical modeling, was introduced by Spiegelhalter et al.20 DIC can be seen as a 

Bayesian version of AIC21 by replacing the MLE with the Bayes estimator and replacing k 

with pD, the effective number of parameters. Although it was a significant advance and has 

received a credible response from Bayesian and BUGS community, there are criticisms on 

DIC due to theoretical justification.20,22,23 Many information criteria have been developed in 

the context of hierarchical modeling; the most promising invent perhaps is the Watanabe 

Akaike (or widely applicable) information criterion (WAIC).22

WAIC was introduced by Watanabe,24,25 who calls it the WAIC. This measure is a more 

fully Bayesian approach for estimating the out-of-sample expectation21 because it is based 

on an appropriate predictive distribution, not a plug-in. WAIC starts with the computed log 

pointwise posterior predictive density and then adding a correction for effective number of 

parameters to adjust for overfitting.21,24 The bias adjustment used in this paper is variance of 
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individual terms in the log density summed over the areas: pWAIC = Σi varpost(log(p(yi|θ))). 

Then WAIC can be computed as WAIC = lppd − pWAIC where 

 and G is the sampler sample size. One advantage of WAIC 

is that it can be applied to both singular and non-singular models while AIC and DIC only 

work for singular models.24,25 Although some development has been made to deal with 

singular models for those criteria,23 WAIC appears to be less computationally intensive.

However, DIC can be assessed locally providing a finer level of cluster diagnostics. The 

partitioning of the DIC can be computed to investigate contribution of each individual 

observation as20 , where  is the average deviance of the 

observation i, and pDi is the effective number of parameters or the information contributing 

to its own fitted value of the observation i. One can also estimate the pDi from the local 

average deviance and the local deviance of the mean parameters. Because WAIC is 

pointwise computing, it is very convenient to obtain local WAIC (LWAIC) from the 

definition as Local WAIC = LWAICi = lppdi − pWAICi.

3.3 Local Kullback–Leibler divergence

We may consider the outcome of a Bayesian analysis to be the distribution of some quantity 

given the model choice and observed data. We particularly can consider the posterior of 

model parameters in context of leave-one-out cross-validation. The Kullback–Leibler (KL) 

divergence is usually used as a measure of how different two distributions are. We propose 

to define the surveillance KL divergence to evaluate influence of the observation at location i 

as

where Pi = p(θ|yi), θ = (θ1,…, θi), yi = (y1,…, yi) and P−i = p(θ|y−i), y−i = (yi,…, yi−1). Pi is 

the joint posterior distribution of all parameters given full data. P−i is the joint posterior 

distribution of all parameters given the data without the ith area. Therefore, 

. The 

algebraic detail of the proof is offered in Appendix 1. The second term in the above express 

is a function of the log of CPO. Similar formulations were proposed in the context of outlier 

detection.26,27

4 Simulation study

4.1 Simulated data

A simulation experiment is conducted to examine distance specifications of the weight 

matrix in WCAR and compare to the ICAR and compare different cluster detection methods. 

A simulation map used as a basis for our evaluation and assessment of outbreak detection 

was the map of the state of South Carolina (SC), USA. The locations of 300 events are 

independently simulated from a point process whereby point events occur within a given 
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map in a completely random fashion. A Bernoulli sampling scheme is employed to generate 

the nature of each event (case or control) is also simulated: the probability of a case event is 

0.8 inside a cluster and the probability of being a control is 0.1 outside a cluster. Three 

circular clusters are simulated with radius of 1, 5 and 10 km. Figure 1 shows a realization of 

simulated cases and controls using CSR function in Splancs package in R.28

Each simulated dataset was fitted sequentially using the model described in “Spatiotemporal 

Modeling for Case Event Data” section and localized concentration detection in “Local 

Concentration Diagnostics” section. The weight functions are chosen to be the exponential 

decay and the inverse of distance with alpha in both functions fixed to be one. We carried 

out the posterior sampling with the mixed Gibbs–Metropolis algorithms implemented in 

WinBUGS. The burn-in period of 10,000 samples with two chains was used to evaluate the 

convergence of the chains, and, after the burn-in, a sample of 10,000 iterations was obtained 

as the converged posterior sample. To account for simulation artifacts, we simulated 50 

datasets and the results presented are averaged over those datasets. The three weight 

functions and surveillance methods are evaluated using the simulated data.

4.2 Simulation results

The concepts of false positive and false negative rates are readily usable to measure the 

performance of the cluster diagnostics. An ROC curve is a way to illustrate the performance 

of a surveillance system as its discrimination threshold is varied. It is created by plotting the 

fraction of true sensitivity against the fraction of 1-specificity at various threshold settings. 

To construct a ROC curve, we can connect all the point obtained from the all possible 

chosen thresholds. A true positive rate for a measure was calculated by averaging the 

proportion of times when the posterior sampler of the measure was greater than a threshold 

during the convergent period over the clusters. A false positive rate was computed in a 

similar way but averaged over the non-cluster areas. A threshold was picked in a range of 

possible values of the measure. Then, the threshold was varied over the range to get a curve 

by plotting the true positive rates, proportion of high risk areas exceeding a threshold, 

against false positive rates, proportion of low risk areas exceeding a threshold. These curves 

are seen in Figure 2.

We examined a range of localized concentration detections including case probability, CPO, 

and local goodness of fit measures. The convolution models with ICAR and WCAR with the 

exponential decay (WCARexp) have a better performance in terms of ROC curves; however, 

the WCAR with the exponential decay has the most area under curve in the case of case 

probability. From the Figure 3, ICAR appears to produce an overly smooth case probability 

surface where WCAR which accounts for distance information estimate the surface more 

reasonably. However, WCAR with the inverse distance function seems to be too localized 

and yields more false positives than WCAR with the exponential decay. CPO (Figure 3) and 

local information criteria (Figure 4) produce similar results as they appear to be sensitive to 

noises.
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5 Data example

Non-Hodgkin’s lymphoma (NHL) is cancer that originates in the lymphatic system and the 

tumors develop from a type of white blood cell. NHL is more common than the other 

general type of lymphoma, Hodgkin lymphoma. We analyzed the incidence of NHL for 

South Carolina over a period of 15 years (Figure 5). We have requested all SC registry 

patients diagnosed with NHL as primary diagnosis. Locational information down to census 

block level is available for the period 1996–2010. These data are at a spatial and temporal 

scale fine enough to ensure that point process methodology is appropriate and there are no 

multiple occurrences within any spatial unit.

Since the data are of patients diagnosed with the disease, we do not have information about 

population at risk. In this analysis, we compare between patients diagnosed stage 1 versus 

patients diagnosed in the later stages, and define the label as stage 1 to be 0 and later stages 

to be 1. We adopted the model described in “Spatiotemporal Modeling for Case Event Data” 

section using the CAR model with the exponential decay weight with alpha = 1 because it 

has the best method in the simulation study. We carried out the posterior sampling with the 

mixed Gibbs–Metropolis algorithms implemented in WinBUGS. The burn-in period of 

10,000 samples with two chains was used to evaluate the convergence of the chains, and, 

after the burn-in, a sample of 10,000 iterations was obtained as the converged posterior 

sample.

Figure 6 displays the probability maps of being diagnosed in the early stage (control) 

comparing to late stages (case) with WCARexp of South Carolina NHL incidences during 

January until June in 1996. It seems that some areas in the north have particularly high 

probabilities to be diagnosed with late stages during first four months but there is a possible 

cluster of incidence of late stage NHL in a southeast region in June 1996. However, 

interpretation and decision making with the incidence probabilities should be done with 

knowledge of their nature and quality or reliability.

Figure 7 shows the temporal profile of exceedence probabilities for NHL South Carolina 

incidences during April–May 1996. Circles are labels for early (0) and late (1) stages. Red 

and orange dots represent observations with exceedence probabilities greater than 0.95 and 

0.9, respectively. The cut-off value of 0.9 may be used as an indicator for a moderate 

temporal effect of incidences whereas the threshold at 0.95 provides a stronger alarm. Note 

that although it is a temporal profile, the model also accounts for the underlying distribution 

of baseline locations. Therefore, if a case happens among surrounding controls, that 

observation would send a weaker signal than the ones within a cluster of cases. This 

paradigm is sensible for case event data and an advantage of our model.

Richardson et al.29 proposed in the context of disease counts that posterior probability values 

can be used to support interpretation of areas with actual excess risk. Regions where the 

relative risk is more than 1 which is a null value and the posterior probabilities are greater 

than a high (nearly one) number can be more assuredly considered as having high risk. For 

binary outcomes, we set a cut off at 0.5 and a region with exceedence larger than 0.95 are 

considered to be an incidence hot spot. Figure 8 shows the maps of exceedence probability 
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of South Carolina NHL incidences Nonetheless, exceedence probabilities can sensitive to 

model specification and Rotejanaprasert13 suggested incorporating residual information into 

consideration because the cluster information may be also left in the residuals instead of 

posterior mean estimates. However, classical dichotomous residuals can be difficult to work 

with due to the discrete nature of the response variable. The exceedence probability may not 

be appropriate in the context of case event data.

The Bayesian approach provides a rich output associated to the estimated case probability 

and allows us to measure its reliability in terms of credibility intervals. The one-sided 

credible intervals of case probability at each location are calculated. If the lower limit of the 

interval excludes the value of 0.5, that location would be determined as signaling. There are 

two level of credible intervals considered: 90% and 95%. Figures 9 and 10 show the maps of 

90% and 95% lower limits of the NHL incidence probability estimates. The 90% credible 

interval may be used as an indicator for clusters of moderate probability of incidence while 

95% credible intervals provide a strong signal of high localized concentration where some 

intervention perhaps is needed. These proposed spatial and temporal surveillance procedures 

can aid public health practitioners to monitor unusual spatial case events.

6 Conclusion and discussion

Although count data are an important focus area, it is also often important to consider finer 

spatial scale events such as events at residential addresses. In our approach, we exploit the 

fact that we have individual level information about cases but also wish to model overall 

variation in space–time risk. Unlike earlier work, we adopt a conditional logistic spatial 

model for the covariate linkage conditioning on the point process superposition of cases and 

controls. This allows for the rich structure of cancer registry information to be 

accommodated at the individual level. In addition, it lets the surveillance to be performed 

directly on the binary logistic model which is natural inclusion of individual level covariates 

and less computationally intensive.

The convolution model proposed by Besag et al.9 including a correlated effect based on an 

ICAR model and uncorrelated Gaussian random effects is perhaps the most popular choice 

in Bayesian disease mapping for small area count data. For case event data, it is sensible to 

include distance information into the CAR structure. Thus, we extend the ICAR 

specification to account for the distance effect in irregular-shape or case event data as the 

WCAR using two distance functions, the inverse distance (WCARinv) and exponential decay 

(WCARexp).

To evaluate clustering behavior, a number of local measures of goodness of fit are examined. 

These include exceedence probabilities, CPO and local information criteria. We also propose 

an alternative to detect localized concentration based on KL divergence criteria which is 

related to CPO. To compare mathematical expressions of the local measures, we can see that 

the proposed local KL is a function of CPO. Furthermore, the formulation of the local DIC 

and local KL are in a similar form. They both include deviance but have different penalty 

terms. However, DIC, which is an analog of AIC, is based on point estimation, the Bayes 

estimate in this case. This can make DIC or perhaps also AIC an inappropriate measure of 
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goodness of fit for singular models such as mixture models.22–24 On the other hand, CPO or 

WAIC which are based on pointwise computing are more suitable when singular models are 

of interested.24,25 Nonetheless, the proposed local KL may can be useful as a global 

goodness of fit as the summation of the partition, Σi KLi, which is easily computed.

With the simulated data, the convolution models with ICAR and WCAR with the 

exponential decay have a better performance in terms of ROC curves (Figure 2); however, 

the WCAR with the exponential decay has the most area under curve in the case of case 

probability. Figure 3 shows that ICAR appears to produce an overly smooth case probability 

surface where WCAR which accounts for distance information estimate the surface more 

reasonably. However, WCAR with the inverse distance function seems to be too localized 

and yields more false positives than WCAR with the exponential decay. CPO (Figure 3) and 

local information criteria (Figure 4) produce similar results as they appear to be sensitive to 

noises.

We also demonstrated the performance of surveillance techniques with real data. The 

application concerns with the distribution of patients diagnosed with NHL. Locational 

information down to census block level is available for the period 1996–2010. These data are 

at a spatial and temporal scale fine enough to ensure that point process methodology is 

appropriate. Interpretation and decision making with the incidence probabilities should be 

done with knowledge of their nature and quality or reliability. The one-sided credible 

intervals of case probability estimate and exceedence probability at each location are 

calculated as a measure of localized concentration of moderate and high NHL incidences. 

This proposed surveillance system can aid for public health practitioners to monitor unusual 

spatial case events.

Acknowledgments

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of 
this article: This work was supported by grant number R03CA179665 from the National Cancer Institute and the 
data were provided by South Carolina Central Cancer Registry, South Carolina Department of Health and 
Environmental Control.

Appendix 1

where
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By Bayes’ theorem

Then

For the second term with conditional independence in likelihood

Thus,
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Figure 1. 
A realization of cases (green) and controls (black) simulated from a completely random 

spatial process. Red dots represent the centroid of the three cluster locations.
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Figure 2. 
ROC curves of different cluster diagnostics with ICAR (black), WCARexp (exponential 

decay, green) and WCARinv (inverse distance, blue).
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Figure 3. 
Maps of estimated case probability (pi) and CPO during day 200 from a simulated dataset 

modeled using ICAR, WCAR with exponential decay (WCARexp) and WCAR with inverse 

distance (WCARinv).
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Figure 4. 
Maps of LDIC, LKL and LWAIC during day 200 from a simulated dataset modeled using 

ICAR, WCAR with exponential decay (WCARexp) and WCAR with inverse distance 

(WCARinv).

Rotejanaprasert et al. Page 16

Stat Methods Med Res. Author manuscript; available in PMC 2017 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The zip code map of Non-Hodgkin’s lymphoma incidences during 1990–1996 in South 

Carolina.
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Figure 6. 
The probability maps of being diagnosed in the early stage vs. late stages with WCARexp of 

South Carolina NHL incidences during January (top left) – June (bottom right) in 1996.
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Figure 7. 
The temporal profile of exceedence probabilities for NHL South Carolina incidences during 

April–May 1996. Circles are labels for early (0) and late (1) stages. Red and orange dots 

represent observations with exceedence probabilities greater than 0.95 and 0.9, respectively.
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Figure 8. 
The maps of exceedence probability of South Carolina NHL incidences during January (top 

left) – June (bottom right) in 1996. The contours indicate the areas with exceedence 

probability greater than 0.95.
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Figure 9. 
The maps of lower limit of 90% credible interval of incidence probability being diagnosed in 

the early stage vs. late stages with WCARexp of South Carolina NHL incidences during 

January (top left) – June (bottom right) in 1996. The contours indicate the areas with the 

lower limit greater than 0.5.
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Figure 10. 
The maps of lower limit of 95% credible interval of incidence probability being diagnosed in 

the early stage vs. late stages with WCARexp of South Carolina NHL incidences during 

January (top left) – June (bottom right) in 1996. The contours indicate the areas with the 

lower limit greater than 0.5.
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