
Spatial-Behavioral Types,
Distributed Services, and Resources

Luı́s Caires

CITI / Departamento de Informática, Universidade Nova de Lisboa, Portugal

Abstract. We develop a notion of spatial-behavioral typing suitable to discipline in-
teractions in service-based systems modeled in a distributed object calculus. Our type
structure reflects a resource aware model of behavior, where a parallel composition type
operator expresses resource independence, a sequential composition type operator ex-
presses implicit synchronization, and a modal operator expresses resource ownership.
Soundness of our type system is established using a logical relations technique, building
on a interpretation of types as properties expressible in a spatial logic.

1 Introduction

The aim of this work is to study typing disciplines for service-based systems, with a
particular concern with the key aspects of safety, resource control, and compositionality.
For our current purposes, we consider service-based systems to be certain kinds of
distributed object systems, but where binding between parties is dynamic rather than
static, system assembly is performed on-the-fly depending on discoverable resources,
interactions between parties may involve long duration protocols, and the fundamental
abstraction mechanism is task composition, rather than just remote method invocation.
In this paper, we approach the issue of compositional analysis of distributed services
and resources using a new notion of typing inspired by spatial logics. Technically, we
proceed by introducing a core calculus for distributed services, where clients and servers
are represented by concurrent “objects” (aggregates of operations and state). Services
are called by reference, and references (names) to services may be passed around, as
in π-calculi. New services may also be dynamically instantiated. We then develop and
study a fairly expressive type system aimed at disciplining, in a compositional way,
interactions and resource usage in such systems.

Our type structure is motivated by fundamental features and properties of our in-
tended model. We conceive a service-based system as a layered distributed system,
where service provider objects execute tasks in behalf of client objects, in a coordi-
nated way. Even if the same object may act as client and server, we do not expect intrin-
sic cyclic dependencies to occur in such a system. The main coordination abstractions
for assembling tasks into services are probably parallel (independent) and sequential
composition. Tasks are independent when they never get to compete for resources; in-
dependent tasks appear to run simultaneously, this is the default behavior of the “global
computer”. On the other hand, causality, data flow, and resource competition introduce
constraints in the control flow of computations. We will thus consider tasks and re-
sources as the basic building blocks of service based systems.

Models of concurrent programming usually introduce two kinds of entities in their
universe of concepts: processes (active) and resources (passive). While processes are

2 Luı́s Caires

the main subject of analysis, resources are considered atomic, further unspecified en-
tities besides being unshareable by definition (with objects such as as files, channels,
etc, memory cells, given as classical examples). We adopt a view where resources and
objects are not modeled a priori by different sorts of entities: but where everything is
an object. Our distinction criteria is observational, and not strict: what distinguishes a
resource among other objects is that resources must be used with care so to avoid mean-
ingless or disrupted computations. For example, a massively replicated service such as
Google behaves pretty much as if every client owned its own private copy of it. On
the other hand, an object handling an e-commerce session with a user, is certainly not
supposed to be shared: if other user gets in the middle and interferes with the session
things may go wrong! We then consider the latter more “resource-like” than the former.
Thus, instead of thinking of resources as external entities, for which usage policies are
postulated, we consider a resource to be any object expressible in our model that must
be used according to a strict discipline to avoid getting into illegal states. Our seman-
tics realizes such illegal states concretely, as standard “message not understood” errors,
rather than as violations of extraneously imposed policies, as e.g., in [14, 17, 2].

Adopting a deep model of resources as fragile objects brings generality to our ap-
proach. Just as sequentiality in a workflow results from resource competition, resource
competition is problematic in the sense that if a system does not respect precise shar-
ing constraints on objects, illegal computation states may arise. This view allows us
to conceive more general sharing constraints than the special cases usually considered:
e.g., at certain stage of a protocol a resource might be shareable, while at other stage it
may be not. Such an uniform approach also naturally supports a computational model
where resources may be passed around in transactions, buffered in pools, while ensur-
ing that their capabilities are used consistently, by means of typing. Our type system,
we believe, captures the fundamental constraints on resource access present in general
concurrent systems. It is based on the following constructors

U,V ::= stop |U |V |U ∧V |U ;V |U◦ |U . V | l(U)V

to which we add a recursion operator (and type variables). The spatial composition type
U |V states that a service may be used accordingly to U and V by independent clients,
one using it as specified by U , the other as specified by V . This implies, in particular,
that the tasks U and V may be activated concurrently. For example, an object typed with

Travel , (flight | hotel);order

will be able to service the flight (we abbreviate l(stop)stop by l, and so on) and
hotel tasks simultaneously and after that (and only after that), the order task. The
spatial reading of U |V implies further consequences, namely that the (distributed) re-
sources used by U and V do not interfere; this property is important to ensure closure
under composition of certain safety properties of typed systems. Owned types, of the
form U◦, state not only that the service is usable as specified by U , but also that such
usage is completely owned (so that a object possessing a reference of owned type may,
for example, store it for later use). Owned types allow one to distinguish between ser-
vices that must be used according to U , and services that may be used according to U ;

Spatial-Behavioral Types, Distributed Services, and Resources 3

this distinction is crucial to control delegation of resources or services between part-
ners. More familiar behavioral types may also be easily expressed. For example, using
sequential composition and conjunction, the usage protocol of a file might be specified

File(V) , (open;(read()V ∧write(V))?;close)?

where U? , rec α.(stop∧ (U ;α)) expresses iteration. By combining recursion with
spatial types, we then define shared types. A shared type U! states of an object that it
may be used according to an unbounded number of independent sessions, each one con-
forming to type U . By combining such operators, we may specify fine grained shared
access protocols, such as standard “multiple readers/unique writer” access pattern:

RW (V) , ((read()V)!;write(V ◦))?

Finally, and crucially, guarantee types, of the form U . V , allows us to compose sub-
systems into systems while preserving the properties ensured by their typings.

The paper is structured as follows. In Section 2, we present our core language and
its operational semantics, and some examples. In Section 3 we introduce our basic type
system, and prove its soundness. Our proof combines syntactical and semantical rea-
soning, in the spirit of the logical relations technique, where types are interpreted as
properties expressed in a spatial logic. In Section 4, we show how to extend our ba-
sic system to cover more general forms of sharing. Finally, Section 5 discusses related
work and draws some conclusions.

2 A Distributed Service Calculus

In this section we present the syntax and operational semantics of our distributed ser-
vice calculus. We assume given an infinite set N of names. Names are used to identify
objects (n,m, p), threads (b,c,d) and state elements (a). We also assume given an in-
finite set X of variables (x,y,z), and an infinite set L of method labels (j,k,l). We
note X = N ∪V and let η range over X (variables and names). We start by introducing
expressions. In the definition of systems, expressions may syntactically occur either in
the body of a method definition, or in a thread.

Definition 2.1 (Values, Expressions, Methods). The sets V of values, E of expres-
sions, and M of methods are defined by the abstract syntax in Fig. 1 (top).

We use the notation ς to denote a sequence of syntactical elements of class ς. The
value nil is an atomic value that stands for the null reference. The call expression
n.l(v) denotes the invocation of the method l of object n, where the value v is passed
as argument. The wait expression n.c() denotes waiting for a reply to a previously issued
method invocation of the form n.l(v), where c is the identifier of the thread which is
serving the request (remotely). The wait construct plays a key technical role in our for-
mulation of the dynamic and static semantics of our language, even if it is not expected
to appear in source programs. The composition construct let x = e in f denotes the
parallel evaluation of the expressions ei, followed by the evaluation of the body f ,

4 Luı́s Caires

e, f ,h ::= ∈ E (Expressions)
v (Value)

| v.l(v) (Call)
| n.c() (Wait)
| a? (Read)
| a!(v) (Write)
| new [M] (Object Creation)
| let x = e in e (Composition)
| rec x.e (Recursion)

v,r ::= ∈ V (Values)
n (Name)

| x (Identifier)
| nil (Termination)

M ::= ∈ M (Methods)
0 (Empty)

| l(x) = e (Method)
| M | M (Methods)

s ::= ∈ S (Stores)
0

| a〈v〉
| s | s

t ::= ∈ T (Threads)
0

| t | t
| c〈e〉

P,Q,R ::= ∈ P (Network)
0 (Empty)

| (νn)P (Restriction)
| P | Q (Composition)
| n[M ; s ; t] (Object)

Fig. 1. Values, Expressions, Methods, Stores, Threads, Networks.

n.l(v)
n.lc(v)−→ n.c() new [M]

n[M]−→ n

n.c()
n.c(v)−→ v

e{x�rec x.e} α−→ e′

rec x.e α−→ e′
(Rec)

a?
a?(v)−→ v

e α−→ e′

let · · · ,x = e, · · · in f α−→ let · · · ,x = e′, · · · in f

a!(v)
a!(v)−→ nil let x = v in e τ−→ e{x�v}

Fig. 2. Evaluation (Expressions).

e
n.lc(v)−→ e′ [c fresh]

n[l(x) = h ; ;] | m[; ; b〈e〉]→ (νc)(n[l(x) = h ; ; c〈h{x�v}〉] | m[; ; b〈e′〉])

e
n.c(r)−→ e′

n[; ; c〈r〉] | m[; ; b〈e〉]→ m[; ; b〈e′〉]
e τ−→ e′

n[; ; c〈e〉]→ n[; ; c〈e′〉]

e
a?(v)−→ e′

n[; a(v) ; c〈e〉]→ n[; ; c〈e′〉]
e

a!(v)−→ e′

n[; ; c〈e〉]→ n[; a(v) ; c〈e′〉]

e
m[M]−→ e′ [m fresh]

n[; ; c〈e〉]→ (νm)(m[M ; ;] | n[; ; c〈e′〉])
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

P → Q
(νn)P → (νn)Q

P → Q
P | R → Q | R

Fig. 3. Reduction (Networks).

Spatial-Behavioral Types, Distributed Services, and Resources 5

where the result of evaluating each ei is bound to the corresponding xi. The xi are dis-
tinct bound variables, with scope the body f . The let construct allows us to express
arbitrary parallel / sequential control flow graphs, in which values may be propagated
between parallel and sequential subcomputations. We use the following abbreviations
(where x1 and x2 do not occur in e1 and e2):

(e1 | e2) , let x1 = e1 , x2 = e2 in nil (e1;e2) , let x1 = e1 in e2

The a? and a!(v) constructs allow objects to manipulate their local store. The read ex-
pression a? picks and returns a value stored under tag a, while the write expression a!(v)
stores value v in the store under tag a. The store conforms to a data space model, where
reading consumes data, and writing adds new data elements. Evaluation of new[M] re-
sults in the allocation of a new object, with set of methods M, and whose identity (a
fresh name) is returned. In the method l(x) = e the parameter x is bound in the scope of
the method body e (for the sake of simplicity, we just consider single parameter meth-
ods). Finally, the rec construct introduces recursion. To keep our language “small”, we
refrain from introducing other useful ingredients, such as basic data types and related
operators, for instance booleans and conditionals. Since it should be straightforward to
formally extend our language with such constructs, we will sometimes use them, mostly
in examples. Having defined expressions, we introduce:

Definition 2.2 (Stores, Threads, Networks). The sets S of stores, T of threads, and P
of networks are given in Fig. 1 (bottom).

A network is a (possibly empty) composition of objects, where composition P | Q
and restriction (νn)P are introduced with their usual meaning (cf., the π-calculus). An
object n[M ; s ; t] encapsulates, under the object name n, some methods M (passive
code), a store s (that holds the object local state), and some threads t (active, running
code). A store s is a bag of pairs tag - value. Each value is recorded in a store under an
access tag (a name), represented by a〈v〉, where a is the tag and v is the value. A store
may possibly record several values under the same name a, so that e.g., a〈1〉 | a〈2〉 is a
valid store. A thread c〈e〉 is uniquely identified by its identifier c and holds a running
piece of code, namely the expression e. Threads are spawned when methods are called,
and may run concurrently with other independent threads in the same object or network.

Objects in a system are given unique names, so that, for instance, the network
n[M ; s ; t] | n[M′ ; s′ ; t ′] denotes the same network as n[M | M′ ; s | s′ ; t | t ′]. Identities
between networks such as this one (the Split law) are formally captured by structural
congruence, defined below. By fn(P) (resp. fn(t), fn(s), etc.) we denote the set of free
names in process P (resp. thread t, store s, etc.), defined as expected. We use A,B,C to
range over M ∪S ∪T ∪P (the | -“composable” entities).

Definition 2.3 (Structural Congruence). Structural congruence, noted ≡, is the least
congruence relation on networks, methods, and threads, such that

A ≡ A | 0 n[M ; s ; t] | n[N ; r ; u] ≡ n[M | N ; s | r ; t | u]
A | (B |C) ≡ (A | B) |C n[M ; s ; t] ≡ n[N ; r ; u] if M ≡ N,s ≡ r, t ≡ u

B | A ≡ A | B (νm)(νn)P ≡ (νn)(νm)P
(νn)0 ≡ 0 (νn)(P | Q) ≡ P | (νn)Q if n#fn(P)

6 Luı́s Caires

We use n#S (resp. S#S′) to denote that n 6∈ S (resp. that S and S′ are disjoint). To lighten
our notation, we avoid writing 0 in objects slots, leaving the corresponding place holder
blank. For example, n[M ; 0 ; 0] will be frequently written simply as n[M ; ;].

The operational semantics of networks is defined by suitable transition relations.
The labeled transition system in Fig. 2 specifies evaluation of expressions. A remote
method call reduces to a wait expression on a fresh (thread) name c. Such wait expres-
sion will reduce to the returned value, upon thread completion. Notice also how let
introduced expressions are evaluated concurrently, until each one reduces to a value.
For object networks, the operational semantics specifies a remote method invocation
mechanism by means of the transition system in Fig. 3. Servicing a method call causes
a new thread to be spawned at the callee object’s location, to execute the method’s body.
Meanwhile, the thread that originated the call suspends, waiting for a reply. Such a re-
ply will be sent back to the caller, after the handling thread terminates. A n[M] labeled
transition, caused by the evaluation of a new [M] expression, triggers the creation of a
new object. Thus, labels in transitions express the actions that objects may engage into.

Definition 2.4. Labels L are given by: α ::= τ | n.lc(v) | n.c(v) | a?(v) | a!(v) | n[M] .

Definition 2.5 (Evaluation and Reduction). Evaluation, noted e α−→ e′, is the relation
defined on expressions by the labeled transition system in Figure 2. Reduction, noted
P → Q, is the relation defined on networks by the transition system in Figure 3.

We use⇒ for the the reflexive transitive closure of→. Notice the role of≡ in reduction,
in particular the Split law, so that each rule may mention just the parts of objects that
are relevant for each interaction. An idle object may only become active as effect of an
incoming method call, issued by a running thread. An object n[M ; s ; t] such that t ≡ 0,
is said to be idle, since it contains no running threads. Likewise, a network is idle if all
of its objects are idle. We set: idle(P) , For all Q.if P ≡ (νm)(n[; ; t] | Q) then t ≡ 0.

Example 2.6. We sketch a toy scenario of service composition, where several sites co-
operate to provide a travel booking service. First, there is an object F implementing a
service for finding and booking flights. It provides three methods: flight to look for
and reserve a flight, book to commit the booking, and free to release a reservation. A
similar service is provided by object H, used for booking hotel rooms.

F , f [flight() = · · · | book() = · · · | free() = · · · ; ;]
H , h[hotel() = · · · | book() = · · · | free() = · · · ; ;]

G , gw[pay(s) = if bk.debit() then s.book() else s.free() ; ;]

B , br[flight() = f .flight() | hotel() = h.hotel() |
order() = (gw.pay(f);gw.pay(h)) ; ;]

We elide method implementations in F and G, but assume that the operations must
be called in good order to avoid disruption, namely that after calling flight, a client
is supposed to call either book or free. The broker B, that implements the front-end
of the whole system, is client of F and H, and also of a payment gateway G. The
gateway books items if succeeds in processing their payment through a remote bank

Spatial-Behavioral Types, Distributed Services, and Resources 7

service named bk. Our travel booking service, available at br, is used by first invoking
the flight and hotel operations in any order. In fact, these operations may be called
concurrently, since they trigger separate computations. Afterwards, the order operation
may be invoked to book and pay for both items, delegating access to f and h to the
gateway. The session will then terminate, and the broker becomes ready for another
round. We will see below how these usage patterns may be specified by typing, and the
type of the whole system compositionally defined from the types of its components.

The operational semantics assumes and preserves some constraints on networks. In an
object n[M ; s ; t] no more than a method with the same label may occur in M, and
no more than a thread with the same name may occur in t. Objects in a network are
uniquely named, also all threads in a system are uniquely named. In general, a network
P is well-defined if all threads occurring in P have distinct names, all methods in objects
have distinct labels, and for each thread name c there is at most one occurrence in P of
a wait expression n.c(). It is immediate that if P is well-defined and P≡Q | R then both
Q and R are well-defined. On the other direction, the same does not hold in general,
e.g., P and Q might clash in method and thread names. We then define by ft(P) the set
of free thread names in P, and by lab(P,n) the set of method labels of object n in P:

c ∈ ft(P) iff P ≡ (νm)(n[; ; c〈e〉] | Q) and c#m
l ∈ lab(P,n) iff P ≡ (νm)(n[l(x) = e ; ;] | Q) and n#m

Definition 2.7. We assert P‖Q , f t(Q)# f t(P) and for all n. lab(P,n)#lab(Q,n).

P‖Q means that P and Q are composable, in the sense that if P‖Q, and both P and Q are
well-defined, so is P | Q. Notice that P‖Q does not imply fn(P)#fn(Q). We also have

Lemma 2.8. If P is a well-defined network and P→Q then Q is a well-defined network.

Henceforth, we assume networks to be always well-defined. It is useful to introduce
external action transitions, that extend the reduction semantics with labels n.lc(m) and
n.c(r), to capture incoming method calls from the environment, and their replies.

Definition 2.9. External actions of networks are defined by the labeled transitions:

(νm)(n[l(x) = e ; ;] | R)
n.lc(u)−→ (νm)(n[l(x) = e ; ; c〈e{x�u}〉] | R) [c fresh and n,u#m]

(νm)(n[; ; c〈r〉] | R)
n.c(r)−→ (νm\r)(n[; ;] | R) [c,n#m]

Even well-defined networks may get stuck if a method call is being issued, but the called
object does not offer the requested method. We say P is stuck if stuck(P) holds, where

stuck(P) , Exists m,Q,e,e′. P≡ (νm)(p[; ; c〈e〉] | Q) and e
n.lc(v)−→ e′ and l 6∈ lab(Q,n)

Service based systems, as we are modeling here, may easily get stuck, if not carefully
designed. As in (untyped) object oriented languages, message-not-understood errors
may arise whenever an object does not implement an invoked method. However, in our
present context stuck states may also arise if method calls are not coordinated (do not
respect protocols) and timing errors occur (for example, due to races, e.g., competing
calls to the same non-shareable method). The presence of state in objects creates history
dependencies on resource usage, and introduces a grain of resource sensitiveness in our
model, as discussed in the Introduction, and illustrated in the next example.

8 Luı́s Caires

Example 2.10. Consider the object S defined thus

S , server[init() = s!(nil)
open() = let r = pool.alloc() in (s?;s!(r))
use() = let r = s? in (r.use();s!(r))
close() = let x = s? in (pool.free(x);s!(nil)) ; ;]

Our server S is a spooler that offers certain specific service by relying on a remote
resource pool to fetch appropriate providers. All resources (e.g., printers) in the pool
(pool) are supposed to implement the operation of interest (use). The server provides
the use service repeatedly to clients, by forwarding it through a locally cached refer-
ence. First, the server is initialized: by calling the init method the local reference is
set to nil. Afterwards, a client must open the service by calling the open method be-
fore using it (so that the server can acquire an available resource), and close it after use
by calling the close method (so that the server may release the resource). The server
implements these operations by accessing the pool through its alloc and free meth-
ods. The internal state of the server, hidden to clients, will always be either of the form
s(nil), or s(r) where r is a reference to an allocated resource. Notice how the idiom
let r = s? in (· · · ;s!(r)) expresses retrieving r from the local state, using it (in the · · ·
part), and storing it back again. The protocols described above must be strictly followed
to avoid runtime errors, due to resource non-availability. This would occur, e.g., if the
use operation is invoked right after close, an attempt to call the use method on a nil
reference will cause the system to crash. Our type system, presented in detail below,
prevents erroneous behaviors of this sort to happen, by ensuring that all services in a
network conform to well-defined resource usage protocols.

3 Spatial-Behavioral Types

In this section, we present a type system to discipline interactions on networks of ob-
jects, as motivated above. A type T in our system describes a usage pattern for an object.
Typically, an assertion of the form n : T states that the object n may be safely used as
specified by the type T . In general, the type of a composite system is expressed by an
assertion n1 : T1 | . . . | nk : Tk, specifying types of various objects. Such an assertion (or
typing environment) states that the system provides independent services at the names
ni, each one able to be safely used as specified by the type Ti respectively.

Definition 3.1 (Types). The set T of types is defined by the following abstract syntax:

T,U,V ::= ∈ T (Types)
stop (Stop) | T |U (Spatial Composition)

| T ∧U (Conjunction) | T ;U (Sequential Composition)
| T ◦ (Owned) | l(U)V (Method)
| α (Variable) | c(n : U)V (Thread)
| rec α.T (Recursion)

We may intuitively explain the meaning of the various kinds of types, by interpreting
them as certain properties of objects. An object satisfies stop if it is idle. An object

Spatial-Behavioral Types, Distributed Services, and Resources 9

satisfies n : T |U if it can independently (in terms of resource separation) satisfy both
n : T and n : U . We may also understood such a typing as the specification of two
independent views for the object n. An object satisfies n : T ∧U if it may satisfy both
n : T and n :U , although not concurrently. Such an object may be used either as specified
by n : T or as specified by n : U , being the choice made by the client. An object satisfies
n : T ;U if can satisfy both n : T and n : U , in sequence. In particular, it will only be
obliged to satisfy n : U after being used as specified by n : T . The owned type n : T ◦

means that the object may be used as specified by T , and furthermore that this T view
is exclusively owned. For example, a reference of type n : T ◦ may be stored in the local
state of an object, or returned by a method call, although a reference of type n : T may
not, because of possible liveness constraints associated to the type T . This will become
clearer in the precise semantic definitions below.

An object satisfies n : l(U)V if it offers a method l that whenever passed an argu-
ment of type U is ensured to return back a result of type V , and exercise, during the
call, an use of the argument conforming to type U . Thus, method types specify both
safety and liveness properties. The c(n : U)V types talk about running threads, and are
not expected to type source programs, but are useful to define the semantics of method
types, as explained below. Recursive types are interpreted as usual. We will not address
in detail recursive types in our technical development, for their treatment is fairly inde-
pendent from the features we want to focus, and should not raise special difficulties.

A typing environment (A,B,C,σ,δ) is a finite partial mapping from N ∪V to
T . We write η1 : T1, . . . ,ηn : Tn for the typing environment A with domain D(A) =
{η1, . . . ,ηn} such that A(ηi) = Ti, for i = 1, . . . ,n. Type operations stop, (T |U),
(T ∧U), (T ;U) and T ◦ extend to typing environments as follows. stop denotes any
typing environment (including the empty one) that assigns stop to any element in its
domain. Given A and B such that D(A) = D(B), we define environments stop, (A | B),
(A;B), (A∧B), and A◦, all with domain D(A), such that, for all η ∈D(A), we have

stop(η) , stop (A | B)(η) , A(η) | B(η) (A;B)(η) , A(η);B(η)
(A∧B)(η) , A(η)∧B(η) A◦(η) , A(η)◦

Given a sequence T = T1, . . . ,Tn of types (or typing environments) we denote by Π(T)
the type (or typing environment) (T1 | · · · | Tn). Our type system is based on the follow-
ing forms of formal judgments:

A <: B (Subtyping) e :: A|σ . B|δ [U] (Expressions)
[M; t] :: A|σ . B|δ [U] (Objects) P :: A . B (Networks)

In an expression typing judgment, e is the expression to be typed, A and B are typing en-
vironments, and U is a type. The auxiliary type environments σ and δ keep information
about effects on the local state of objects, and will be further explained below (notice
the | symbol separating the global environments A and B from the state environments σ

and δ in judgments, not to be confused with the | type constructor). For networks, the
typing judgment assigns to the network P an “assume-guarantee” assertion of the form
A . B, cf. the adjunct of the composition operator of spatial logics [8]. If a judgment
P :: A . B is valid, then if P is composed with any network that satisfies the typing A,
one is guaranteed to obtain a network that satisfies the typing B.

10 Luı́s Caires

A | B <: B | A
(A | B) | C <:> A | (B | C)

(A;B) | (C;D) <: (A | C);(B | D)
A;(B;C) <:> (A;B);C

stop;A <:> A
A;stop <:> A

stop | A <:> A
A∧B <: A
A∧B <: B

η : rec α.U <:> η : U{α�rec α.U}

A <: A

A◦ <: stop
A◦ <: A

A◦ <: A◦◦

stop <: stop◦

(A | B)◦ <:> A◦ | B◦

A◦;B <: A◦ | B

A <: B
A◦ <: B◦

A <: B A <: C
A <: B∧C

A <: B B <: C
A <: C
A <: B

A | C <: B | C
A <: B

A;C <: B;C
A <: B

C;A <: C;B
η : U <: η : V

η : rec α.U <: η : rec α.V

Fig. 4. Subtyping Rules

nil :: A|σ . A|σ [stop]

v :: v : T ◦|σ . |σ [T]

a? :: |σ,a : T . |σ [T]

a!(v) :: v : T ◦|σ . |σ,a : T [stop]

v.l(u) :: v : l(U)V | u : U|σ . |σ [V]

n.c(v) :: n : c(U)V | v : U|σ . |σ [V]

[M;0] :: A◦| . | [T]
new[M] :: A◦| . | [T ◦]

A <: A′ e :: A′|σ . B′|δ [V ′] B′ <: B V ′ <:V
e :: A|σ . B|δ [V]

e :: A|σ . B|δ [U] e :: A|σ . B|δ [V]
e :: A|σ . B|δ [U ∧V]

e :: A|σ . B|δ [V]
e :: A | C|σ,φ . B | C|δ,φ [V]

e :: A|σ . B|δ [V]
e :: A;C|σ . B;C|δ [V]

ei :: Bi|σi . |δi [Vi] ei#D(Π(σ))e j (i 6= j)
f :: C,x : V ◦|Π(δ) . E,x : stop|φ [U]
let x = e in f :: Π(B);C|Π(σ) . E|φ [U]

Fig. 5. Typing Rules (Expressions).

[M;0] :: A|σ . A|σ [stop]

M ≡ (N | l(x) = e) e :: A,x : U|σ . B,x : stop|δ [V]
[M;0] :: A|σ . B|δ [l(U)V]

e :: A,x : U|σ . B,x : stop|δ [V]
[M;c〈e{x�m}〉] :: A|σ . B|δ [c(m : U)V]

[M′; t ′] :: A|σ . B|δ [U] [M′′; t ′′] :: C|σ′ . D|δ′ [V]
[M′ | M′′; t ′ | t ′′] :: A | C|σ,σ′ . B | D|δ,δ′ [U |V]

[M; t] :: A|σ . B|δ [U] [M;0] :: B|δ . C|φ [V]
[M; t] :: A|σ . C|φ [U ;V]

[M;0] :: A◦| . | [T]
[M;0] :: A◦| . | [T ◦]

0 :: A . A

[M; t] :: A|si : Vi . B|δ [T]
n[M;si〈ni〉; t] :: A | Π(ni : Vi

◦) . n : T

P :: A . B Q :: C . D P‖Q
P | Q :: A | C . B | C

P :: A . B Q :: B . C P‖Q
P | Q :: A . C

P :: A . B n#A,B
(νn)P :: A . B

A <: A′ P :: A′ . B′ B′ <: B
P :: A . B

Fig. 6. Typing Rules (Objects and Networks).

Spatial-Behavioral Types, Distributed Services, and Resources 11

What does it mean for a network to satisfy a typing? As discussed above, types are
interpreted as properties (sets of networks) expressible in a spatial logic. In Section 3.1
below we will present in detail a logical semantics of types, around which our soundness
proofs are organized. First, we present our type system as a formal system, and explain
from an intuitive perspective the various rules and main results. Our type system is com-
posed by four sets of rules, to derive judgments of the four forms listed above. In Fig. 4
we present the subtyping rules. Subtyping, which holds between typing environments, is
motivated by selected natural properties of types, and reflect valid semantic entailments
in our logic (cf. Proposition 3.4). A first set of rules states that (− | −) and stop define
a commutative monoid. The rule (A;B) | (C;D) <: (A | C);(B | D) expresses the basic
interaction principle between sequential and independent composition, allowing us to
derive, e.g., A | B <:A;B, expressing interleaving. The rules for (−)◦ are quite interest-
ing, notice that (−)◦ and (− | −) reveal a familiar algebraic structure. No so familiar is
the rule A◦;B <: A◦ | B, asserting a key principle involving sequential composition and
ownership: the owned usage A◦ is not active (yet), and thus B cannot causally depend
on it. A further set of rules express congruence principles, and unfolding of recursion.

Fig. 5 presents the typing rules for expressions. Intuitively, a expression typing judg-
ment e :: A|σ . B|δ [U] means that e, when given a services conforming to A, in a store
conforming to σ will, after termination, yield a value of type U , while leaving a store
conforming to δ, and the used services in a state where they may be still used as spec-
ified by B. Notice that typing of expressions depends on typing of objects, through the
rule for new [M]. To intuitively grasp the meaning of our rules, we should keep in mind
that in a judgment e :: A|σ . B|δ [U], the return type U , as well as the stored types
σ,δ, are implicitly owned (we avoid writing, e.g., U◦ in the return type [U]). So, in the
rule for a value (name or variable), the value v may be returned only if its type is owned
(T ◦). The same happens in the rule for a write a!(v), where ownership of a T view of v
is handed over from the thread to the store. Notice how read / write effects are recorded
in the left (σ) and right (δ) environments. The rule for method call v.l(u) requires sepa-
ration between the method server v and the argument u. However, it does not force them
to be different objects: a general form of non-interference is here ensured by the spatial
typing, stating that the method part and the argument part do not share resources. We
also have some congruence rules, a subtyping rule, and a rule for let. In the let rule,
each expression ei is required not to interfere with a concurrent e j (ei#e j), by reading
and writing in the local store. We assert e#Ne′ whenever e and e′ do not write (a!(v))
or read (a?) using a common tag name a in N (e.g., we have a!();b? #{a} b!();c?).
This condition will be relaxed in Section 4, after the introduction of shared variables
and types. Notice that the values returned from each ei, whose evaluation depends on
separate resources Bi, are separate owned values, each one of type Vi

◦.

In Fig. 6, we present the typing rules for objects and networks. Intuitively, if the
judgement [M ; t] :: A|σ . B|δ [U] is valid, it states that any object n[M ; s ; t] where
the store s satisfies σ, may be composed with any system satisfying A and be safely
used according to type U . The residuals B and δ reflect the state of the external and
local resources after U has been exercised. Under this intuitive reading, all the rules for
objects are already quite transparent, and the same remark also applies to the rules for
networks. We discuss a bit the rule for object introduction. The rule requires that all state

12 Luı́s Caires

elements are distinctly named, and that each of the stored values ni is actually owned
by the object (typed by Vi

◦). Although in a perhaps subtle way, subtyping plays a key
role in the derivation of expression, objects and network judgments, the factorization
of a substantial amount of structural reasoning in the subtyping relation contributed to
keep our typing rules reasonably clean (we omit the obvious rule for subtyping object
judgments).
Example 2.6 (continued). We now assign types to the system components. For F and
H we may expect the typings F :: . f : Tf and H :: . h : Th, where we consider Tf ,
rec α.flight();(book()∧free());α and Th , rec α.hotel();(book()∧free());α.
For the gateway G, let G :: bk : Tbank . gw : Tgw where Tbk , recα.debit()bool;α and
Tgw , recα.pay(book()∧free());α. Set Tbr , recα.(flight() | hotel());order();α.
Now, the following judgment is derivable: (F | H | G | B) :: bk : Tbk . br : Tbr. It asserts
that (F | H | G | B), when composed with any system providing the Tbk type at bk, will
be safe for use at br as specified by Tbr. Such typing may be obtained compositionally in
many ways. A possible factoring is between broker B :: gw : Tgw, f : Tf ,h : Th . br : Tbr
and back-end (G | H | F) :: bk : Tbk . gw : Tgw, f : Tf ,h : Th.

We define the following variant of the Kleene iterator: T⊗ , rec α.(T ;α)◦. Notice
that we have T⊗ <:> (T ;T⊗)◦ <: stop∧(T ;T⊗). Hence, T⊗ can be unfolded infinitely
many times into copies of T (as T ∗ does), but also be stored and returned by method
calls, since it is an owned type (while T ∗ may not).
Example 2.10 (continued). For the spooler S, we propose the following typings. First,
we abbreviate Tres , (use())⊗, Trm , rec α.alloc()Tres;free(Tres

◦);α and Tsrv ,
recα.open();Tres;close();α. Then the following is derivable: S :: pool : Trm . server :
Tsrv. Notice how owner types (Tres

◦) are used to express ownership transfer of resources
from the pool to the spooler and back. In general, we would expect a resource pool such
as the one expected at pool to be shared by multiple users, while here the Trm type just
captures a very particular sequential usage. We will return to this in Section 4 below.

The safety properties ensured by our type system may be formally expressed in
many ways. The fundamental consequences of typing are stuck-freeness, from which,
as discussed in Section 2, other properties follows, such as race absence for unshareable
resources, and conformance to usage protocols. We can thus already hint to our main
soundness result, in a somewhat specific form.

Claim. Let P :: . n : l(stop)stop. Then there is Q such that P n.lc(nil)−→ Q and for all
R such that Q ⇒ R it is not the case that stuck(R).

This states that any network typed by n : l(stop)stop offers a method l at ob-
ject n that, after invoked, is ensured to induce a well-behaved distributed computation.
More general soundness results follow as direct consequence of the semantics of types
developed in the next section.

3.1 Logical Semantics of Types

The intended semantics for a typing environment A is that it denotes a certain property
JAK, in the sense that if P is assigned type A, then soundness of our type system ensures
that P∈ JAK, or, in terms of logical satisfaction, that P |= A. In fact, we will not interpret
types as properties directly, but will rather embed types in a more primitive spatial logic,

Spatial-Behavioral Types, Distributed Services, and Resources 13

P |= A∧B iff P |= A and P |= B
P |= A | B iff exists Q,R. P ≡ Q | R and Q |= A and R |= B
P |= A . B iff for all Q. if (P‖Q) and Q |= A then P | Q |= B
P |= ∀x.A iff for all n.P |= A{x�n}
P |= stop iff idle(P)
P |= A◦ iff P |= A and P |= stop
P |= A;B iff exists Q,R. P ≡ Q | R and Q |= A and

for all Q′. if Q A7−→ Q′ then Q′ | R |= B

P |= n : l(m) iff exists Q. P
n.lc(m)−→ Q

P |= (ν)A iff exists Q. P ≡ (νm)Q and Q |= A and m#fn(A)
P |= n : c(A,r) iff for all R,Q. if R‖P and R |= A and P | R ⇒ Q then

¬stuck(Q) and

for all Q′,r. if Q n.c(r)−→ Q′ then exists R′,P′. Q′ ≡ R′ | P′ and R A−→ R′

P stop7−→ P
P U7−→ Q

P U∧V7−→ Q

P V7−→ Q

P U∧V7−→ Q

P
U{x�n}7−→ Q

P ∀x.U7−→ Q

P
n.lc(m)−→ Q

P
n:l(m)7−→ Q

P ≡ (νm)R R U7−→ Q

P
(ν)U7−→ Q

P ≡ P1 | P2 P1
U7−→ Q1 P2

V7−→ Q2 Q1 | Q2 ≡ Q

P
U | V7−→ Q

P U7−→ R R V7−→ Q

P U;V7−→ Q

P ≡ R | Q R |= U

P U◦
7−→ Q

R |= U P | R ⇒ n.c(r)−→ Q | R′ R U7−→ R′

P
n:c(U,r)7−→ Q

Fig. 7. Satisfaction and Typed Usage

so that each typing environment A is interpreted by a certain formula A. The satisfaction
predicate |= is inductively defined on the structure of formulas, in such a way that P |= A
implies that P enjoys certain general safety properties, in particular, stuck-freeness.

Definition 3.2 (Spatial Logic). The set F of formulas is defined by:

A,B,C,U,V ::= A∧B | ∀x.A | A | B | A . B | stop | A;B | A◦ | n : c(A,r) | n : l(m) | (ν)A

As in [6, 7, 5], our logic includes (positive) first-order logic, the basic spatial operators
of composition and its adjunct with their standard meanings, and certain specific op-
erators, in particular some behavioral modalities. Instead of including action prefixing
modalities, we introduce a general sequential composition formula of the form A;B,
where A is interpreted both a property, and a usage pattern. Usage patterns are modeled
by typed usage, a transition relation between networks and labeled by formulas, noted
P A7−→ Q. The intuitive meaning of P A7−→ Q is that if P is used as specified by A, it
may evolve to Q. Since satisfaction and typed usage are defined by mutual recursion,
we present them in a single definition, for the sake of clarity.

Definition 3.3. Satisfaction, P |= A, and typed usage, P A7−→ Q are defined in Fig. 7.

To avoid clashes between fresh names introduced in the subsidiary transitions, the rule

for PU | V7−→Q is subject to the proviso (fn(Q1)\ fn(P1))#(fn(Q2)\ fn(P2)).

14 Luı́s Caires

The semantics of n : l(m) and n : c(A,r) are defined from external actions of net-
works (Def 2.9). Intuitively, a network P satisfies formula n : c(A,r) if it contains a
thread c that whenever passed a resource R satisfying A, is guaranteed to always evolve
in a stuck free way until a value r is returned, while exercising on R an usage as spec-
ified by A. Thus, n : c(A,r) enforces both safety and liveness properties. Using these
ingredients, we now define our interpretation of types. Given a type environment A, we
define a formula dAe by considering the embedding:

dn : stope , stop dn : U |Ve , (ν)(dn : Ue | dn : Ve)
dn : U◦e , (ν)dn : Ue◦ dn : U ;Ve , (ν)(dn : Ue;dn : Ve)
dn : l(U)Ve , stop∧∀u . n : l(u);dn : c(u : U)Ve dn : U ∧Ve , dn : Ue∧dn : Ve
dn : c(u : U)Ve , ∀ r. c(du : Ue,r);dr : V ◦e dA,Be , dAe | dBe

Notice that all types are interpreted quite directly, except method and thread types,
which are interpreted in terms of finer grain primitives. Building on this interpretation,
we define validity of subtyping and typing judgments as follows:

valid(A <: B) , JAK⊆ JBK valid(P :: A . B) , P ∈ JA . BK

From now on, we will sometimes write typing environments where formulas are ex-
pected, having in mind the interpretation just presented. Our interpretation enjoys sev-
eral nice properties. For example, the property stated in the Claim above (right before
Section 3.1) is a direct consequence of the definition of the logical predicate |=. We can
now state our main results:

Proposition 3.4 (Soundness of Subtyping). For all A, B, if A <: B then JAK⊆ JBK.

Proof. We may show the result for all properties, not just encodings of types, with the
exception of congruence on the left for sequential composition. For that, we consider a
stronger statement and prove, by induction on the derivation of A <: B, that if A <: B
and JC K⊆ JD K then JA;C K⊆ JB;D K.

Theorem 3.5 (Soundness of Typing). If P :: A . B is derivable then P |= A . B.

Proof. The proof requires establishing a few facts about the satisfaction and typed usage
relations, and some Lemmas stating soundness of typing for expressions and objects
with respect to the intended notions of validity, which are given thus:

valid([M;si 〈ni〉; t] :: A|σ . B|δ [T]) ,
ForAll n . n[M ; si 〈ni〉 ; t] |= (A | Π(ni : σ(ni)

◦) . (n : T);(B | Π(ni : δ(ni)
◦))

valid(e :: A,x : T|σ . B,x : S|δ [V]) ,
Exists C, U . A <: C;B . x : T <: U;x : S . ForAll n,s,v,p .

n[; si 〈ni〉 ; c〈e{x1�p1}· · ·{xk�pk}〉] |=
(A | p : T | Π(ni : σ(ni)

◦) . c(C | U,v);(B | p : S | Π(ni : δ(ni)
◦) | v : V ◦)

The definition of validity for expression judgments is a bit more involved, as it requires
closure under substitution. Notice how our logic provides a suitable metalanguage in

Spatial-Behavioral Types, Distributed Services, and Resources 15

which the properties of interest, explained above in intuitive terms, may be formally ex-
pressed rather succinctly. As in typical semantical soundness proofs of logical systems,
the proof proceeds by checking that each rule preserves validity.

The proof technique we have developed here may be seen as an instance of the gen-
eral method of logical relations, well understood in the setting of functional program-
ming, but still quite unexplored in concurrency. In a similar way, we build on a semantic
interpretation of typed terms, which is defined by induction on types (as formulas), and
then prove soundness by induction on typing derivations. Our result establishing valid-
ity under substitution for derivable expression typing judgments then plays the role of
the so-called Basic Lemma in the logical relations method. Because types are directly
interpreted as properties of networks, our soundness results allows us to conclude:

Proposition 3.6. Let P |= A and A <: B;C. For all Q. if P B7−→ Q then Q |= C.

Proposition 3.6 is a semantic counterpart of the more familiar syntactic subject reduc-
tion property. In our case, it is an immediate consequence of the soundness of subtyping
and the semantics of B;C. By interpreting the type n : l(U)V , we also have:

Proposition 3.7 (Stuck Freeness). Let P :: . n : l(U)V be derivable. Let R be such
that R |= m : U and R‖P. Then, for all Q such that P | R n.lc(m)−→ ⇒ Q it is not the case

that stuck(Q). Moreover, if Q n.c(r)−→ Q′ for some Q′, then Q′ |= r : V ◦.

4 Resource Sharing and Shared Types

Although our framework already seems fairly powerful, it still prevents useful forms of
sharing to be typable. While race absence may be a desirable correctness property of
concurrent programming in general, in many situations, races are not problematic if the
involved resources may be safely shared (e.g., read only variables). Moreover, many
system resources are deliberately assumed to be raceful (e.g., semaphores, buffers).
Sharing is also particularly useful to allow local communication between different
threads. In this section, we sketch how sharing is accommodated in our framework.
No major extensions to the calculus are needed, we just add replicated methods to the
basic syntax, and enrich structural congruence accordingly:

M ::= · · · | ∗l(x) = e ∗l(x) = e ≡ (∗l(x) = e | ∗l(x) = e)
∗l(x) = e ≡ (∗l(x) = e | l(x) = e)

The operational semantics in kept unmodified. Not surprisingly, more fundamental ex-
tensions relate to typing, and to the need to discipline shared access to the local store of
objects. To that end, we assume that the local state of every object is classified in a un-
shared part (as in our basic model), and a shared part. The intent is that while the types
of the values stored under a given tag in the unshared part may dynamically change
(cf. the spooler example 2.10), values stored under a given tag in the shared part must
satisfy a fixed invariant. Since the shared part may suffer interference from parallel run-
ning threads, we rely on this invariant to ensure soundness. To type such shared usages
it is then useful to introduce shared types, defined U! , rec α.(stop∧U ∧ (α | α)).

16 Luı́s Caires

Shared types satisfy interesting subtyping principles, namely U! <:>U! |U!, U! <:U
and U! <: stop. The first principle allows a service of type U! to be used simultane-
ously by an unbounded number of clients. We may also derive U! <:U ;(U!).

For a first (trivial) example, consider the object NL , nl[∗null() = nil ; ;]. It
offers a method null that whenever called returns nil. Clearly, the service provided by
NL may be shared by an arbitrary number of clients, without incurring in any execution
error (stuck state). So we expect the typing NL :: . (null()stop)! to be acceptable.
For another example, consider the code: BF , buf [∗put(x) = a!(x) | ∗get() = a? ; ;].
Object BF implements a resource pool, that keeps in its local state a bunch of references
for resources of a given type, say R◦. Provided that the invariant buf .a : R is maintained,
we expect to assign a typing BF :: . buf : (put(R◦)∧get()R)!. This type allows any
number of clients to share the pool, while using both methods, possibly concurrently.
Another possible typing for BF is BF :: . buf : put(R◦)! | (get()R)!. This latter typing
allows BF to be used as an (unordered) queue, in a context where a bunch of writers use
the buf : put(R◦)! view, while a bunch of readers use the buf : (get()R)! view of BF.
Notice that although the methods put and get interfere through the store, according to
our intended semantics their are still separable by (− | −) (up to changes in the store
conforming to the sharing invariant buf .a : R).
Example 2.10 (continued). Given an implementation of a resource pool RP similar to
BF above, typed by RP :: . pool : Tp where Tp , (free(Tres

◦)∧alloc()R)!, we expect
then to type S with S :: pool : Tp . server : Tsrv.

We now illustrate the technical development needed to introduce sharing in our type
system. Basically, we extend typing judgments with a further extra component (ε), that
specifies (by typing) the invariants on admissible interferences through the stores. We
illustrate our general approach with a few key rules.

a? :: |σ|ε,a : T . |σ [T] a!(v) :: v : T ◦|σ|ε,a : T . |σ [T]

[M; t] :: A|si : Vi|pi : Ui . B;δ [T]

n[M;si〈ni〉 | pi j

〈
ri j

〉
; t] :: A | Π(ni : Vi

◦) | Π(ri j : Ui
◦)|n.pi : Ui . n : T

The n.pi : Ui (or pi : Ui) slot in the judgments specifies admissible interference from the
environment, meaning that the store of object n may well be modified on cells pi 〈−〉
provided that they will always contain values of type Ui

◦. To interpret the extended
judgments, the logical predicate |= is modified so that the interpretation of c(A,v) also
takes into account interferences through the local store. Soundness proofs then follow
the same lines of those above; a full treatment of these issues is left for an extended
version of this paper.

5 Related Work and Discussion

We have presented a distributed object calculus able to model some essential aspects of
service-based systems. However, the main focus of this work is on notions of spatial-
behavioral typing, and their use to discipline interactions in distributed systems. Al-
though the design of our calculus was influenced by several object calculi and related
models [1, 3, 13], the distributed remote method invocation semantics adopted has not

Spatial-Behavioral Types, Distributed Services, and Resources 17

been much explored, even if it seems a natural choice when modeling distributed ser-
vices [12, 18]. In our case, such a model seemed to be fundamental for our spatial
interpretation of types. Our type system enforces several safety properties, in particular
availability (method calls are always served), and race absence with respect to unshare-
able resource access. Such properties result from the fact that our types are able to
specify constraints on sequentiality of behavior, separation of resources, and dynamic
propagation of ownership, in a compositional way. Compositionality is certainly a de-
sirable property of any verification method, but it seems absolutely critical when one
considers distributed service based systems, which are by nature open-ended, and dy-
namically assembled by relying on local interface specifications.

Formally, our type system can be seen as a fragment of a spatial logic for con-
currency [6, 7, 5], where the composition operator plays a key role in ensuring resource
control and non-interference. In our model, separation, up to structural congruence, cuts
across the structure of objects, in order to separate both global and local resources. Our
work draws inspiration on some specification techniques for the separation logics [20,
19], in particular our use of | to talk about a form of resource separation, even if in the
case of dynamic spatial logics the “resources” are active processes, quite unlike with the
separation logics, that talk about the passive state (the heap). We have also introduced
a sequential type composition operator and a owned type operator in our type structure.
The owned type constructor, as we have studied here, seems to be new. Different notions
of ownership and associated type systems have been proposed [4, 11], where ownership
is considered a structural rather than a dynamic capability. The spatial interpretation
of composition, together with owned types, also distinguishes our approach from other
type systems for concurrent calculi that also include a composition operation [16, 10]. In
those approaches, parallel composition is interpreted behaviorally, rather than as spatial
separation, and subtyping corresponds to behavioral simulation, rather than to logical
entailment; the same observation applies to [17]. Protocols definable in our type system
are also reminiscent of session types [15], it would be interesting to see how sessions
might be represented in this setting.

Unlike most works on type systems for concurrent and distributed calculi, we have
adopted a semantic view of typing, and build on a logical relations technique to prove
soundness. The (original) understanding of types as properties has not always been a
common guiding principle in the design of types for concurrent calculi, where a syn-
tactical view seems to be dominant (for an exception, we must refer to [9]). It would
be also challenging to investigate how the compositional approach we have followed
might also be applicable to (at least) certain kinds of security properties [2].
Acknowledgments. This work was supported by IST Sensoria IP (IST-3-016004-IP-09
2005-2008), SpaceTimeTypes (POSI/EIA/55582/2004), and CITI.

References

1. M. Abadi and L. Cardelli. A theory of primitive objects: Untyped and first-order systems.
Inf. Comput., 125(2), 1996.

2. M. Bartoletti, P. Degano, and G. Ferrari. Enforcing secure service composition. In 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), pages 211–223. IEEE
Computer Society, 2005.

18 Luı́s Caires

3. P. Di Blasio and K. Fisher. A calculus for concurrent objects. In Ugo Montanari and
Vladimiro Sassone, editors, CONCUR ’96, Concurrency Theory, 7th International Confer-
ence, Pisa, Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in Com-
puter Science, pages 655–670. Springer-Verlag, 1996.

4. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In Con-
ference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2003.

5. L. Caires. Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In Igor Waluki-
wicz, editor, Proc. of Foundations of Software Science and Computation Structures’2004,
number 2987 in Lecture Notes in Computer Science. Springer Verlag, 2004.

6. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information and Com-
putation, 186(2):194–235, 2003.

7. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theoretical Computer
Science, 3(322):517–565, 2004.

8. L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambients. In
27th ACM Symp. on Principles of Programming Languages, pages 365–377. ACM, 2000.

9. G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-calculus. In
20th IEEE Symposium on Logic in Computer Science (LICS 2005), pages 92–101. IEEE
Computer Society, 2005.

10. S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking message-passing
programs. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 45–57, 2002.

11. D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type
and effect. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2002, pages 292–310, 2002.

12. M. Boreale et al. SCC: a Service Centered Calculus. In Proceedings of WS-FM 2006, 3rd
International Workshop on Web Services and Formal Methods, Lecture Notes in Computer
Science. Springer-Verlag, 2006.

13. Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduction and typing.
Electr. Notes Theor. Comput. Sci., 16(3), 1998.

14. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Inf. Comput.,
173(1):82–120, 2002.

15. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In Chris Hankin, editor, Programming Lan-
guages and Systems - ESOP’98, 7th European Symposium on Programming, volume 1381
of Lecture Notes in Computer Science, pages 122–138. Springer-Verlag, 1998.

16. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. In in POPL 2001:
28th Annual Symposium on Principles of Programming Languages, 2001.

17. A. Igarashi and N. Kobayashi. Resource usage analysis. In POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 331–342, 2002.

18. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling, 2006.

19. P. W. O’Hearn. Resources, concurrency and local reasoning. In P. Gardner and N. Yoshida,
editors, CONCUR 2004 - Concurrency Theory, 15th International Conference, London, UK,
August 31 - September 3, 2004, Proceedings, volume 3170 of Lecture Notes in Computer
Science, pages 49–67. Springer, 2004.

20. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Third An-
nual Symposium on Logic in Computer Science, Copenhagen, Denmark, 2002. IEEE Com-
puter Society.

