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Abstract. Spatial behaviour is studied for the transient solutions in the bending of a

Mindlin-type thermoelastic plate. Some appropriate time-weighted line-integral measures

are associated with the transient solutions and the spatial estimates are established for

these measures describing spatial behaviour results of the Saint-Venant and Phragmen-

Lindelof type. A complete description of the spatial behaviour is obtained by combining

the spatial estimates with time-independent and time-dependent decay and growth rates.

For a thermoelastic plate whose middle surface is like a semi-infinite strip, it is shown,

by means of the maximum principle, that at infinity a sharper spatial decay holds and it

is dominated by the thermal characteristics only. Uniqueness results are also established.

1. Introduction. A linear thermoelastic thin plate model has been developed by

Schiavone and Tait [1]. For such a model the bending of a Mindlin-type thermoelastic

plate is examined in [2] when the source terms are harmonic in time and sufficient time has

elapsed for the system to have reached a steady-state. A uniqueness result is established

for exterior boundary value problems subject to certain regularity assumptions and some

appropriate radiation conditions and a condition 011 the angular frequency of oscillation.

In this paper we study the spatial behaviour of the transient solutions of the ther-

moelastic plate model introduced in [1]. We associate with the transient solutions some

appropriate time-weighted line-integral measures and then we establish the spatial esti-

mates describing their spatial behaviour. In fact, we establish spatial estimates of two

sorts: one is characterized by a time-dependent decay rate which is suitable for appro-

priate short values of time and the other has a time-independent decay rate which is

indicated for appropriate large values of time. By combining the two sorts of spatial esti-

mates we get a complete description of the spatial behaviour of the transient solutions. In

particular, for a bounded plate we establish some spatial decay estimates of Saint-Venant
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type, while for an unbounded plate we establish alternatives of Phragmen-Lindelof type.

For literature reviews on these topics, we refer to the surveys by Horgan [3,4].

For the case of a thermoelastic plate whose middle surface is like a semi-infinite strip

we use the maximum principle in order to improve the above spatial decay estimates.

Thus, we prove that at large spatial distances of the end of the strip a sharper spatial

decay holds and it is controlled by the thermal coefficients only.

As a direct consequence of the above results we obtain some uniqueness results.

2. Basic formulation. Throughout this paper Greek and Latin subscripts take the

values 1,2, and 1,2,3, respectively, summation is carried out over repeated indices, and

x = (X\,X2) and x = {x\,x2-,x'i) are generic points referred to orthogonal Cartesian

d
coordinates in R2 and R3, respectively. A superposed dot denotes — and the suffix "fc"

at
d

denotes ——.
OXk

Let S x —2^' ~2^ reSi°n occupied by a homogeneous thin thermoelastic

plate, where S is a domain in R2 bounded by a simple C2-curve dS and 0 < ho =

const << diamS is the thickness. We assume that, in addition to mechanical loads, the

plate is subject to an unknown temperature distribution r (x\,x2, x3, t) measured from a

reference state of uniform temperature distribution To, at which temperature the plate is

free from thermal stresses and strains. It is further assumed that the plate is elastically

and thermally isotropic.

The equations of motion for the bending of a Mindlin-type thermoelastic plate are [1]:

h (A 4- H^Up^pa -I- Ua^pp Ua U3 a) ^4,a ph ua (1)

,pp ^a,a) — -^3> (2)

u4tpp -—u4 - Tiah2(3\ + 2fj,)uP)P = N. (3)J.
K

Here we have used the following notation:

u = u(xa,t) = (ui,u2,0), u3 = u3(xa,t)

u4 = u4(xa, t) = fj^ x3eTdx3, (4)

H = H(xa,t) = {HuH2,0), F3 = F3(xa,t), N = N(xa,t), h2 =

where A and are the Lame constants, eT denotes the thermal strain, a is the coefficient

of thermal expansion,

(3A + 2/x)aro Ao . .
V= 7 , K=—, (5)

A0 pc

p and c are, respectively, the constant mass density and specific heat of the plate, and

Ao > 0 is the (constant) coefficient of thermal conductivity. It should be noted that H

and F3 characterize resultant body forces and couples, as well as forces and couples on

the plate's faces, and TV is a known quantity that represents heat generation within the

plate and measurements of temperatures of the faces and in the surrounding medium.

In accordance with the plate assumptions [1], ut characterize displacement and u4 the

resultant "thermal moment" on the plate's middle surface.
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Furthermore, we consider the boundary-initial value problem (V) defined by the rela-

tions (1) to (3) and the initial conditions

ua(x,0) = u°a{x), ua(x,0) = u°(x), _

u3(x, 0) = w°(x), u3(x, 0) = u3(x), u4(x,0) = u°(x), x G S,

and the following boundary conditions

ua(x,t) = ua(x,t), u3(x,t) — u3(x,t), Ui(x,t) — u4(x,t) on 9Sx[0, oo). (7)

In the above relations u3, ii3, u®, ua, u3, and u4 are prescribed continuous

functions.

By a transient solution of the boundary-initial value problem (V), corresponding to

the given data V = {Ha, F3, TV; u°a, , m!], u3, u°; ua, u3, u4}, we mean the ordered array

{wQ, 1x3,1x4} satisfying the basic equations (1) to (3), the initial conditions (6) and the

boundary conditions (7).

Throughout this paper we assume that

p > 0, c > 0, a > 0, [i > 0, 3A + 2/x > 0, r0 > 0. (8)

This implies that the quadratic form

W(0 = 2^rr^ss £ = (£ij)' = (9)

is positive definite. It follows then that there exist the minimum elastic modulus fxm > 0

and the maximum elastic modulus > 0 so that we have [5]

^ 211 (£) < S, = £ij — £ji- (10)

Further, if we set

tiji 0 = ^rr^ij + 2/x£j j, £ = (£ij), $,ij — £ji, (H)

then we have [5]

MOMO < 2vmW{S), £ = (&)> (12)

Let us consider the state of bending, that is [1] V\ = x3u\, i>2 = x3u2, v3 = u3. We set

=e»j(V) = -(vij +vj,i), V = (vi,v2,v3), (13)

into the relation (11) so that we get

tap{^) X3Ta p, ta3(£) = Ta3> ^33(£) = •^3733) (14)

7"a/3 ^'Up,p&af3 ~t~ ~t~ ̂/3,a)> ^"a3 = A^(^a ^3,a)> ^"33 = ■ (1^)

We further substitute the relation (14) into (12) and then we integrate the result with

0 0 . Thus, we deduce thatrespect to x3 over
2 ' 2 j

h2 (TapTa0 + T33) + 2ra3ra3 < 2nMW*(U), (16)
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where

1 r 2

W*(U) = — / 2 W(e)dx3 (17)
no

h ^ cy^^p,p^Oi,a "4~ ul,l + u2,2 + ^(Uh2+U2,l)2

+ ^/i(uQ + u3,a)(ua + U3,q) , U = (ui,u2,u3).

Finally, we note that the relations (15) and (17) give

W*(U) = h2Ta0uai(3 + Ta3{ua + u3iC,) . (18)

3. Spatial estimates with time-independent decay and growth rates. Let us

consider a given time T > 0 and let {ua, u3, U4} be a transient solution of the boundary-

initial value problem (V) corresponding to the given data

V = {Ha,F3, N;u°,u°,u°,u°,u°;ua,u3,u4} on [0 ,T\.

We denote by T>t the set of all x £ S such that

i) if x € 5, then

u°a{x) ^ 0 or u°a(x) 7^ 0 or 143(2:) ̂  0 or u3(x) ^ 0 or u°(x) ^ 0 , (19)

or

Ha(x,t) 7^0 or F3(x,t)^=0 or N(x,t)^0 for some t £ [0, T]; (20)

or

ii) if x £ dS, then

ua(x,t) 7^0 or u3(x,t) 0 or U4(x,t)^0 for some £ € [0, T] . (21)

Roughly speaking, VT represents the support of the initial and boundary data and the

supply terms on the time interval [0, T] . Throughout this section we shall assume that

T>t is a bounded set.

We consider next a nonempty set T>^ so that T>x C £>£• C S such that:

(i) if T>t nS^f) then we choose V^ to be the smallest bounded regular region in

S that includes T>t\ in particular, we set V^ = T>t if "Dt als° happens to be a regular

region;

(ii) if 0 ^ T>t C dS, then we choose to be the smallest regular subcurve of dS

that includes XV; in particular, we set = T>t if £>t is a regular subcurve of dS;

(iii) if Vt = 0, then we choose to be an arbitrary nonempty regular subcurve of

dS.
On this basis we introduce the set Dr, r > 0, by

Vr= {x£S :t>*Tn E(x,r) / 0} , (22)

where E(r,r) is the open disk with radius r and center at x. Furthermore, we shall use

the notation Sr for the part of S contained in S\Dr, and we set S(r\,r2) = Sr2\Sri,

r\ > 7*2* Moreover, we shall denote by Lr the subcurve of dSr contained inside of S

and whose outward unit normal vector is forwarded to the exterior of Dr .
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We associate with the solution {wc.u3.w4} the following time-weighted line-integral

function [6]:

J(r,t) = - [ [ e~as [h2Ta0(s)up(s) + ra3{s)u3(s) + Au4(s)u^a(s) (23)

Jo J Lr

—Ui{s)iia{s)]nadcjds , r > 0 , t G [0, T],

where a is a prescribed strictly positive parameter, Tap and ra3 are defined by the relation

(15) and

" r0a2h2{3A + 2/x)2' (24)

On the basis of the relations (21) to (23) and the divergence theorem, we have

- I(r2,t) (25)

ne~as [h2Ta0(s)uf3(s)+Ta3{s)u3(s)+Au4(s)u4ta(s)-U4(s)ua(s)] nadads
1S{r\,r2)

= - f ( e~as [h2Taf},a(s)up(s) + h2Ta0{s)ui3^(s) + ra3iQ(s)w3(s) + tq3(s)w3,q(s)
JO Js(ri,r2)

-Mw4,a(s)w4,Q(s) + ^w4(s)w4iQQ(s) - u4ia(s)ua(s) - w4(s)ua,Q(.s)] dads,

t 6 [0, T], n > r2.

Then by using the relations (15), (18), (20) to (23) and the basic equations (1) to (3),

from the relation (25) we deduce

I{rx,t) - I(r2.l) = -8/ [ e~as {\^{ph2ua(s)ua{s) +pul(s) (26)
./o Js(n,r2) l^OS

+ J^ul(s) -I- 2W*(U(s))] + ^W4,p(s)m4iP(s)| dads , t £ [0,T], n > r2,

so that, by an integration by parts, we get

.1
- I(r2,t) = - [

JsS(r1,r2)

.-j /9/l2Uct(t)wQ(t)+/9W3(i) + ^:W4(f)-|-2W*(f/(t))

(27)

~[ f e-as{^[ph2ua(s)ua(s) + pu23(s) + ^u24(s) + 2W*{U{s))]
Jo Js(rltr2) A A

+Au4:P(s)u4iP(s)} dads , f € [0,T], n > r2.

Thus, from the relation (27), we obtain

91, ^ /' -rf1

^",' 2
ph2ua{t)ua(t) + pu\(t) + ^w|(t) + 2W*([/(t)) dcr (28)

l / e OrS{^"[/0^2'"«(s)^«(s) + /0U.§(s) + + 2W*(t/(s))]
J 0 J Lr

+/Iw4ip(s)w4,p(s)} dads , f G [0, T], r > 0.
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We proceed now to obtain an appropriate estimate for \I(r,t)\. In this aim we write

the relation (23) in the form

I(r,t) = —J J e~as Sai(s)ipi(s) + Au4(s)u4jQ(s)j nadads, (29)

where

Saf3 hTa/3 h ^a3 — ^~oc3 i (*^0)

and

i>a = h,Ua , 1p3 = U3 . (31)

Then we use the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequal-

ity in (29) in order to obtain

\I(r,t)\ = LLe~"{rt r ( v y

^ai(s)

-\fP
i/pi>i{s)na + \fAuA(s)na \fAuA,a{s)

<-~ 2ILL — Sai(s)Sai{s)+£ipipi(s)7pi(s) +—Aul(s)+£2Au4ia(s)u4ia(s)
£iP £2

dads

(32)

dads,

t £ [0, T], r > 0, Vei, e2 > 0.

With a view toward establishing an estimate for SaiSai we use the relations (16) and

(30) and the Cauchy-Schwarz inequality in order to obtain

^ai^oci ^af3 ^ ^4^a/?) ^a3^~a3 — [^a/3 (hTa@) ~t~ ̂ as^as] (*^)

Saf3 (h ^4— (^ai^ai)^ Tp07~p/3 ~t~ ̂~p3^~p3^) ~ ~t~ ^4^p/3^pf3^)

< (SaiSaiy* [(2/xA,r(C/))i + y/2h~l |U4|] ,

so that we deduce that

(SaiSai)l < [2nMW*(JJ)]i + |U4|. (34)

By using the arithmetic-geometric mean inequality in (34), we get

SaiSai < 2(1+ e)vmW*(U) +2(1+i)h-2v* , Ve > 0. (35)

By combining the relations (31) and (35) with the relation (32), we deduce that

\I(r,t)\ < f f e~as{ — [^ (ph2ua(s)ua(s) + pul(s))} (36)
Jo JLr a 1

+[— + /A\2(1 + -)]?4u4(s) + MA/(1+g) [aW*(U(s))}
ae2 aAe\ph2 en2K 4W aexp 1 v v 'n

£ <2
+ — Au4!a(s)u4,a(s)}dads , Ve, £i, e2 > 0, t £ [0,T], r > 0.

We now equate the coefficients of the various energetic terms in the last integral in (36),

that is we set

- = —+ -^«< l + i) = Sit^ = 2. (37)
a ae2 aAe^ph2- e asip 2
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Therefore, we choose

i , hm(1+s) ,.ocA
ei = k , £2 = — , k = \   , (38)° V p

where e is the positive root of the algebraic equation

o / Kap 2 K \ 2K
£ + £ I 1 — — TT~5  ) TTo  — 0- (39)

V 2/zm Ah2HM J A1i2hm

With the above choices, the inequality (36) becomes

\I{r,t)\<- f j e"as{^[ph2ua{s)ua(s) + pu23{s) + ^ul(s) + 2W*(U(s))} (40)
•J 0 J Lr

+ Au4,a(s)u4ta(s)} dads , fG[0,T], r > 0.

By taking into account the relations (8), (10), (17), (28), and (40), we deduce the

following first-order partial differential inequality

A T

^\I{r,t)\ +—(r,t) <0, r> 0, 0 < t < T. (41)

At this time we note that our further analysis requires a separate discussion for

bounded and unbounded thermoelastic plates.

Let us first consider the case of a bounded thermoelastic plate. It follows then that r

ranges over [0, A] where A is the diameter of the region 5(r=o). In view of the relations

(21) to (23), we deduce that

/(A,t) = 0, te[0,T]. (42)

On the other hand, by means of the relations (8), (16), and (24), from (28) it follows

that
r\ j

— (r,t)<0, r 6 [0, A], te[0,T}. (43)

Then the relations (42) and (43) prove that

I(r,t)> 0, r € [0, A], te[0,T], (44)

and moreover, if we set r\ = A, r2 = r € [0, A] in (27), we get

I(r,t) = £(r, t), (45)

where

ph2ua{t)iia{t) + pu\(t) + ^u\(t) + 2 W*(U(t))
i

L Is e~aS^ph2^s^a^ + p^^ + J'u2^ + 2W*^U^

da (46)

+

+ Aui:P(s)u4tP(s)} dads , te[0, T], r6 [0,A],

Thus, the relation (41) can be written in the form

3
dr

exp £(r,i) <0, r £ [0, A], <e[0,T], (47)
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so that by an integration with respect to r we deduce the following estimate of Saint-

Venanttype

£(r, t) < £(0, t) exp > r e [0, A], £ G [0, T], (48)

Let us now consider the case of an unbounded thermoelastic plate. Then r ranges

over [0, oo). Let t be fixed in [0, T], Since 7(r, t) is a non-increasing function with respect

to r, it follows that we can have only two possibilities:

(a) 7(r, t) > 0 for all r > 0

or

(b) there exists rt > 0 so that I(rt,t) < 0.

For part (a) we can proceed as in obtaining the estimate (48) to get

7(r, t) < 7(0, t) exp , r € [0, oo), i € [0, T]. (49)

For part (b), by means of the relation (43), we deduce that

7(r, t) < I{rt,t) < 0 for all r > rt,

and, therefore, the differential inequality (41) implies

exp 7(r, t) <0, r > rt > 0, t e [0, T], (50)
d_

dr

so that by an integration with respect to r we get

>-I(rt,t)exp ^(r - rt) >0, r > rt > 0, t <= [0,T] . (51)

Thus, the relations (49) and (51) describe an alternative of Phragmen-Lindelof type

for the spatial behaviour of the transient solutions in a Mindlin-type thermoelastic un-

bounded plate. In view of the relations (49) and (51) and by making r\ tend to infinity

into the relation (27), this means that for a transient solution either £(r,t) is bounded

and then 7(r, t) = £(r, t) decays faster than an exponential decaying function or £(r, t)

is unbounded and then I{r,t) grows faster than an exponential growing function.

The above spatial decay estimates are characterized by the fact that the decay rate

is independent of time. We proceed in the next section to improve the above spatial

description for short values of time by establishing spatial estimates with time-dependent

decay and growth rates.

4. Spatial estimates with time-dependent decay and growth rates. We in-

troduce the measure

l(r,t) = f I(r1s)ds, r > 0, t £ [0, T], (52)
Jo

where I(r,t) is defined by the relation (23).

On the basis of the inequality

f f f2(z)dzds <tf f2(s)ds, (53)
Jo Jo Jo
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and by using the relations (29) and (52), we deduce

\l(r,t)\ < (t n e <TSipi(s)ipi(s)dadsSj (i J J e as Sai(s)Sai(s)dadsSj (54)

+ (Vt [ f e~asAu^(s)dads\ fVt [ f f e~azAu^a{z)u^a{z)dudzds\ ,

V Jo JLr J \ Jo Jo JLr ' ' J

so that, by means of the arithmetic-geometric mean inequality and the estimate (35), we

deduce
ft

+

Now we set

\l(r,t)\ < Vt J J e as ̂ Vt£i^[ph2ua(s)ua(s) + puj(s)] (55)

(i + ^ 2^u4(s) + + e)iiMW*{U{s))^ dads
K 2 Ky/t (, . 1

£2 Aeiph2

+Vt / / / e~az^-Au4^a(z)u4t0l(z)dadzds, Ve, £i, £2 > 0.
Jo Jo Jl,. 2

+ (56)
e2 Aelph2 \ e J e1p 2

that is, we choose

e1=AC, £2=2VtJC, IC=\ rM -1 ~ ^, (57)

where <5 is the positive root of the algebraic equation

® = 0. <«»

2tfiM Ah2pM J Ah2p,M

With these choices and by using the relations (28) and (55) we deduce for T(r, t) the

following first-order partial differential inequality

dl
tIC(t) — (r,t) + \I(r,t)\<0, r > 0, 0 <t<T, (59)

or

which is similar to the relation (41).

Thus, by using a discussion entirely similar with that in the above analysis we deduce

that for a bounded thermoelastic plate we have

T{r,t) < F{0,t)exp , r € [0, A], t e [0,T], (60)

where

rt

t) = ( £(r,s)ds. (61)
Jo

F{r,t) =

For the case of an unbounded thermoelastic plate either I{r,t) > 0 for all r > 0 and

then we have
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2(r,i) < 3(0,i)exp ^yrj , r€[0,oo), t e [0,T], (62)

or there exists rj" > 0 so that I(r(* ,t) < 0 and then we have I(r, t) < 0 for all r > r* and

—Z(r, t) > — I(rjr,i)exp 1 (r ~r*t) r>r*t, te[0,r]. (63)
tlC(t)

As it can be seen, the estimates (60), (62), and (63) give a good description for

the spatial behaviour of the transient solutions for appropriate short values of time,

while the estimates (48), (49), and (51) are convenient to use for large values of time.

Thus, by combining the estimates (48), (49), and (51) with the estimates (60), (62), and

(63), respectively, we can obtain a complete description for the spatial behaviour of the

transient solutions in bounded and unbounded thermoelastic plates.

5. Other estimates. In this section we try to improve the above spatial decay es-

timates. In this aim we use an idea used by R. Quintanilla [7] in order to prove that

an appropriate measure derived from I(r,t) can be bounded above by the solution to a

related initial-boundary value problem for the one-dimensional heat equation. Such a

solution is well-known in standard textbooks and it allows to obtain various estimates

for the measure in question. It was first used by Horgan, Payne and Wheeler [8] to study

the spatial decay of solutions to initial-boundary value problems for the transient heat

equation in a three-dimensional cylinder, subject to nonzero boundary conditions only

on the ends. See Horgan and Quintanilla [9] for a generalization to functionally graded

materials.

In what follows we consider that S is a semi-infinite strip of width I, and choose a

Cartesian frame of reference such that So = 5,(r=0) is defined by

So = {x = (xi,x2) <E R2 : xi e [0, oo), x2 € [0, Z]} , (64)

where I is a positive constant. Thus, we have

SXl S(r=xi) [xi,oo) x [0,Z], LXl = L(r—Xl*) — [0,i].

Because we have in our mind the above decay estimates, we assume that {ua, 113,114}

resides in the class of solutions for which

ph2ua(t)iia(t) + pul(t) + ^u\{t) + 2 W*(U(t)) da (65)£{Xl ,t)= [

^ &xi

+ [ f e~as{^[ph2ua(s)ua(s)+pu23(s) +f;ul(s) + 2W*(U(s))]
Jo Jsxi 1 K

+Au4iP(s)u4tP(s)}dads

is bounded and therefore, by means of (49), we have the decay estimate

/(xi, t) < 1(0, t) exp — — x\ , te [0,31, xi £ [0,00), (66)
L k
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where I(x\,t) is defined now by

I(xi,t) = -[ [ e~as[h2Tif}(s)ufj(s)+ t13(s)u3(s) + Au4(s)u4^(s) (67)
Jo Jlx1

—u4{s)u\(s)]dx2ds, x\ G [0, oo), t £ [0,T].

On this basis we can use the idea of [7] and define the following measure:

pOO

I*(xi,t)= / I{q, t)dr], xie[0,oo), t e [0,T]; (68)
J X\

that is,

I*(x1,t) = -[ [ e~as[h2Ti0(s)u0(s)+ ti3(s)u3(s) + Au4(s)u4a(s) (69)
Jo Jsxi

—u4(s)ui(s)]dads, xi£[0,oo), t E [0,T],

Further, we note that

I(x i,t) = £(xi,t), (70)

dl*
— {xi,t) = -I(xi,t) = -£(xi,t), (71)

^ f -at r„f,2 • f+V, U\ I „„\2fj.\ I ^„,2I* l~= JL e -[ph2ua{t)ua(t) + pu3(t) + — u4{t) + 2W*(U(t))\dx2 (72)

/ / e~°s{^\Ph2ua(s)ua(s) +pu\{s) + ^ul(s) + 2W*(U(s))\
J 0 J LX1

+Au4<p(s)u4,p(s)}dx2ds,

dl*

dt
(xi,t) = -[ e Gt{h2Ti[}(t)up(t) + Ti3(t)u3(t)-u4{t)iii{t)]da (73)

Jsxi

[ e~atAu\{t)dx2-

1 J La:,

By using the Schwarz's inequality, the arithmetic-geometric mean inequality, and the

relations (29), (30), (31), (35), and (72), from (73) we deduce that

1,dl*, x If _atf 1
2(1 + e)nMW*(U(t)) + 2(1 + ph~2u24{t) (74)

d2I*
+£ip [h2ua(t)ua(t) + u2(t)]}da + K-Q~2-(xi,t), Ve, e\ > 0.

If we set

(l+e)HM /7r\
E!=uj, w=y   . I75)

where e is the positive root of the algebraic equation
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9 ( 2 K \ 2 K

£ +£(}'Ah^) ~Ah^~ ' ( }

then, from (65), (71), and (74), we deduce that

dl* dl* d2I*
+ (77)

Further, we set

I*{xut) = e^Xl~^tI(x1,t) (78)

in (77), so that we get

dl d2I
ati'l-t)-Kdi(79)

Moreover, we use the change of variable

X\ = \[Kz (80)

in order to write the relation (79) under the form

dl, x d2I. ,

Q-^i) < (81)

which can be used as in [8] in order to obtain an estimate for I(z,t). Thus, an upper

bound for I(z,t) can be obtained in terms of the solution of the initial-boundary value

problem for the one-dimensional heat equation

dw d2w „ . .
Z> ' ( ^

w(z, 0) = 0, z > 0,

w(0,t) = 1(0, t) = r(0,t)e#K t > 0,

w(z, t) —> 0 (uniformly in t) as z —> oo.

Now we use the procedure first suggested in [8]. Thus, by the maximum principle for

the heat equation, it follows that [10]

I(z,t) < w(z,t), z> 0, t> 0, (83)

where [8, 11]

i r
w (z,t) = ^—[ z(t-s)-3/2e-z2/^t-s)e^sr(0,s)ds (84)

2 A J 0

= - e*"1 [ zs~3/2e (2 ^4s+jkS)/*(0, t — s)ds.

2\/7r J o

By means of the relations (78), (83), and (84), we deduce that

I*(x1,t)<I*(0,t)e^XlG(z,t), (85)

where

G(z, t) = [ zs~3^2e ^4s+4A's)cis. (86)

2v7r Jo
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We note that estimates for I*(x\,t) may be obtained by using various upper bounds for

G(z,t). A useful bound is given in [8]

. 2z(i/7r)1/2e_ St?4 to . .
G(z,t) <  5 e 44 , for z > —p=t. (87)

y J ~ z2 - ft2 yfK K '

Thus, from (85) and (87), we get

4 2xi(Kt/ir)1/2e~7><t

x\ — u2t.2

As can be seen from (88), for all fixed t € [0, T], the spatial decay at infinity is controlled
x?

by the factor e .

6. Uniqueness results. The analysis in this paper allows us to study the uniqueness

of solutions of the boundary-initial value problem (V). Because of the linearity of the

problem (V) it is sufficient to prove that null given data imply that the corresponding

solution vanishes on S x [0, oo). In fact, this means that if the support Dt is empty for

any T > 0, then we can conclude that {ua,113,114} = {0,0,0} in 5 x [0,oo).

Thus, if we assume Dt to be empty for any T > 0, then we can choose the set D*T in

the above analysis to be any regular subcurve of dS.

Let us first consider the case of a bounded thermoelastic plate. Since {ua, 113,114} =

{0,0,0} on dS x [0, T], it follows from the relations (23), (45), (52), and (61) that we have

7(0, t) = 1(0, t) = 0 and £(0,t) = = 0 for all t € [0, T]. Then the relation (46)

implies that {wQ,U3,W4} = {0,0,0} on Sx [0,T], Since T > 0 can be chosen arbitrarily,

it follows that {ua, ^3,^4} = {0,0,0} in S x [0,00) and therefore we have obtained the

uniqueness result.

Let us now consider the case of an unbounded thermoelastic plate. Let us assume

that the solution {ua,11,3,114} is in the class of functions for which £(r,t) or !F{r,t) is

bounded. In this case we have the estimates (49) and (62). Then a discussion like that

above gives a uniqueness result in the class of solutions for which £{r,t) or F(r,t) are

bounded.
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