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Abstract

Madagascar has become a model region for testing hypotheses of species diversification and

biogeography, and many studies have focused on its diverse and highly endemic herpeto-

fauna. Here we combine species distribution models of a near-complete set of species of rep-

tiles and amphibians known from the island with body size data and a tabulation of

herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revi-

sions and novel distributional records arose since compilation, we are confident that the data

are appropriate for inferring and comparing biogeographic patterns among these groups of

organisms.We observed species richness of both amphibians and reptiles was highest in the

humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness

in the dry and subarid western biomes. In several amphibian subclades, especially within the

Mantellidae, species richness peaks in the central eastern geographic regions while in rep-

tiles different subclades differ distinctly in their richness centers. A high proportion of clades

and subclades of both amphibians and reptiles have a peak of local endemism in the topo-

graphically and bioclimatically diverse northern geographic regions. This northern area is

roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the

west coast. Amphibian diversity is highest at altitudes between 800–1200m above sea-level

whereas reptiles have their highest richness at low elevations, probably reflecting the compar-

atively large number of species specialized to the extended low-elevation areas in the dry and

subarid biomes. We found that the range sizes of both amphibians and reptiles strongly corre-

lated with body size, and differences between the two groups are explained by the larger

body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be

readily explained by their larger body sizes alone. Range filling, i.e., the amount of suitable

habitat occupied by a species, is less expressed in amphibians than in reptiles, possibly

reflecting their lower dispersal capacity. Taxonomic composition of communities assessed by

field surveys is largely explained by bioclimatic regions, with communities from the dry and

especially subarid biomes distinctly differing from humid and subhumid biomes.
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Introduction

Madagascar has long been renowned for its unique and diverse fauna and flora [1] and high

proportion of microendemism, that is, range-restricted species characterized by exceedingly

small distribution areas [2]. The island has long attracted the interest of biogeographers study-

ing not only in the origins of Madagascar's biota, but also within-island distributional patterns

and diversification mechanisms [2–8]. Current evidence suggests that the majority of Madagas-

car's vertebrate clades, but probably also most other animals and plants, colonized Madagascar

over the Cenozoic and in many cases by overseas dispersal [9–12], after a major biotic change

at the K/T boundary [13, 14]. A variety of factors (i.e. river barriers and montane refugia), have

subsequently influenced speciation and community assembly within Madagascar [2, 6, 15–24],

and only a combination of factors can explains the complex patterns observed [25].

In addition to plants [4] and lemurs [26], the herpetofauna have historically been one of the

main biogeographic model groups in Madagascar. Explicit zoogeographic regions for the island

were first proposed on the basis of reptile distribution patterns [3], and further discussions and

analyses of both reptile [7, 27] and amphibian patterns [28] were published later on. Various pio-

neering biogeographic studies were entirely or partly based on herpetofaunal data. Some of these

aimed to understand cladistic biogeographical relationships among sites in Madagascar [29, 30],

defined null models of biodiversity patterns [16, 31], or modeled species’ distributions for species

discovery and delimitation [32, 33]. Other herpetofauna-centered papers analyzed the impact of

climate change on altitudinal distribution of montane faunas [34] and comprehensively assessed

spatial and taxonomic conservation priorities in Madagascar [35–37]. Many of these works were

made possible by an immense and intensified effort in inventorying these animals since the early

1990s, involving numerous survey studies across the island [38], routine application of bioacous-

tic and molecular methods [39], and inclusion of undescribed candidate species in many of the

assessments [40]. Hence, although it is clear that many of Madagascar's amphibian and reptile

species remain scientifically undescribed, the majority of them have been genetically character-

ized as candidate species [41, 42] and included in field guides [43], and thus are provisionally

accessible for research and conservation. The paradoxical consequence is that Madagascar hosts

one of the best studied and most scientifically accessible tropical herpetofauna, despite the large

amount of undescribed species that have been revealed by these studies.

Notwithstanding this overall good state of knowledge, the study of classical biogeography

patterns of Madagascar's herpetofauna remains patchy and elusive. Numerous studies provided

information on species richness and weighted endemism, but were either based on rough dis-

tribution estimates [36, 37] or targeted only particular subgroups of amphibians and reptiles

[22, 31, 44, 45]. Only recently, analyses of species richness, weighted endemism and turnover

based on explicit distribution models became available for all amphibians, reptiles, and selected

subgroups [25]. However, these have not yet been discussed from a taxon-specific perspective.

Island-wide patterns of community composition of Madagascar's amphibians and reptiles have

remained largely unstudied despite the availability of numerous surveys that followed roughly

similar methodological approaches [38]. The relationship of range size and body size has not

been comprehensively studied in Madagascar's amphibians and reptiles, although case studies

in mantellid frogs suggest that body size might be an important factor influencing gene flow

and diversification [20, 46].

Here, we provide a set of analyses aimed at partly filling these gaps in knowledge and pro-

viding a more complete baseline for future studies of biogeography, systematics, evolution and

conservation of Madagascar's amphibians and reptiles. Our analyses include (i) calculation and

comparison of species richness and endemism for various subgroups of the Malagasy herpeto-

fauna, (ii) community turnover based on generalized dissimilarity modelling separately for
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amphibians and reptiles, (iii) range-body size relationships and range filling, and (iv) a com-

parison of the composition of real herpetofaunal communities across Madagascar as detected

by survey work.

Materials and Methods

Terminology and taxonomy

The present analysis is based on distributional data of Malagasy amphibians and reptiles, from

a compilation completed in 2008, and partly adjusted to account for subsequent taxonomic

revisions. The compilation includes well-defined but scientifically undescribed confirmed can-

didate species [40] (i.e., species characterized by a substantial genetic divergence and by addi-

tional evidence for a status of independent evolutionary lineages). Given that the number of

undescribed lineages keeps increasing [42] and their status is being modified in the course of

taxonomic revisions, our data thus represent only a snapshot of taxonomic knowledge from

2008, with some updates; yet, our decision to include such candidate species leads to a more

representative picture than the inclusion of nominal species only.

Furthermore, the majority of distributional information accumulated since 2008 has not

been included in our dataset. As addressed again in the Discussion, the constantly changing

taxonomy in some taxa, together with incomplete distribution range information and with the

exclusion of some unrevised species at the time of compilation of our distributional dataset,

might have led to biased representations of species richness and endemism in some subgroups

(but does not invalidate general patterns reported herein).

We here use the term "reptiles" in its classical meaning, i.e., referring to all non-avian rep-

tiles including squamates, chelonians and crocodylians. Given that only a limited number of

turtles and one species of crocodile occur in Madagascar, our data mostly reflect the distribu-

tional patterns of squamates (lizards and snakes). The single crocodile species present in Mada-

gascar (Crocodylus niloticus) was not included in our analysis.

Description of major biomes in Madagascar follows previous definitions of bioclimatic

regions [47]. For convenience of naming particular geographic regions, we follow a previous

approach [43, 48] that defined a series of regions with limits coinciding with those of major

watersheds [2] (Fig 1C).

Fig 1. Maps of Madagascar. (a) topography with major mountain massifs and rivers, (b) major bioclimatic zones (herein called biomes) [47], (c) geographic
regions ([48], boundaries based on watersheds ([2], and (d) delimitation of northern Madagascar as used herein including the Sambirano, North, and North
East regions (map also shows a few towns and nature reserves discussed in the text).

doi:10.1371/journal.pone.0144076.g001
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Northern Madagascar has been highlighted before as a center of endemism [48] and

appeared as such also in our CWE (Corrected Weighted Endemism) analyses (see below). To

understand differences in community composition we separated data from communities in

humid and subhumid biomes (rainforest and montane forest) in this part of Madagascar

(defined as the area north of a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on

the west coast, i.e., roughly fromMaroantsetra to Antsohihy; Fig 1D). Then, we compared the

proportion of reptiles and amphibians among these two clusters of data points.

Species Distribution Models

Because the distribution ranges of Madagascar's amphibians and reptiles have not been com-

prehensively mapped and distribution records are scattered, we used species distribution mod-

els (SDMs; also commonly called ecological niche models)[49] to obtain an estimate of the

geographic ranges. The majority of our analyses are based on the SDMs compiled for a previ-

ous study [25]. These were calculated from 8362 occurrence records of 745 Malagasy amphib-

ian and reptile species (325 and 420 species, respectively) and were limited to species that had,

at minimum, 3 unique occurrence points at the spatial resolution (0.91 km2). For original

occurrence records, see supplementary materials of Brown et al. [25].

Several species (n = 19) were excluded mostly because of convoluted taxonomy or contro-

versial information on their distribution ranges, leaving a total of 727 species for final analysis

(yielding a more inclusive dataset compared to the 679 species included previously; Brown

et al.[25]). Species distribution models were generated in MaxEnt v3.3.3e [50] using parameters

as described in Brown et al. [25] that accounted for sample selection biases [25, 51, 52]. The

bias file up-weighted presence-only data points with fewer neighbors in the geographic land-

scape [53]. We used 19 standard variables characterizing current bioclimates for modeling

(Worldclim 1.4; [54] as well as geology, aspect, elevation, solar radiation, and slope [55, 56]).

All layers were projected to Africa Alber’s Equal-Area Cylindrical projection in ArcMap at a

resolution of 0.91 km2. To limit over-prediction of SDMs we clipped each model as previously

suggested [35]. Thus, we produced models representing suitable habitat within an area of

known occurrence, based on a buffered minimum-convex-polygon of occurrence localities

[25]. Continuous SDMs were converted to binary models using the ‘minimum training pres-

ence’ threshold.

Species Richness, Corrected Weighted Endemism, and Generalized
Dissimilarity Modeling

Species richness (SR) and corrected weighted endemism (CWE) were calculated from different

taxonomic subsets of our estimate range maps (SDMs and buffered points). We used a hexago-

nal sampling grid at 5166km2, the same area used in previous studies [20, 25]. The hexagon is

the most complex regular polygon and results in less orientation bias in analyses (vs. a square

grid, as used in the aforementioned studies). CWE measures endemism by inversely weighting

the proportion of endemics by their range size (species with smaller ranges are weighted more

than those with large ranges; [57], and dividing this value by the local species richness [58].

CWE was calculated using SDMtoolbox v1 [52].

Generalized Dissimilarity Modeling (GDM; [59]) can be used to analyze and predict spatial

patterns of turnover in community composition across large areas [25, 60]. To avoid computa-

tional limitations associated with pairwise comparisons of large datasets, we randomly sampled

2500 points throughout Madagascar from a ca. 10 km2 grid and then measured the absence or

presence of each species at each locality [25]. The 23 environmental and geography layers used

for SDMs were reduced to nine vectors in a principal component analyses and these were
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sampled at the same 2500 localities. Species communities as predicted by species occurrences

at each of these sites, and environmental data, were then input into a generalized dissimilarity

model using the R package: GDM R distribution package v1.1 (www.biomaps.net.au/gdm/

GDM_R_Distribution_Pack_V1.1.zip). The GDM was then extrapolated based on the high

resolution climate dataset [25, 59]. Classification of the GDMs was performed in SPSS v20 [61]

using a two-step classification method that assesses AICc of a range of class numbers (here

2–30) to determine the optimum number of GDM classes; these were interpolated as described

for the continuous model.

Range Size and Body Size Relationships

For descriptive range-size statistics, distribution range-sizes were sampled for all species at 0.01

degrees2 from corrected binary SDMs (or buffered point data where applicable). We sampled

for each modeled species two different range size measurements: corrected range size as in the

SDMs clipped by buffered minimum-convex polygons (from [25]) and uncorrected range size

based on SDM prediction without such clipping. We then calculated the ratio of the corrected

range size divided by the uncorrected range size as a measure of range filling, that is, the pro-

portion of the suitable habitat that is occupied by the species. We furthermore extracted the

maximum, minimum and mean elevations predicted for each species from the adjusted SDMs

and the buffered-point maps. Subsequently, we calculated the number of species estimated by

the models to occur at different altitudes, at intervals of 100 m above sea level.

Body sizes of all species of Madagascar's amphibians and reptiles were compiled from the

literature, mostly from a comprehensive field guide [43] and complemented with unpublished

data and our own measurements where necessary (S1 Table). We used the maximum known

male snout-vent length as the measurement of body size, as this variable was readily available

for most species [43] and has previously been used in biogeographical and macroecological

analysis [20, 62]. Although this variable ignores sexual dimorphism and different body shapes

(of e.g. snakes and frogs), we are convinced it is an informative proxy in analyses over an entire

and diverse herpetofauna, which in the case of Madagascar spans over three orders of magni-

tude with SVL values ranging from ca. 10 mm in Stumpffia frogs to ca. 2200 mm in Acranto-

phis snakes (larger crocodylians were not analyzed here).

We used Statistica 7.1 (Statsoft, Tulsa, USA) to calculate and visualize correlations between

range size, altitudinal range, range filling, and body size, and for additional univariate tests (t-

tests) comparing species numbers between regions or between taxa. We calculated univariate

linear regressions and tested for differences between reptiles and amphibians, as well as

between snakes and lizards, in analyses of variance (ANCOVA) defining body size as a covari-

able. Analyses of range filling were done using modeled species only; analyses of range size also

included species known from only 1–2 sites.

Herpetofaunal community analysis

From the plethora of herpetofaunal surveys published for Madagascar [38], we selected 20 sur-

veys that were spatially representative of the most well surveyed areas at the time these data

were compiled [8, 33, 63–81]. For this dataset we tabulated the amphibian and reptile species

encountered in these inventories, and separated the species records for each site in case of

multi-site inventories. Given the large number of new species described fromMadagascar over

the last years, ascertaining the taxonomic identity of species recorded during inventories over

different decades is almost impossible, and any analysis uncritically using such unpublished

species lists will inevitably be flawed. However, both the overall species numbers and the

assignment of species to major clades (genera, subfamilies or families) can be considered as
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rather reliable, and we therefore based our analysis on such simplified taxon lists. We assigned

all species to one of four major amphibian and eight reptile categories. Amphibians were (1)

hyperoliid frogs, (2) microhylid frogs of the subfamily Cophylinae, (3) microhylid frogs of the

subfamilies Scaphiophryninae and Dyscophinae, (4) mantellid frogs. Reptile categories were

(1) turtles and tortoises, (2) typhlopid and xenotyphlopid snakes, (3) lamprophiid snakes, (4)

iguanid lizards, (5) geckos, (6) skinks, (7) gerrhosaurids, and (8) chameleons. Some other

major taxa with low number of species were not included in the analysis (i.e., boid snakes, pty-

chadenid and dicroglossid frogs) because they might have distorted the results due to the small

sample size (1–3 species).

To better understand how well these ground-truthed communities identified in survey work

differ from theoretical communities as calculated by SDM overlap and used in the GDM, we

compiled the latter by extracting for each survey site the theoretical communities and compar-

ing its composition (in species numbers of major taxonomic categories) with the observed

communities.

Results

Species richness

The humid rainforest biome of eastern Madagascar holds the highest concentration of species

of both amphibians and reptiles, but differences are visible between the two groups (Fig 2). In

reptiles, species richness (SR) is regularly distributed along the eastern rainforest band whereas

the amphibian SR is concentrated in an area of the Northern Central East and Southern Cen-

tral East regions. Whether the geographic gap between the two richness centers in the Northern

and Southern Central East (corresponding to the two well-sampled regions around Ranoma-

fana and Mantadia-Analamazaotra National Parks) reflects a real pattern or incomplete sam-

pling remains uncertain with present data, although the modelling approach applied herein

does account for sampling bias [25].

A closer look at independent clades of amphibians (Fig 3) suggests that the high-central SR

is mainly caused by the family Mantellidae whereas the microhylid subfamily Cophylinae has a

more even pattern with high SR also in rainforests of the North East. Within the Mantellidae, a

central concentration of SR is found in two independent subclades (especially in Boophis and

to a lesser degree inMantidactylus) but not in a third subclade (Gephyromantis).

Overall, reptile SR in Madagascar is highest in the humid biome and rather regularly distrib-

uted along its entire latitudinal extension (Fig 2). Comparatively, high SR values are also found

along the west coast in the dry biome, and especially in the subarid biome in the South West.

Species richness is lowest on the high plateau in the Central region, and in a poorly surveyed

area southwest of Mahajanga in the West. Differences among reptile clades are stronger than

among amphibian clades, with some clades and subclades lacking high SR in the humid biome.

Most deviant are iguanas (Fig 3), which have no rainforest representative. This is also reflected

in Trachylepis skinks and Paroedura geckos, each one with only two species colonizing the

humid rainforest biome. In these three groups (iguanas, Trachylepis, Paroedura), SR peaks in

the dry and especially subarid biomes of the South West and West, and additionally in north-

ern Madagascar for Paroedura (Fig 3). Also chameleons of the genus Furcifer have the highest

richness in the dry and subarid biomes, with only few species colonizing rainforest. The dwarf

geckos of the genus Lygodactylus presented high SR on some central mountain massifs (Ankar-

atra, Ibity, Itremo, Andringitra), which are, as well, partly important centers of SR in Trachyle-

pis, Furcifer, iguanids and gerrhosaurids, but with peaks not fully coinciding among these

groups. Several reptile groups have SR centers located in a small northern portion of Madagas-

car (i.e., as defined here, the area north of a diagonal spanning from 15.5°S on the east coast to
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ca. 15.0°S on the west coast) but the precise limits of these areas of high SR do not always coin-

cide spatially. In Brookesia ground chameleons, Uroplatus geckos, and skinks, similar to some

amphibians (Gephyromantis,Mantidactylus, cophylines), the peak is in the rainforests of the

North East. However, in Paroedura geckos and less distinctly in gerrhosaurids, SR peaks on the

western coast of northern Madagascar (i.e., the Sambirano region).

Corrected weighted endemism

Local endemism values, here measured and illustrated as Corrected Weighted Endemism

(CWE), only partly coincide spatially with SR (Fig 2). Both in amphibians and reptiles, the

Fig 2. Biodiversity measures for reptiles and amphibians. Species richness (SR), endemicity (corrected weighted endemism, CWE), and turnover as
measured by general dissimilarity models (GDM), based on the distribution of 325 species of amphibians and 420 species of reptiles fromMadagascar.
Species richness scales range from low (blue) to high (red) number of species per hexagon; Local endemism values range from low (blue) to high (red).

doi:10.1371/journal.pone.0144076.g002
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Fig 3. Species richness. Species richness (SR) calculated separately for different clades and subclades of Malagasy amphibians and reptiles. Microhylidae
G1 includes scaphiophrynines whereas G2 includes cophylines.

doi:10.1371/journal.pone.0144076.g003

Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles

PLOS ONE | DOI:10.1371/journal.pone.0144076 January 6, 2016 8 / 26



largest extension of high-CWE cells is in the North East Madagascar. In amphibians and to a

lesser degree in reptiles, CWE peaks are also observed in the Southern and Northern Central

East, and in the South East. Slight differences compared to the 679 species dataset analyzed by

Brown et al. [25] are recognizable in the CWE of reptiles, especially in the South East. Amphib-

ians further have a single high-CWE cell coinciding with the Isalo Massif, and reptiles have an

area of high CWE in the subarid South West, with the highest values coinciding with the Oni-

lahy river mouth.

Comparing the major clades as well as the subclades (Fig 4) shows that high or very high

CWE values in some or most grid cells in northern Madagascar are an almost general pattern,

except in iguanas. Also leaf tail geckos (Uroplatus) do not show a particularly high CWE in the

North (but see Discussion).

The coastal areas of the South West have high CWE, especially in iguanas, but also in geckos

among the major clades, and in Trachylepis skinks, Furcifer chameleons, and to a lesser degree,

in Phelsuma day geckos among the subclades. An area of high CWE cells in the North West is

evident in three subclades: in skinks of the subfamily Scincinae, in Furcifer chameleons, and in

geckos. Similarly, a cell coinciding with the Tsingy de Bemaraha limestone massif in western

Madagascar has high CWE in Boophis treefrogs, as well as in Lygodactylus and Phelsuma

geckos, and Brookesia ground chameleons. This is due to the presence of species at this site

which had not been recorded elsewhere at the time our dataset was compiled, although for

some of them (e.g., B. tampoka) new records have in the meantime become available and there-

fore, the high CWE at Bemaraha at least for Boophis will likely not be recovered in future stud-

ies based on updated datasets. Geckos, in general, and especially Lygodactylus dwarf geckos, as

well as skinks, also have an area of high CWE coinciding with the Central Plateau of Madagas-

car around the Ankaratra-Itremo-Ibity massifs.

Altitudinal distribution of species richness

We sampled altitudinal SR of amphibians and reptiles as the number of species predicted to

occur in altitudinal sections of 100 m according to their modelled distribution. As discussed

below, this approach almost certainly overestimates the number of species actually occurring at

a certain elevation, but represents the most objective means to assess and compare altitudinal

diversity across the entire herpetofauna with current data. We therefore do not report here

absolute numbers, but general trends only.

According to our analyses, the SR of amphibians continuously increases with increasing ele-

vation, reaching a maximum between 800‒1200 m a.s.l., with the highest value at 1000 m a.s.l.

(Fig 5). From 1000 m higher, SR is negatively correlated with elevation—with distinct drops of

SR values from 2000 to 2100 m a.s.l. and from 2500 to 2600 m a.s.l. The elevational SR of rep-

tiles shows a different trend, with a maximum SR value in the lowlands (100 m a.s.l.) and a con-

tinuous decrease of SR with increasing elevation. Again, two distinct drops of SR values are

seen at high elevations, one from 2200 to 2300 m a.s.l. and one from from 2600 to 2700 m a.s.l.

The differences seen between amphibians and reptiles are statistically significant, with both

minimum and maximum elevation per species, and elevational range, being on average higher

in amphibians (t-tests: P = 0.016, P<0.001, P< 0.001, respectively).

Areas of Endemism based on Generalized Dissimilarity Modelling

Generalized Dissimilarity Modelling, as applied here, reconstructs for a set of sites across the

landscape the theoretical communities of species based on the overlap of their distribution

ranges, and then calculates pairwise differences between these communities. On this basis, it

identifies changes in the communities which reflect high species turnover, and can be
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Fig 4. Endemism. Corrected weighted endemism (CWE) calculated separately for different clades and subclades of Malagasy amphibians and reptiles.
Microhylidae G1 includes scaphiophrynines whereas G2 includes cophylines.

doi:10.1371/journal.pone.0144076.g004
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interpreted as boundaries of biogeographic regions. The GDMs reconstructed herein for

amphibians and reptiles reflect large differences between the distributional patterns seen in the

two groups. Given that amphibians are mostly distributed in the humid and subhumid biomes,

with few species in dry and subarid biomes, the main GDM boundaries run in a north-south

direction. In reptiles, a more complex subdivision especially of the subhumid/montane biomes

is reconstructed (Fig 2).

Both in amphibians and reptiles, a trend is visible of more continuous community change

in low elevations along the east coast, with no latitudinal boundary in the categorical GDM of

amphibians and only one for reptiles (Fig 2). On the contrary, at higher elevations a higher

number of latitudinal breaks exist that mainly are located in the subhumid/montane biomes

and, thus, more distinct patterns of turnover are observed. Both amphibian and reptile GDMs

reconstruct a major area of turnover (corresponding to the limit between dry and subarid

biomes) in the area around Morondava in the West. Also, in both amphibians and reptiles,

northern Madagascar stands out separately, although its boundaries are estimated more south-

wards than formally defined and as reflected by richness and endemism patterns. In amphibi-

ans, a region roughly corresponding to the Tsaratanana Massif stands out as separate area of

endemism.

Fig 5. Species richness by elevation. Number of specimens of amphibians and reptiles, predicted by the adjusted SDMs to occur at certain elevations at
intervals of 100 m above sea level. Presumably due to over-prediction the inferred elevational ranges probably are larger than the realized ones, giving
higher numbers of species than actually occurring in lowlands and high elevations.

doi:10.1371/journal.pone.0144076.g005
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Range size, range filling and body size

We found a clear and highly significant correlation of range size (spatial extent of the distribu-

tion area, in km2) with body size (Fig 6), measured as maximum male snout-vent length, in

both amphibians (parametric correlation: r = 0.2231, P< 0.001; non parametric Spearman cor-

relation: R = 0.3403, P< 0.001) and reptiles (r = 0.3538, P< 0.001; R = 0.3280, P< 0.001,

respectively).

Range sizes of reptiles were larger than those of amphibians (range sizes, mean ± SD:

61113 ± 83100 km2 vs. 40326 ± 53719 km2; t-test: P = 0.001) as were their body sizes (SVL

202.5 ± 280.5 mm vs. 34.7 ± 17.9 mm; t-test: P< 0.001). The large standard deviations of range

size values reflect the presence of a considerable number of species with distribution areas

much larger than the average, combined with a high number of microendemic species. The

larger ranges of reptiles compared to amphibians are probably caused mainly by their larger

body sizes. Comparing the range size values of amphibians and reptiles by ANCOVA with SVL

as co-variable revealed a highly significant influence of SVL (P< 0.001), but no significant

influence of the taxonomic category (P = 0.612). Within reptiles, we furthermore tested

whether the larger range sizes of snakes vs. lizards (mean 98785 ± 105015 km2 vs.

48703 ± 70307 km2; t-test: P< 0.001) were a true pattern suggestive of different barriers to dis-

persal, differential dispersal capacities among the two groups, or explainable by body size influ-

ences only. In this case, ANCOVA revealed a significant influence both of SVL (P< 0.001) and

of taxonomic category (P< 0.001), suggesting that indeed, at similar body sizes, snakes in

Madagascar appear to have larger range sizes than lizards.

The correlation between body size and range size is also extended to elevational ranges. In

amphibians, altitudinal ranges and maximum elevation were positively correlated with SVL,

while minimum elevation was negatively correlated with SVL. This suggests that larger species

occur over wider elevational ranges, which probably can be explained with their larger spatial

ranges (non-parametric Spearman correlations for minimum and maximum elevation, and

Fig 6. Body size and range sizes correlations. Correlation of body size with range size in amphibians (black circles and solid line) and reptiles (white
squares and dashed line). Both correlations are highly significant (see text).

doi:10.1371/journal.pone.0144076.g006
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elevational range: R = -0.215, 0.231, 0.228; P< 0.001 in all three analyses). Similar results were

obtained for reptiles, albeit with slightly weaker correlation coefficients (R = -0.222, P< 0.001;

R = 0.182, P< 0.001 and R = 0.142; P< 0.01).

We inferred range filling by calculating the proportion of suitable habitat actually occupied

by the species (clipped/unclipped model ratio), after excluding the non-modeled species (with

1–2 data points). Range filling differed significantly between amphibians and reptiles, with

amphibians filling on average a smaller proportion of the estimated suitable range

(0.472 ± 0.290 vs. 0.613 ± 0.310; t-test, P< 0.001). Both in amphibians and reptiles, range fill-

ing was significantly correlated with SVL (parametric correlation; r = 0.216; P = 0.002 and

r = 0.290; P< 0.001; non-parametric correlation; R = 0.255; P = 0.001 and R = 0.275;

P< 0.001; Fig 7). Controlling for SVL in an ANCOVA, the difference between the taxonomic

groups was maintained (i.e., both SVL and taxonomic category were significant predictors:

P< 0.001 and P< 0.001).

Community meta-analysis based on herpetofauna inventories

Most of the comprehensive analyses of Madagascar's biogeography in recent years have used,

as original data, full distribution ranges of native species which were either derived from origi-

nal records (e.g., as minimum convex polygons) or from SDMs. Such analyses estimate the

number of species occurring in a certain region or site. The actual compositions of local

amphibian and reptile communities are available from numerous surveys and inventories car-

ried out in Madagascar over the past 25 years [38]. Such inventories yield lists of species co-

occurring in one small area that can be used to calculate site similarities using parsimony analy-

sis of endemism (PAE) [29, 66]. We compared community composition with data extracted

from species lists of 103 sites as originally reported in the 20 selected surveys (see Materials and

Methods; S2–S4 Tables).

Fig 7. Range filling of reptiles and amphibians. Correlation of range filling (ratio of range sizes of clipped distribution model vs. full distribution model) with
SVL, separately for amphibians (black solid circles) and reptiles (squares). Analyses carried out after removing all taxa with 1–2 data points only.

doi:10.1371/journal.pone.0144076.g007
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As expected from amphibian and reptile SR (Fig 1), geographically plotting species numbers

and the proportions of amphibians vs. reptiles shows a lower proportion of amphibians in the

dry, and especially in the subarid biomes, compared to the humid and subhumid biomes (Fig

8). For simplified comparison (all with t-tests), we summarized data for communities from the

dry and subarid biomes (as arid) vs. the humid, subhumid, and montane (as moist) biomes. As

expected, the number of reptile species per community is lower in the moist sites (11.7 ± 8.1 vs.

24.0 ± 11.4; P< 0.001), whereas, the number of amphibian species is higher (18.0 ± 9.8 vs.

4.9 ± 3.8; P< 0.001). Consequently, the ratio reptiles/amphibians also differs with high signifi-

cance among moist and arid sites (0.39 ± 0.15 vs. 0.84 ± 0.11; P< 0.001). However, the total

number of species in the herpetofaunal communities does not differ between moist and arid

sites (29.8 ± 16.5 vs. 28.9 ± 13.6; P = 0.8041).

Additional patterns apparent from these data are a higher proportion of reptiles in moist

sites in northern Madagascar (as defined in Fig 1D). Comparing communities from moist sites

in northern Madagascar vs. those from moist sites in the rest of the island, the number of

amphibian species per community is on average lower in the northern regions (t-test:

15.5 ± 10.2 vs. 21.9 ± 7.9; P< 0.01), yielding also a weakly significant difference in the propor-

tion among amphibians and reptiles (0.42 ± 0.16 vs. 0.35 ± 0.10; P = 0.051).

For a more detailed analysis of community composition among the different biomes, we

tabulated species numbers for 12 major taxonomic groups for each of the communities and

performed a Principal Component Analysis (PCA) on these data (Fig 9; Table 1). Combination

of the first and second principal components (PC) separates rather well the communities from

moist vs. those from arid locations (i.e., humid + subhumid + montane vs. dry + subarid

biomes). The first PC separates mainly communities of the humid, subhumid and montane

bioclimates from those of the arid and subarid bioclimates, with a major contribution of rep-

tiles (all except chameleons) and non-cophyline microhylids. The second PC separates dry

from subarid climates and is mainly influenced by cophyline and mantellid frogs as well as cha-

meleons. This probably reflects the almost complete absence of mantellid and cophyline frogs,

and of many chameleons, from the subarid bioclimate.

We used the ground-truthed encountered communities in a comparison with theoretical

(model-based) communities obtained by an overlap of distribution ranges. For each of the 103

survey sites, we calculated the number of species that theoretically should occur at this site

based on the clipped SDMs. Then, we calculated for various taxonomic groups a ratio of

encountered species number vs. theoretical species numbers. To avoid a large number of miss-

ing data and null divisions, we merged cophyline and non-cophyline microhylids and excluded

hyperoliid frogs from the analysis. The obtained ratios differ among taxonomic groups (Krus-

kal-Wallis-ANOVA; P = 0.018) and means range from 0.18 to 0.33. The lowest values corre-

spond to lamprophiid snakes and the highest values to chelonians, iguanas, and blindsnakes.

Amphibians yielded similar values as reptiles, with a lower average in microhylids than in

mantellids.

Discussion

Scope and limits of this study

This study provides insights into the spatial biodiversity patterns of Malagasy amphibians and

reptiles, based on explicitly modeled distributions of a near-complete set of species. We illus-

trate how herpetofaunal communities are structured according to main bioclimatic regions,

and demonstrate an important effect of body size on range size in these animals. Previous stud-

ies have analysed spatial species richness of amphibians and reptiles in Madagascar based on

unmodeled distribution areas reconstructed by expert opinion[36, 37], used only partial sets of
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taxa [16, 22, 31, 35, 44, 45], or used the models in a hypothesis-testing framework without

comparatively analyzing the patterns among groups in detail [25]. The current study is not to

be seen as an exhaustive and final analysis of one or a few biogeographic questions, but rather

as a baseline for future work which in part points to interesting phenomena that require in-

depth study.

We are aware of several restrictions in our dataset and results based on this. While our data-

set was compiled and analyses being carried out, numerous novel distribution records became

available which in some cases will lead to future modifications of some minor aspects of our

results (e.g., Boophis CWE at Bemaraha). Most important, however, are the effects of taxo-

nomic uncertainty, different evolutionary ages of species, and different species criteria applied

in different groups of taxa. Therefore, the units of analysis (the species) used in this and most

other biogeographical and macroecological analyses are not fully equivalent. Several species

accepted as valid, such as the frogsMantella viridis,M.milotympanum,M. nigricans, or the liz-

ards Zonosaurus haraldmeieri and Z. trilineatus, might rather be considered as colour variants

or subspecies, whereas other species contain deep mitochondrial lineages that might turn out

to correspond to distinct species upon taxonomic revision. In order to include the full dataset

of species and occurrence records, many of the observation records used have not been

Fig 8. Species numbers and proportion of amphibians and reptiles recorded during herpetological inventories in Madagascar. Each pie chart
represents one surveyed site (i.e., the area around one campsite at a specific elevation) and thus a community of co-occurring amphibian and reptile species.
Pie area is proportional to the number of species; proportion of amphibians vs. reptiles in the community is indicated by colors. See S1 Table for a list of sites
and references.

doi:10.1371/journal.pone.0144076.g008

Fig 9. Results of a Principal Component Analysis of surveyed sites in Madagascar. Each dot
represents the amphibian and reptile community at one site (see Fig 8 for a map of sites). Colors represent
major bioclimatic subdivisions. PCA based on species numbers recorded for each of four major amphibian
and eight major reptile groups (Table 1).

doi:10.1371/journal.pone.0144076.g009
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precisely dated, posing a second limitation to this study. Given continued climate change and

the widespread decrease of natural vegetation over time, considering such temporal informa-

tion would certainly improve the quality of the resulting models [35].

Furthermore, our method of estimating elevational species richness relies on the clipped

species distribution models and therefore assesses the number of species predicted to have suit-

able habitat at a certain elevation (vs. true measurements). We applied this method rather than

directly extracting minimum and maximum elevations from point distributions due to issues

associated with the uneven sampling of species across Madagascar that can lead to underesti-

mating the altitudinal ranges of many understudied species (as the roads that provide access to

habitats typically occur in regions of lower topographic complexity and lower elevation). Fur-

ther, because SDMs model the species’ ecological tolerances, not geographic or altitudinal

ranges, the modeled altitudinal ranges are not implicitly affected by altitudinal changes associ-

ated with latitude (which would also be sensitive spatial sampling biases). However, it is clear

that the realized elevational niches of most of Madagascar's amphibians and reptiles are nar-

rower than suggested by their ecological tolerances (likely due to dispersal limitations and his-

toric climate change). Due to this over-prediction, the species numbers for any elevation (Fig

5) are likely exaggerated. However, because such a bias will be equally likely for all species, we

consider the general trends, and the observed differences between amphibians and reptiles, to

be reliable.

In some groups especially of reptiles, the effect of possibly inaccurate SDMs has been further

exacerbated by taxon exclusions due to taxonomic uncertainty, leading to awkward aspects in

the respective SR or CWE maps (Figs 3 and 4). For instance, the lack of CWE peaks of Uropla-

tus in northern Madagascar is caused by the exclusion from our study of several of the recently

identified, yet, still poorly defined candidate species of this genus [82], many of which are

northern endemics. As a second example, the genus Paroedura has been subject to intense tax-

onomic revisions in the past years (e.g., [83]), but much of the recent advances in knowledge

on these geckos, especially in northern Madagascar, are not yet reflected in our dataset.

Table 1. Results of a Principal Component Analysis of surveyed sites in Madagascar (Fig 8), based on species numbers recorded for each of 4
major amphibian and 8 major reptile groups. Principal Components with eigenvalues >1 were extracted (PC1-PC3). Component loadings with values
>0.5 are in bold.

PC1 PC2 PC3

Hyperoliid frogs -0.183640 0.127158 -0.957382

Microhylid frogs (non-cophylines) -0.584879 0.246071 -0.079674

Microhylid frogs (cophylines) 0.321995 -0.786310 0.045205

Mantellid frogs 0.320439 -0.748794 -0.227840

Tortoises -0.666783 0.259272 0.061954

Chameleons 0.002878 -0.794360 0.011449

Iguanas -0.738012 0.384409 0.075236

Gerrhosaurids -0.774476 -0.305005 -0.127244

Skinks -0.664216 -0.461836 0.136841

Geckos -0.761727 -0.308519 0.023604

Lamprophiid snakes -0.744714 -0.312073 -0.058414

Blindsnakes -0.822065 -0.132442 0.122052

Eigenvalue 4.423053 2.618131 1.040295

% Total variance 36.85877 21.81776 8.66912

Cumulative Eigenvalue 4.423053 7.041183 8.081478

Cumulative % 36.85877 58.67653 67.34565

doi:10.1371/journal.pone.0144076.t001
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One last restriction regards the comparison of different field surveys from the literature.

Although most of these followed similar search methods, they differed in the number of days

employed to search a particular site, and in the size of the field team. Regrettably, as a result of

these factors, search effort is difficult to quantify. Variation in search effort among sites cer-

tainly could have influenced the total species numbers, and to lesser degree, the proportion of

different taxonomic groups that were used for our PCA.

Despite these restrictions, we are convinced that the results presented here reflect true bio-

logical patterns. In fact several of the major findings, such as the center of amphibian species

richness in the Northern and Southern Central East, have remained stable since the pioneering

study first reporting on the phenomenon [31]. This constancy in revealing the pattern is

remarkable because the previous study[31] only included a fraction of the total number of

amphibian species known today (97 vs. 325 amphibian species), and was not based on explicit

distribution area modelling.

Patterns of richness, endemism and turnover

Amphibian SR of some clades peaks in the Central East of Madagascar (others also in the

North East), while the South East in all amphibian clades is comparably species-poor. This

might be due to a lower integrated survey effort in particular areas such as the Anosy Mountain

chain, Kalambatritra or Befotaka-Midongy Reserve, but at least partly probably reflects a bio-

logical pattern.

All amphibian clades coincide in having their highest values of SR in rainforest, with differ-

ences concerning the latitudinal location of the peaks. In reptiles, the pattern is more disparate

among clades, as different clades have their SR peaking in the humid, subhumid, dry or subarid

biomes. This reflects that some reptile clades did not or poorly adapt to rainforest [10], but

diversified in other in other biomes only where they show high SR (Fig 3), together with the

fact that more reptile radiations colonized Madagascar compared to amphibians. Regional

endemicity in amphibians and reptiles varies among clades, but a common pattern of the

majority of major clades and subclades is a high endemicity in northern Madagascar.

The spatial distribution of SR in amphibians suggests a clear mid-domain effect as previ-

ously postulated [16, 31]. Although this effect has been controversially discussed for the Mada-

gascar example [84, 85], and a latitudinal mid-domain effect did not exert an important

contribution to a multivariate model of Madagascar's amphibian richness [25], it is unequivo-

cally observed that the central mid-altitudinal rainforests harbors the highest overall richness

of amphibians. This is also reflected by the high numbers locally occurring in this area. Around

100 regionally sympatric amphibian species are known from comparatively small areas (less

than 1000 km2, [25]) around Andasibe and Ranomafana, respectively [40]. The disparity of

patterns among different amphibian clades are a strong indication for the absence of a major

bias, e.g. in survey intensity, causing the overall central concentration of SR, which we therefore

see as a true biological pattern characterizing some amphibian clades. In part, the high species

richness in this area might be caused by local endemics as suggested by the high number of

turnover boundaries inferred by GDM in the subhumid biome (Fig 2).

Several areas of high species turnover identified by the GDMmaps (Fig 2D and 2H) agree

remarkably well with the bioclimatic zonation of Schatz [47] as represented in Fig 1B. This

applies in particular for the boundaries between the humid/subhumid vs. dry/subarid biomes,

and even more of the dry vs. subarid biomes. This coincidence had already been remarked by

Brown et al. [25] for their analysis of the full (amphibian+reptile) dataset. It should however be

taken into account (see [25]) that bioclimatic data have influenced the GDM results at two ana-

lytical steps: (i) in the calculation of SDMs, and (ii) in the interpolation of community
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distribution in the GDM analysis. Hence, the GDM boundaries are not fully independent from

a zonation based on bioclimatic data alone. Once the distribution of Madagascar's amphibians

and reptiles has been more completely mapped, it will be a fruitful perspective to analyze how

closely the species turnover of these communities really matches the exact boundaries of the

bioclimatic zones.

The comparatively high numbers of species observed at high elevations>2000 m seems

counterintuitive at first, and certainly is, in part, caused by SDMmodel over-prediction, con-

sidering that only few montane specialists actually are found at such altitudes in the central

massifs (Andringitra and Ankaratra; [66, 86]). However, at higher latitudes, and especially in

the Tsaratanana Massif in northern Madagascar, rainforest extends into higher elevation and

many more amphibians and reptiles can be found>2000 m a.s.l. Hence, when interpreting the

graphics in Fig 5, it is important to keep in mind that these are calculated over the entire latitu-

dinal and longitudinal range and considering all biomes of the island. This also provides a

straightforward explanation for the higher SR of reptiles at lower elevations, and the absence of

this pattern in amphibians. The arid and subarid biomes of Madagascar, with partly high rep-

tile SR, but consistently low amphibian SR, are mainly made up by low elevations including

almost the entire western coastline. Many reptiles occurring in these biomes contribute to the

high reptile SR seen at low elevations (Fig 5).

The distinct reductions of amphibian SR at the elevational steps between 2000–2100, and

again from 2500–2600 m, correspond to the rainforest tree lines in the central massifs (at ca.

2000–2100 m) and in the Tsaratanana mountain (at ca. 2600 m), but also reflect simply the fact

that very little surface area for occupancy is available above these altitudes.

Body size influences on biogeographic pattern

The correlation between body size and range size is a well-established macroecological pattern

[87, 88]. It has been previously found in Malagasy anurans [20], where small body sizes favor

genetic diversification processes of anurans [20, 46]. Still, despite the availability of large num-

bers of range maps, range-body size relationships remain understudied in amphibians and rep-

tiles. Although intuitively obvious from the existence of many microendemic species with tiny

body sizes, e.g., in Brookesia or Stumpffia [89, 90], we here provide the first comprehensive

confirmation of this correlation in Malagasy amphibians and reptiles.

Range sizes of snakes have previously been observed to be larger than those of lizards [91–

93] (Fig 10). We here confirm this pattern for the full assemblage of species occurring in Mada-

gascar, and provide evidence that, apparently, it is not caused only by larger body sizes of

snakes. Analyzing this phenomenon in more detail and testing its possible causes is a promis-

ing perspective for future studies. Although our data seem to indicate that range size differ-

ences between amphibians and reptiles might be caused mainly by the smaller body size of

amphibians, more detailed future analysis of this pattern is warranted and should for instance

seek for differences within biomes. However, the differences in range filling between the two

groups are apparently not caused solely by body size differences. The lower proportion of suit-

able distribution area occupied by amphibians probably reflects an overall lower vagility and

dispersal capability, in turn probably caused by a higher sensitivity to microecological factors

[94]. The Madagascar example, with a maximum of five clades of amphibians, but more than

15 clades of reptiles reaching the island after its geographic isolation [10], confirms that overall

dispersal capacity is on average smaller in amphibians. Caution should be applied, however,

when generalizing this difference because some amphibians, both in temperate regions (exam-

ples in [95, 96]) and in Madagascar [97], are known to have expanded their distribution areas

rapidly.
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Community composition

We found strong evidence that the herpetofaunal communities encountered in Madagascar on

the basis of survey work have a taxonomic composition structured predominantly along a

moisture gradient across the island. Communities from humid, subhumid and montane

biomes differ along the main PC from those in the dry and subarid biomes. These two latter

categories partly separated along the second PC axis. This finding further validates the use of

bioclimatic data to interpolate theoretical community composition in the GDM analysis. Spe-

cies richness of both amphibians and reptiles peaks in the humid biome, but contrary to the

expectations, the actual herpetofaunal communities are not significantly more species rich in

this biome or in the ecotone connecting humid, subhumid and montane biomes, when com-

pared to the dry and subarid biomes. No straightforward explanation for this pattern exists.

However, rainforest species might be more specialized to particular microhabitats: while occur-

ring within a general rainforest area, they might not be present at particular sites within this

Fig 10. Graph showing relative observation probability of main categories of amphibian and reptile
species in survey sites across Madagascar. Bars show the percentage of species of each category found
per site, relative to the respective number of species theoretically occurring at these sites based on overlap of
clipped SDMs. Low values indicate groups that are either difficult to detect during surveys, or are ecological
specialists occurring patchily across their range.

doi:10.1371/journal.pone.0144076.g010
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area if their required microhabitat is missing. Alternatively, species might be more difficult to

observe in the wild at sites in moist vs. dry biomes.

Differences between taxonomic categories in the proportion of theoretical community size

vs. size of communities in the field (Fig 10) can be explained by two main factors. First, it is

possible that some taxa are simply more difficult to detect than others, despite being present in

similar densities at a site. Second, species belonging to some higher taxa simply might be on

average rarer, occurring in lower densities or more specialized to particular microhabitats. The

surveys included in our analyses were all carried out by experienced teams of researchers

employing a variety of search techniques, including diurnal and nocturnal opportunistic

searches and in almost all cases, pitfall trapping. Still, some taxa require a long and painstaking

individualized search effort, such as small-sized leaf litter frogs, common in the Cophylinae,

which often require hours searching for a single calling male specimen. The lower proportion

of encountered microhylids (Fig 10) likely is the result of lower survey detectability, whereas

the low number of snake observations either relates to low detectability or to a possibly lower

density of these predators. Surprisingly, the detection probability of blindsnakes is compara-

tively high, probably reflecting that these secretive animals are readily collected by pitfall trap-

ping, or that the true distribution ranges of these animals are underestimated by our SDM

approach.

Conclusion and Outlook

By revealing a series of biogeographic patterns in Madagascar's herpetofauna this study points

to promising fields for future research. Using generalized dissimilarity modeling we found a

remarkable coincidence of turnover patterns of amphibians and reptiles with bioclimatic

regions. This pattern warrants further exploration using ground-truthed data of community

composition across the boundary of bioclimatic zones. Northern Madagascar stands out as a

center of SR and CWE for numerous amphibian and reptiles clades suggesting that surveys in

many of the poorly explored northern massifs might yield novel discoveries of species

unknown to science. Investigating contact and hybrid zones in northern Madagascar will yield

insights into the role of in-situ speciation generating this astonishing regional diversity, possi-

bly triggered by both vicariance and adaptive divergence across ecotones or elevational bands.

A closer look at range size versus body size relationships will identify those taxa deviating from

the general correlation, and point to intrinsic and extrinsic factors that might make these taxa

particularly weak or strong in dispersal capacity. Eventually, further substantial refinement of

these biogeographic studies will greatly benefit from continued survey and collection work in

Madagascar, and from taxonomic revisions improving our knowledge of the baseline distribu-

tional data.
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