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Camera trapping surveys frequently capture individuals whose identity
is only known from a single flank. The most widely used methods for incor-
porating these partial identity individuals into density analyses discard some
of the partial identity capture histories, reducing precision, and, while not
previously recognized, introducing bias. Here, we present the spatial partial
identity model (SPIM), which uses the spatial location where partial identity
samples are captured to probabilistically resolve their complete identities, al-
lowing all partial identity samples to be used in the analysis. We show that the
SPIM outperforms other analytical alternatives. We then apply the SPIM to
an ocelot data set collected on a trapping array with double-camera stations
and a bobcat data set collected on a trapping array with single-camera sta-
tions. The SPIM improves inference in both cases and, in the ocelot example,
individual sex is determined from photographs used to further resolve partial
identities—one of which is resolved to near certainty. The SPIM opens the
door for the investigation of trapping designs that deviate from the standard
two camera design, the combination of other data types between which iden-
tities cannot be deterministically linked, and can be extended to the problem
of partial genotypes.

1. Introduction. The goal of capture–recapture studies is to estimate popu-
lation density, D, or abundance, N , in the presence of imperfect detection. Often
the inferential quantities of interest are D or N themselves, but other quantities
of interest can be estimated from N such as survival, recruitment or state transi-
tion rates. Individuals are either naturally or manually marked and subjected to
repeated capture attempts in order to estimate their capture probability and thus
D or N . Generally, capture–recapture models for wildlife species regard the in-
dividual identity of each capture event as known; however, in practice, the iden-
tities of individuals for some capture events can be ambiguous or erroneous. In
live-capture studies, tags can be lost. In camera trapping studies, researchers often
obtain partial identity samples—left-only and right-only photographs that cannot
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be deterministically linked. In genetic capture–recapture studies, partial genotypes
and allelic dropout can lead to partial identification or misidentification, respec-
tively. Statistical models have been developed to address the problem of imperfect
identification in live capture using double tagging [e.g., Wimmer et al. (2013)] and
in camera trap and genetic capture–recapture studies by regarding the complete
identification of partial or potentially erroneous samples as latent and specifying
models for both the capture–recapture process and the imperfect observation pro-
cess conditional on the capture [e.g., Bonner and Holmberg (2013), McClintock
et al. (2013), Wright et al. (2009)]. However, relatively little attention has been
paid to one of the most important determinants of sample identity—the spatial lo-
cation where it was collected. The identity of unidentified samples should more
likely match the identity of other unidentified samples collected closer together in
space than those collected further apart. This information can be used to model the
observation process and aid in the determination of sample identity.

The information about identity contained in the spatial location of samples has
been used in three recent spatially explicit capture–recapture (SCR) models where
some or all individual identities are latent. Chandler and Royle (2013) consider the
situation where 100% of the samples are of unknown identity and use the spatial
location of samples in combination with a latent SCR model as the basis for esti-
mating density from such data [see Fewster, Stevenson and Borchers (2016) for an
alternative model for spatially correlated unidentified counts]. Chandler and Clark
(2014) probabilistically associate occupancy observations, unidentified by design,
to individuals identified by a mark–recapture survey using their spatial location
and a latent SCR model. Finally, spatial mark–resight models [e.g., Sollmann et al.
(2013a)] use the spatial locations of capture to resolve the latent identities of un-
marked and sometimes marked but unidentifiable individuals. In this case, mark
status constitutes a partial identity, disallowing matches between latent marked and
unmarked samples. Here, we address the use of sample location to probabilistically
resolve partial identities in camera trapping studies (i.e., single flank photographs)
where complete identities are derived from photographs of both flanks.

Camera traps (remotely triggered infrared cameras) have become an established
method for collecting capture–recapture data for a wide range of species, espe-
cially those that are individually identifiable from natural marks found on both
flanks of the animal [termed “bilateral identification” by McClintock et al. (2013)].
Camera trapping studies typically allow capture–recapture data to be collected over
longer periods of time and across larger areas than is feasible using live capture,
leading to more captures of more individuals and thus more precision for popula-
tion parameter estimates such as density [Kelly et al. (2012)]. These characteris-
tics are especially advantageous when studying animals existing at low densities,
such as large carnivores. However, even when using camera traps, researchers have
found it difficult to achieve adequate precision for parameter estimates of low den-
sity populations; so, any innovations in statistical methodology that can improve
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statistical efficiency, such as allowing unidentified or partial identity samples to be
included in the analysis, are of broad practical interest.

Because animal markings are usually bilaterally asymmetric, researchers need
to simultaneously photograph both flanks of an individual at least once during a
capture–recapture study in order to obtain a complete identity [McClintock et al.
(2013)], and this is the reason the majority of camera trap studies deploy two cam-
eras at each trap station. Given a single simultaneous both side capture, all of
the capture events for an individual can be combined into a capture history—the
record of whether or not it was captured at each trap and occasion. For individuals
that are never photographed on both flanks simultaneously, left-only and right-only
photographs cannot be deterministically assigned to a single individual. These par-
tial identity individuals can be linked across occasions using either their left-only
or right-only captures, but it is not known which, if any, of these left-only and
right-only partial identity capture histories were produced by the same individu-
als. Single sided photographs can occur in the standard double camera trap design
if one camera is not triggered or has malfunctioned, one photograph is blurry, or
the animal is photographed at an angle or position that only permits identification
of a single flank. While less common in capture–recapture studies, the use of single
camera trap stations can frequently only produce single sided photographs, none
of which can be deterministically linked without supplemental information, such
as dual flank photographs from a live capture event [e.g., Alonso et al. (2015)].

Including both left-only and right-only capture events in a single capture history
may often result in instances where the capture events for a single individual are er-
roneously split across two individuals, one coming from the left-only captures and
the other from the right-only captures. Therefore, researchers have typically dis-
carded some of the single-sided captures from analysis [McClintock et al. (2013)].
If only single camera trap stations are used, left-only and right-only capture his-
tories can be constructed. If at least some double camera trap stations are used,
the left- and right-only captures can be linked to the complete identity individuals
that were captured on both sides simultaneously at least once during the survey.
In these scenarios, two capture histories are usually constructed; all capture events
for the complete identity individuals are supplemented by either the left-only cap-
ture events or right-only capture events of the partial identity individuals. The most
common approach is to analyze a single side data set, and the chosen side is usu-
ally the one with more captured individuals or capture events [e.g., Kalle et al.
(2011), Nair et al. (2012), Srivathsa et al. (2015), Wang and Macdonald (2009)].

This standard practice for creating capture histories introduces two forms of bias
that to our knowledge have not been identified in the literature. First, if the data
set with more captured individuals is always the one selected for analysis, posi-
tive bias is introduced because the likelihood does not condition on this selection
process. Second, linking all three capture types for the complete identity individ-
uals introduces individual heterogeneity in capture probability and thus negative
bias because the observed captures disproportionately come from the individuals
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with the highest capture probabilities (the complete identity individuals), leading
to an overestimate of capture probability which in turn leads to an underestimate of
abundance [Otis et al. (1978)]. To see how individual heterogeneity is introduced,
we introduce pB , pL, and pR , the probabilities of being captured on both sides,
left side only, and right side only respectively. Then complete identity individuals
will have a capture probability of P(B ∪ L ∪ R) which is necessarily larger than
pL and pR .

A second approach to constructing capture histories that avoids the introduction
of individual heterogeneity is to ignore the fact that the left and right side photos
from a simultaneous capture belong to the same individual, average the density
estimates from both single side analyses and derive a joint standard error assum-
ing independence. This method is proposed by Wilson, Hammond and Thompson
(1999); however, Bonner and Holmberg (2013) point out that assuming indepen-
dence between the dependent data sets will lead to the underestimation of standard
errors and below nominal confidence interval coverage. Methods that appropriately
model the dependence between the data sets by accounting for the imperfect iden-
tification process are thus required to produce unbiased estimates with appropriate
measures of uncertainty.

Two recent papers [Bonner and Holmberg (2013), McClintock et al. (2013)]
have extended the latent multinomial model (LMM) of Link et al. (2010), orig-
inally applied to genetic capture–recapture with misidentification, to allow the
complete and partial identity samples to be modeled together while accounting
for the uncertainty in identity of the partial identity samples. Both papers show
that the uncertainty stemming from the imperfect observation process is more than
offset by the gain in precision from using all the capture events, leading to a net in-
crease in precision of abundance [McClintock et al. (2013)] and survival [Bonner
and Holmberg (2013)] estimates, at least for the scenarios considered for simu-
lation. While the MCMC-based LMM accounts for the uncertainty in identity by
sampling from latent true capture histories that are consistent with the observed
capture histories, this approach does not use the information about where samples
were collected.

Using the spatial information associated with samples can reduce the model-
based probability that samples collected far apart in space relative to the movement
characteristics of the species under consideration are from the same individual. For
example, consider three samples, A, B, and C, of unknown identity of a mesocarni-
vore with a typical home-range area of 4 km2. If samples A and B are 6 km distant,
but samples A and C are only 1 km distant, then it is more likely that samples A
and C came from the same individual than samples A and B. SCR models are a
natural framework for dealing with uncertain identity in capture–recapture mod-
els because they involve an explicit description of how the spatial organization of
individuals interacts with the spatial organization of traps. Therefore, we propose
a spatial partial identity model (SPIM) that uses the spatial information associ-
ated with each photograph in camera trap studies to jointly model simultaneous,
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left-only, and right-only photographs while accounting for the uncertain identity
of partial identity samples within the SCR framework. We apply this model to two
data sets—one from a double camera station study of ocelots in Belize and one
from a single camera station study of bobcats in southern California.

2. Methods—Model description. Our model is a typical hierarchical SCR
model, except that the complete identities of some capture events are latent and the
capture probabilities depend on the capture type and number of cameras at a trap.
For the process model, we assume that individual activity centers si , i = 1, . . . ,N ,
are distributed uniformly across a continuous, two-dimensional state space S ac-
cording to si ∼ Uniform(S) [but see Borchers and Efford (2008), Reich and Gard-
ner (2014), Royle, Fuller and Sutherland (2016) for alternative specifications]. This
state space is a rectangular or polygonal user-defined region inhabited by the pop-
ulation of interest and should be large enough that any individuals living beyond
the limits of the state space have a negligible probability of being captured on the
trapping array.

For the observation model, we assume that conditional on the N × 2 matrix
of activity center locations, S, detection probabilities of each animal at each trap
depend on the distance between activity centers and traps and the capture type.
First, let X be a J × 2 matrix for the spatial coordinates of the J traps, with the
j th trap being xj , and let v be a vector of length J containing the number of
cameras deployed at each trap (either 1 or 2). We define events m ∈ {B,L,R}

to correspond to both-side simultaneous capture, left-only capture, and right-only
capture, respectively. Then, the binomial capture process for the mth capture type
is Y

(m)
ijk ∼ Binomial(1,p

(m)
ijk ) with p

(m)
ijk being the capture probability of individual

i at trap j on occasion k (e.g., day of a camera trapping study) for event type m.
This process produces the partially latent complete capture history, a set of bino-
mial frequencies, Yijk = (Y

(B)
ijk , Y

(L)
ijk , Y

(R)
ijk ), all of dimension N × J × K with K

being the total number of occasions and N unknown. Finally, the observed capture
history is the set of binomial frequencies yijk = (y

(B)
ijk , y

(L)
ijk , y

(R)
ijk ), almost certainly

not in the same order along the i dimension as the complete capture history for the
L and R capture types. The dimensions of these three binomial frequencies are
nB × J × K , nL × J × K , and nR × J × K , respectively, with nm being the num-
ber of individuals for which at least one m event was observed.

Because double cameras are typically positioned to fire together in order to get
a both-side capture, it is unlikely that each camera operates independently. Rather
than model the capture probabilities of each of the two cameras separately with
some correlation between cameras, we specify different detection functions for
both side captures and single side captures, assuming independence between the
both, left, and right side capture processes, although an alternative would be to
model a latent capture process and a multinomial observation process with events
B , L, and R [e.g., Bonner and Holmberg (2013), McClintock et al. (2013); see
Discussion for potential advantages of the chosen specification].
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We write the Gaussian hazard detection function for capture type m as

(2.1) p(m)(s,x) = 1 − exp
(

−h(m)(s,x)
)

where s and x are generic activity center and trap locations, respectively, and

(2.2) h(m)(s,x) = λ
(m)
0 exp

(

−
‖s − x‖2

2σ 2

)

with λ
(m)
0 being the expected number of detections for capture type m for an ac-

tivity center located at the same location as a trap and σ being the spatial scale
parameter that determines how quickly capture probability declines with distance
between an activity center and a trap. Because we do not expect any systematic
difference in the probability of detecting one flank over the other, we will set
λ

(S)
0 := λ

(R)
0 = λ

(L)
0 where S indicates a single side capture. For single camera

stations, we have the single side detection function p(1S)(s,x) for both L and R
captures. At double camera stations, the single side capture probability is

(2.3) p(2S)(s,x) = 1 −
(

1 − p(1S)(s,x)
)2

,

because there are now two ways to photograph a single side (camera 1 or 2).
Note, that p(·)(s,x) here corresponds to equation (2.1) for a single side cap-
ture. B captures can only occur at double camera stations; so, we introduce
λ

(B)
0 as the expected number of both side observations for an activity center lo-

cated at the same location as a trap. Finally, the single and both side capture
probabilities at each trap depends on the number of cameras deployed following
p(S)(s,x) = p(1S)(s,x)I (vj=1) + p(2S)(s,x)I (vj=2) and p(B)(s,x) = 0I (vj=1) +

p(B)(s,x)I (vj=2).

2.1. Methods—Unknown N and latent complete identities. We use data aug-
mentation to both estimate the unknown N and resolve the unknown complete
identities of the partial identity observations [see Royle (2009), Royle, Dorazio and
Link (2007) for a complete description of data augmentation in capture–recapture
models]. Both true and observed capture histories are augmented up to dimension
M × J × K by appending M − nB , M − nL and M − nR all zero histories to
each observed capture history, respectively. A vector of M partially latent indi-
cator variables z is introduced to indicate which individuals are in the population
with zi ∼ Bernoulli(ψ), inducing the relationship N ∼ Binomial(M,ψ). There-
fore, population abundance, N is a derived quantity obtained at each MCMC iter-
ation by N curr =

∑M
i zcurr

i and so is population density, Dcurr = Ncurr

A
where A is

the area of the state space.
Data augmentation also provides us with a set of latent individuals to which

we can assign the partial identity samples, allowing for the possibility that not all
observed left-only histories match an observed right-only history and vice versa.



SCR WITH PARTIAL IDENTITY 73

If we knew the complete identities of all captured individuals, we could construct
the true capture history Y from the observed capture history y by reordering the
rows of y(L) and y(R). Thus, the key idea behind the SPIM is that we can sam-
ple the latent true capture histories by simply reordering the i indices of y(L) and
y(R) accordingly. To do this, we define Y (B) and y(B) to be in the correct order of
identity, corresponding to the order of s and z, and introduce identity vectors to aid
in updating the latent i indices of the true capture history. We specify the known
identity vector ID(B) = (ID(B)

1 , ID(B)
2 , . . . , ID(B)

M ) = 1, . . . ,M . Then, we introduce

partially latent identity vectors to which ID(L) = (ID(L)
1 , ID(L)

2 , . . . , ID(L)
M ) and

ID(R) = (ID(R)
1 , ID(R)

2 , . . . , ID(R)
M ) indicating which ID(B)

i each ID(L)
i and ID(R)

i

correspond. For example, if the values of ID(L)
22 and ID(R)

32 are 28, the left and
right capture histories for the 28th individual in Y (B) and y(B) are stored in the
22nd and 32nd indices of y(L) and y(R), respectively. On each MCMC iteration,
we construct latent true capture histories Y from the latent identities in ID(L) and
ID(R) after swapping some of the identities and associated partial identity sam-
ples between activity centers (described in detail below). This process produces
posterior distributions for the SCR parameters that account for the uncertainty in
identification of the partial identity samples as well as posteriors for the true iden-
tity of the left and right partial identity samples. Note, updating ID(L) and ID(R) is
equivalent to reordering the rows of the y(L) and y(R); so, they are in fact derived
quantities, not parameters of the model.

To prevent samples from the complete identity individuals from being swapped,
we define c to be an n × 1 indicator vector with entries 1 if the complete identity
of individual i is known, whether from a B event at some point during the study
or from auxiliary data and 0 otherwise. In all cases of ci = 1, individual identities
are complete and Y (m) = y(m) for m ∈ {B,L,R}. Conversely, the i indices of y(L)

and y(R) with ci = 0 are partial identity samples and Y (L) and Y (R) are latent. For
convenience, we jointly sort Y and y such that the 1, . . . , nComplete ci = 1 indi-
viduals are the first individuals to occur in the true and observed capture histories,
ID(B)

i = ID(L)
i = ID(R)

i for the first i = 1, . . . , nComplete individuals, and we only
need to resolve the latent identities of elements i = nComplete+1, . . . ,M of the y(L)

and y(R) observed data set.

2.2. Methods—Trap operation file. It is common for cameras to malfunction
in camera trap studies. In typical SCR where there is only one capture type, this can
be accommodated by modifying the capture process using L (dimension 1 × J ),
the row vector containing the number of occasions each trap was operational, if
working with the 2-D data matrix (individual × trap summed over occasions). If
working with the 3-D data array (individual × trap × occasion), L, the complete
trap operation history matrix is then a matrix whose jkth element is 1 if trap j

was operational on occasion k and 0 otherwise. Then, yij ∼ Binomial(Lj ,pij ), or
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yijk ∼ Binomial(1,pijk × Ljk). Traditionally, the trap operation file does not dis-
tinguish between having one or two cameras operational, despite the capture prob-
ability likely being higher when both traps are functional. In the SPIM, both side
captures can only occur when two cameras are operational, and the probability of a
single side capture depends on whether one or two cameras are operational; there-
fore, the 3-D data array needs to be used to properly account for camera operation
if there are at least some two camera stations and we extend v, a vector containing
the number of cameras deployed at each station, to V , a J × K matrix contain-
ing the number of cameras operational at trap j on occasion k (0, 1, or 2). Specifi-
cally, the single and both side trap by occasion level detection probabilities for each
individual are then p

(S)
ijk (si,xj ) = p

(1S)
ijk (si,xj )I (Vjk=1)+p

(2S)
ijk (si,xj )I (Vjk=2) and

p
(B)
ijk (si,xj ) = 0I (Vjk=1) + p

(B)
ijk (si,xj )I (Vjk=2), respectively.

2.3. MCMC algorithm. We will describe the novel aspects of the MCMC al-
gorithm here—see Appendix A for the complete description. The following are
our uninformative prior distributions:

1. π(λ
(m)
0 ) ∼ Uniform(0,∞), m ∈ {B,S}.

2. π(σ) ∼ Uniform(0,∞).
3. π(ψ) ∼ Uniform(0,1).
4. π(si) ∼ Uniform(S).

The joint posterior is then
[

z,S,ψ,λ
(B)
0 , λ

(S)
0 , σ,Y |y,X

]

∝

{

M
∏

i=1

{

J
∏

j=1

K
∏

k=1

[yijk|Y ijk]
[

Y ijk|λ
(B)
0 λ

(S)
0 , σ, si,xj

]

}

[si][zi |ψ]

}

× [ψ]
[

λ
(S)
0

][

λ
(B)
0

]

[σ ],

and we sample from this distribution using MCMC. The full conditional for Y
(m)
i

is
[

Y
(m)
i |y

(m)
i , λ

(S)
0 , σ, zi, si

]

∝
[

y
(m)
i |λ

(S)
0 , σ, zi, si

]

,

where

[

y
(m)
i |λ

(S)
0 , σ, zi, si

]

=

J
∏

j=1

K
∏

k=1

Binomial
(

Y
(m)
ijk , zip

(S)
ijk

)

for m ∈ {L,R}. While not part of the joint posterior, the ID vectors can be used
to update Y and conditional on ID(L) and ID(R), we can construct a latent true
capture history Y so our MCMC algorithm follows the standard SCR MCMC al-
gorithm as described by Royle et al. (2013) with the additional step of updating
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ID(L) and ID(R) to produce a new latent true capture history Y on each MCMC
iteration. On each MCMC iteration, we update both ID(L) and ID(R) by swapping
nswap values of ID(B) stored in ID(L) and ID(R). We first update ID(L). We need
to identify the correctly ordered indices ID(B) at which to swap the value of ID(L),
mapping ID(L) to ID(B). We then identify the candidate set of ID(B) individuals
that do not correspond to complete identities (ci = 0) and who are currently in
the population (zi = 1). Next, we choose a focal candidate v to swap the value
of ID(L)

v with equal probability across the candidate set. Because proposals that
combine candidates whose activity centers are far apart will almost always be re-
jected, we apply a distance based criterion to rule out improbable combinations,
thus raising acceptance rates. To do this, we calculate the Euclidean distance be-
tween the current activity center of the focal candidate v and the activity centers
of all other individuals in the candidate set. We then identify the set of possi-
ble candidate individuals to exchange values of ID(L)

i with the focal candidate
by identifying which candidate individual activity centers are within a distance
threshold, dmax, of the focal individual’s activity center. From this reduced candi-
date set of size nforward, we randomly select individual w with equal probability
Pr(swap to ID(L)

v | ID(L)
w ) = 1

nforward
across the remaining candidates and the focal

and selected candidate exchange values of ID(L)
i . Because this proposal process

is not symmetric, we repeat it in reverse to obtain nreverse, with the probability of
choosing this candidate being Pr(swap to ID(L)

w | ID(L)
v ) = 1

nreverse
. We recompute

the proposed true capture history Y
(L)prop
i for i ∈ {v,w} and accept the proposal

with probability

min
(

1,
f (Y

(L)prop
i )

f (Y
(L)curr
i )

1
nreverse

1
nforward

)

,(2.4)

where f (Y
(L)
i ) is the SCR observation model likelihood. This process is then re-

peated to update ID(R) and thus, Y (R). The value of dmax should be large enough
so that it does not underestimate the variance of N , which can be determined by
trial and error, but, anecdotally, we found that dmax ≈ 1.5 − 2σ was sufficient to
estimate the variance of N appropriately.

2.4. Methods—“Pragmatic” estimators. We will consider the most common
estimator used in practice based on choosing the single side data set with the most
captured individuals and combining it with the both side data set, if available, and
analyzing the resulting data set with a traditional null SCR model (fixed λ0 and
σ ). Because choosing the best single side introduces a positive bias, the second
estimator will choose a random side to be combined with the both side data set, if
available. We will refer to these estimators as the “best side” and “random side”
estimators on single camera trapping arrays and “both-plus-best-side” and “both-
plus-random-side” estimators on double camera and hybrid trapping arrays.
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3. Application 1: Dual camera station trapping array targeting ocelots.

This data set comes from a long-term, multisite field study in Belize conducted
from 2008 to the present for which an analysis has not yet been published.
The study targeted jaguars, pumas and ocelots, but due to their smaller size and
more nocturnal activity patterns, the probability of simultaneously photographing
ocelots on both flanks was relatively low, leading to several ambiguous single sided
capture histories within any given year. Because this is a multiyear study, the com-
plete identities of some individuals within any given year are known from other
years, but we will use a single data set in isolation to model the more typical single
year survey. This specific data set was collected in the Rio Bravo Conservation
Management Area, Belize, in 2014. The trapping array [Figure 1(a)] consisted of
26 dual camera stations with a mean spacing of 1.96 km; the survey lasted 98 days
(July 20–October 25), resulting in 1,796 occasions with two cameras operational
and 425 occasions with a single trap operational due to malfunction.

Sex could be determined from the photographs for all individuals except for
one individual that was captured a single time. Eight individuals (five male, three
female) were captured on both flanks simultaneously at least once during the ex-
periment producing complete identities, and another (male) was captured on both
flanks at a single camera station in short succession such that it was improbable
that both sides did not belong to the same individual. This individual’s identity
was considered complete and the capture was recorded as a left side capture, cho-
sen randomly. This was done because a single camera was operational during this
event, and our model does not allow a both side capture to occur when a single
camera is operational and recording the event as both a left and right capture would
violate the independence assumption between the capture processes. There were
nine partial identity left-side capture histories (one male, seven female, and one
unknown) and 12 partial identity right-side capture histories (five male and seven
female). From other years, it is known that five of the partial identity left capture
histories belong to individuals recorded in the right capture histories, which can
be compared to the SPIM identity posteriors. Overall, there were 10 both side cap-
tures, 30 left-side captures, and 48 right-side captures. The spatial distribution of
captures for partial identity individuals can be seen in Figure 1(a).

We analyzed the complete data set, the male only data set and the female only
data set. Knowing the sex of almost all individuals provides us the opportunity
to exclude matching partial identity samples of different sexes; however, this in-
formation is not observable from camera trap photographs for many species. To
model this more common situation, we first analyzed the full data set without us-
ing the sex covariate. Then, we used the sex covariate to exclude matches between
sexes to model either the situation where sex is known from photographs or that
of a species living at a lower density than this population of ocelots. Our model
could be modified to allow matches based on categorical covariates such as sex
while sharing the same density and detection function parameters; however, for
convenience, and because male and female ocelots likely do not share the same
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FIG. 1. (a) Capture locations for partial identity samples in the ocelot data set. R and L indicate

right and left, respectively and M, F and ? indicate male, female, and unknown, respectively. (b) The

posterior distribution for L10 and R10 when they are correctly matched (red), for L10 when not

matched to R10 (green) and for R10 when not matched to L10 (blue). When L10 is not matched to

R10, it mostly matches with R13 and R20. When R10 is not matched to L10, it mostly matches L12,
L13, and L17. These results are from the model not using sex information.
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σ or D (M. Kelly, unpublished data), we analyzed the male and female only data
sets separately. This is conceptually equivalent to formally including a sex covari-
ate in the SPIM and allowing all parameters to vary by sex. For all three data sets,
we fit the SPIM to the full data set and traditional SCR models to data sets that
augmented all captures for the complete identity individuals (both, left, and right)
by either the left or the right partial identity capture histories. For all models, we
ran one chain for 35K iterations, discarding the first 5K, and in the SPIMs, we set
dmax to 3 km (large enough to not underestimate the variance of N̂ ) and nswap to
10. Based on the simulations of double camera trap station surveys, we expected
the SPIM estimates to be slightly less precise, but slightly larger due to the indi-
vidual heterogeneity introduced by the traditional manner of combining the three
data sets.

The results in Table 1 largely matched our expectations. The density estimates of
the SPIM were higher than the mean of the two SCR0 estimates by 21, 32, and 31%
for the total, male, and female data sets, respectively. The right side data set was the
“best-side” data set and it produced an estimate closer to the SPIM, which matches
the simulation results. 95% HPD intervals were slightly narrower using traditional
SCR in four of the six possible comparisons and slightly narrower using the SPIM
in the remaining two. σ estimates for males were higher than for females and did
not vary widely among the three methods of analysis. Adding the posteriors for
N from the male and female only models produced an estimate of 40 (29–58),
which was one unit narrower than the SPIM not including sex information, despite
including three extra parameters and excluding the individual of unknown sex.
Overall, the SPIM provides more optimistic density estimates that, according to the
simulations, should be closer to the truth with credible intervals that can provide
nominal frequentist coverage or offer more accurate Bayesian interpretations, and

TABLE 1
Parameter estimates for the ocelot data set using either the Spatial partial identity model (SPIM) or

the standard spatial capture–recapture model (SCR0) on either the both plus right side data set or

both plus left data set. Density is in units of individuals per 100 km2

Sex Model pS
0

p
(B)
0

p0 σ N (95% CI) D (95% CI) CI width

Both SPIM 0.005 0.003 2.00 42 (29–59) 7.33 (5.09–10.36) 5.27
SCR0-B+R 0.015 2.05 39 (27–56) 6.87 (4.74–9.83) 5.09
SCR0-B+L 0.015 2.25 30 (20–44) 5.27 (3.51–7.73) 4.21

Male SPIM 0.005 0.004 2.40 14 (11–23) 2.63 (1.93–4.04) 2.11
SCR0-B+R 0.015 2.45 15 (11–26) 2.72 (1.93–4.57) 2.63
SCR0-B+L 0.022 2.39 8 (7–16) 1.41 (1.23–2.81) 1.58

Female SPIM 0.005 0.002 1.21 24 (14–40) 6.18 (3.56–10.18) 6.61
SCR0-B+R 0.016 1.24 19 (12–35) 4.89 (3.05–8.90) 5.85
SCR0-B+L 0.007 1.71 18 (10–38) 4.57 (2.54–9.67) 7.12
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TABLE 2
Posterior probabilities that left and right ocelot samples are from the

same individual for individuals that were determined to be the same

from data collected in other years

Pr(L ID = R ID)

L ID R ID Sex unknown Sex known

10 10 0.74 0.99
11 12 0.28 0.59
12 13 0.42 0.72
14 14 0.23 0.63
15 15 0.38 0.70

removes the need to interpret two sets of estimates. For the complete data set, the
SPIM took 146 minutes to run on a laptop with a 2.7 GHz Intel I7 processor.

The posterior distributions of sample identity for the partial identity samples
provide interesting anecdotes about how both spatial location and a categorical co-
variate can individually, and in combination, inform sample identity. In the model
not using information about individual sex, the five partial identity individuals in
the left and right data sets that were known to be the same individuals from other
surveys were assigned higher posterior probabilities of being the same individual
than any other partial identity individuals (data not shown). Using location alone,
these probabilities ranged from 0.23–0.74 and when adding the information about
sex, they increased to 0.59–0.99 (Table 2). The tenth left and right partial identity
histories, L10 and R10, had a high probability of (correctly) being the same in-
dividual with or without using the sex information (0.74 and 0.99, respectively).
In Figure 1(b), it can be seen that L10 was captured in four locations and R10 in
three locations with roughly the same mean capture location. Incorrectly matching
R10 with L12 pulls the combined mean capture location to the east, and incor-
rectly matching R10 with L13 pulls it to the south. Incorrectly matching L10 with
R13 pulls the combined mean capture location to south and slightly to the east and
matching L10 with R20 pulls it to the east and slightly to the north. These obser-
vations are reflected in the posterior distribution for the activity center of these two
partial identity samples decomposed into the MCMC iterations when they were
correctly matched and when they were not. When including sex information, we
know that R10 (male) cannot match either L12 or L13 (females) and L10 cannot
match R13 or R20 (females). This only leaves augmented individuals for L10 and
R10 to incorrectly match, and two augmented individuals, uncaptured by defini-
tion, with activity centers in the middle of the trapping array are very improbable.
Therefore, the model assigns a 0.99 probability that L10 and R10 are the same
individual when sex is considered. Conversely, L11 and R12 with no nearby same
sex matches have a lower posterior probability of being the same individual (0.60)
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because they can plausibly be assigned to augmented individuals living off of the
trapping array that were never right or left captured, respectively.

4. Application 2: Single camera station trapping array targeting bobcats.

This data set comes from a study of bobcats in southern California that has been
analyzed using both nonspatial partial identity models [PIM, McClintock (2015),
McClintock et al. (2013)] and hybrid mark–resight models [Alonso et al. (2015)]
that combine mark–resight and capture–recapture for the unmarked, but individ-
ually identifiable individuals. The trapping array consisted of 30 single camera
stations with a mean spacing of 1.63 km operated over 187 days, producing 4,669
occasions and 109 left-only or right-only capture events of 23 left side and 23
right side individuals. Twenty-seven bobcats were GPS-collared, marked, and pho-
tographed on both sides at capture so their left and right side capture histories could
be linked and 15 of these individuals were later photographed at camera traps. See
Alonso et al. (2015) for a full description of the survey.

Following McClintock et al. (2013) and Alonso et al. (2015), we analyzed the
data set in two ways. First, we analyzed the data set using the 15 complete identities
obtained from the live captures to compare performance to the PIMs in McClintock
(2015) and the hybrid mark–resight estimators in Alonso et al. (2015). While the
hybrid mark–resight estimator makes use of the number of marked individuals in
the population that were not recaptured, we did not constrain our MCMC sam-
pler with this information so that a better comparison could be made to the PIM
analyses that did not use this information and because the posterior density of N

for the SPIMs placed negligible weight below the known number of individuals in
the population during the survey (41). For the second analysis, we discarded the
complete identities to model a single camera capture–recapture survey that did not
have a live capture component. Because Alonso et al. (2015) found strong sup-
port for individual heterogeneity in capture probability in the mark–resight models
and both Alonso et al. (2015) and McClintock (2015) found moderate support for
individual heterogeneity in capture probability in capture–recapture models, we
compare the SPIM to the PIM and mark–resight models with individual hetero-
geneity in capture probability. For each SPIM and SCR analysis, we ran one chain
for 35K iterations, discarding the first 5K. For the SPIM models, we set nswap = 10
and dmax to 2 km. The SPIM models with and without the 15 complete identities
took 57 and 53 minutes to run on a laptop with a 2.7 GHz Intel I7 processor, re-
spectively.

Among the models using the 15 complete identity individuals, the most precise
estimate was the hybrid mark–resight model using the right side data set for the
capture–recapture of unmarked individuals; however, the SPIM was more precise
than the average of the left and right side analyses and removes the task of inter-
preting two estimates (Table 3). The conservative approach would be to interpret
the least precise single side analysis, in which case the SPIM was 14% more pre-
cise than both the single side hybrid mark–resight and SCR analyses. The SPIM
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TABLE 3
Population size estimates for the bobcat data set from the spatial partial identity model (SPIM),

single side SCR analyses (SCR0), nonspatial partial identity models with individual heterogeneity

[PIMh McClintock (2015)], hybrid mark–resight models with individual heterogeneity [HMRh

Alonso et al. (2015)], and classical mark–recapture models with individual heterogeneity (Mh)
[Alonso et al. (2015)]. The SPIM and single side SCR analyses are repeated both with (Complete

IDs = 15) and without (Complete IDs = 0) the information from live-captured individuals

Complete IDs Model N (95% CI) CI width

15 SPIM 57 (45–74) 29
SCR0-B+L 57 (41–75) 34
SCR0-B+R 50 (38–68) 30

PIMh 52 (29–114) 85
HMRh-B+L 60 (45–79) 34
HMRh-B+R 55 (43–70) 27

0 SPIM 52 (38–70) 32
SCR0-L 52 (34–80) 46
SCR0-R 44 (31–65) 34

Mh-L 40 (27–94) 67
Mh-R 45 (30–88) 58

was 66% more precise than the PIM with individual heterogeneity, which was con-
siderably less precise than the classical capture–recapture single side analyses with
individual heterogeneity in capture probability discarding the 15 complete identi-
ties. When the 15 complete identities are discarded, the precision of the SPIM is
only slightly reduced and is still 6% more precise than the least precise single side
hybrid mark–resight estimate and is 30% more precise than the least precise SCR
estimate. The former suggests that there is a similar amount of information about
density in the spatial location of captures on this single camera array as there is in
knowing the marked status of 15 individuals, and that the SPIM can remove the
need for the live capture component of a study if the only goal is to mark individ-
uals for mark–resight density estimation. While the SPIM appears to perform the
most favorably on this data set compared to alternatives considered, we note that a
definitive comparison would require a simulation study where the true parameter
values are known and more than one survey can be conducted.

5. Discussion. Our study has shown that the spatial locations where samples
were collected provides information about individual identity and using this in-
formation in partial identity models can improve inference in camera trap studies.
Further, the formal treatment of the number of cameras at trap stations allows for
camera number and the spatial distribution of station types (one or two cameras)
to be considered when designing surveys. Simulations in Appendix B demonstrate
that the SPIM estimator performs better than the best side and random side esti-
mators, at least in the sparse data scenarios considered here. In general, the SPIM
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offers better performance gains in smaller populations, when there are fewer com-
plete identity individuals, and when the percentage of individuals that have partial
identities is higher. The performance gains in the hybrid designs was better than
the all double designs because the hybrid designs produced fewer complete identi-
ties and a higher percentage of partial identities. In fact, the precision of the hybrid
designs was not substantially lower than the all double designs, despite using only
one-quarter the number of double camera stations. This result suggest that hybrid
designs could potentially be the best use of a fixed number of cameras—designs
that to our knowledge are not currently being used. Another determinant of the
ratio of partial to complete identity individuals is the ratio of p

(S)
0 to p

(B)
0 . For ex-

ample, the trapping array in the ocelot example also targeted jaguars, which when
photographed, are significantly more likely than ocelots to produce a complete
identity because of their larger size, slower traveling speed, and less nocturnal
activity patterns (M. Kelly, unpublished data), perhaps reducing potential perfor-
mance gains by using the SPIM.

The SPIM likely performs better on more regular, closely spaced (relative to
sigma) trapping arrays as investigated in the simulations. Partial identity samples
on the interior of a regular, closely spaced trapping array are more likely to be
correctly matched than those on the edge of the trapping array or on a trapping
array that is spaced more widely because it is less likely that an animal will only
have a single side captured when it is surrounded by traps than if it is not. This can
be seen in the ocelot example where the probability of the right and left sample
number 10 is the same individual is very high. In the model not including sex,
each sample is never assigned to an augmented individual (an animal with the
other side not captured), and, when sex information is included, all other nearby
partial identity samples are ruled out, and the probability the samples match is
estimated to be 0.99. This high certainty relies on the samples being on the interior
of the trapping array in an area where the trapping array is roughly regular, because
if these two samples do not match, there must be two augmented individuals living
on the interior of the trapping array for each to match with, and this is improbable.
Conversely, left ID 11 is assigned to right ID 12 with probability 0.28 without sex
information and 0.59 with sex information. This reduced certainty is mostly due
to the partial identity samples being collected on the periphery of the array where
augmented individual activity centers are much more likely to exist with which be
matched. By the same argument, the SPIM should perform better on larger arrays
where the ratio of interior to exterior array area is larger, given the same number of
individuals are on the array. In our simulations, the best precision and MSE gains
between the 6 × 6 and 8 × 8 arrays depended on the scenario, but we fixed D and
so N varied by array size. Confirming this result requires further simulation.

As seen in the ocelot example, if an individual covariate aside from spatial lo-
cation is available, the probabilities of correctly assigning the left ID to the correct
right ID and vice versa can be considerably increased. We suspect this should in
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general increase precision for abundance and density by reducing the pool of po-
tential matches for each partial identity sample. Indeed, in the ocelot example,
when we added the male and female only posteriors for N, we slightly increased
precision despite having modeled three additional parameters over the combined
model and excluded the individual whose sex was not known. Reducing the set of
potential matches should reduce the span of values of p0, σ , and number of cap-
tured individuals that are consistent with the data, increasing precision of abun-
dance and density. We suspect the relative value of spatial location and other co-
variates depends on the degree they deterministically or probabilistically rule out
potential matches. In general, knowing sex will rule out approximately half of the
potential matches, while knowing spatial location on a large trapping array relative
to σ should rule out a much higher percentage of matches. In the ocelot example,
we took an ad hoc approach to using the sex information, but sex or other categori-
cal covariates could formally be modeled either by ruling out inconsistent matches
only between observed partial identity individuals, or by also modeling the cat-
egory proportions (e.g., sex ratio) and updating the latent category values of the
augmented individuals on each MCMC iteration.

A comparison of the SPIM to the nonspatial partial identity model of McClin-
tock (2015) can be found in Augustine et al. (2018b). While the PIM estimator
reliably decreased MSE, removed small sample bias, and increased precision in
some scenarios, it reduced precision in the more data sparse scenarios we con-
sidered and offered only small precision gains in the presence of individual het-
erogeneity in capture probability. In general, we think individual heterogeneity in
capture probability is difficult for the PIM to accommodate. Because the multino-
mial observation process (left, right, or both-side capture) is defined conditional
upon capture, the likelihood that two partial identity capture histories are the same
depends on how consistent their combined number of captures across capture types
are with p and N . If all individuals can have their own p, the number of times the
composite individual was captured becomes much less informative about identity.

Because the left, right, and both side capture processes in the SPIM are indepen-
dent, the likelihood component for partial identity, single sided capture histories
does not depend on the combined number of capture events. Rather, the likelihood
that two partial identity capture histories are the same depends on how consistent
the combined spatial distribution of captures are with p0 and σ . Therefore, there
should be less information about individual identity when there is individual het-
erogeneity in σ , and perhaps to a lesser extent, p0. Generalizations of the 2-flank
SPIM to scenarios where partial identities cannot be categorized into types will re-
quire a model similar to the PIM estimator where the combined number of captures
is informative about identity and hard to distinguish from individual heterogeneity.
This problem arises in other SCR models with latent individual identities, such as
spatial mark–resight [e.g., Sollmann et al. (2013a)], unmarked SCR [Chandler and
Royle (2013)], and the integrated mark–recapture-occupancy model of Chandler
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and Clark (2014) so the sensitivity of these models to individual heterogeneity in
p0 and σ should be investigated.

One concern of using the SPIM over traditional SCR or the PIM is computa-
tional efficiency. We feel the computation demands of the SPIM are reasonable,
at least for the low density scenarios where precision gains are the most needed.
An R package to fit the SPIM is available at github.com/benaug/SPIM which in-
cludes code to fit the models in either R or Rcpp and RcppArmadillo [Eddelbuettel
and François (2011), Eddelbuettel and Sanderson (2014)], which is considerably
faster. If a trap operation file is used and the 3-D data array must be used, the
R analysis is much slower, but only slightly slower in Rcpp. In simulations with
random trap failure (data not shown), ignoring trap failure reduced the estimates
of λS

0 and λ
(B)
0 , but did not introduce bias or reduced coverage into N estimates,

suggesting the use of the 3-D data array is not necessary, at least when trap failure
is at random, but this warrants further investigation. To provide some benchmarks,
we replicated scenario S9.6 on a laptop with a 2.7 GHz Intel I7 processor, raising
N to 100 with M = 150. To run 35K MCMC iterations, it took 106.7 minutes in R
and 10.3 minutes in Rcpp (∼10× faster) with no trap file and the 2-D data matrix.
Using the 2-D trap file and 3-D data array, it took 575.9 minutes in R and 12.6 min-
utes in Rcpp (∼45× faster). Computation time can further be reduced using the
semicomplete likelihood approach of King et al. (2016) which is currently being
developed for the multimark package (McClintock, personal communication) The
longer reported run times for the bobcat and ocelot data sets are due to the use of
polygonal, rather than rectangular state spaces, and reflect the computational de-
mand of ensuring that activity center proposals falling outside of the continuous,
many sided state space are not accepted. In these cases, switching to discrete state
spaces might be more computationally efficient.

As previously recognized by Wright et al. (2009), another application where
the spatial location of partial or potentially corrupted identity samples would be
useful is in capture–recapture studies using microsatellite markers. Wright et al.
(2009) developed a nonspatial model that accommodated both partial genotypes
and allelic dropout. In genetic capture–recapture studies, the spatial location where
samples were collected is almost always recorded and could be used to resolve
partial and potentially corrupted identities. The potential for improved inference is
perhaps greatest for studies using genotypes from sources with low complete am-
plification rates due to small amounts of DNA or higher levels of degradation such
as scat samples in tropical environments [e.g., Wultsch, Waits and Kelly (2014)];
however, if these low quality samples are more likely to be erroneous, the misiden-
tification process should be modeled. Unlike the camera trap observation model,
the partial identity genetic samples have traditionally been completely discarded,
suggesting that performance gains could be larger than seen here.

One last potential DNA-based application is that researchers may choose to
genotype fewer loci than necessary to determine a sample is unique in the pop-
ulation and to model the resulting uncertainty in identity using the SPIM. This

http://github.com/benaug/SPIM
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could either save project resources or allow more samples to be amplified for the
same amount of resources. Since the information about identity in each loci comes
with diminishing returns per additional loci, it is not clear that the better use of
resources is to genotype fewer samples to a high level of certainty rather than to
genotype many samples to a lower degree of information about identity. Finally,
the SPIM could also be extended to combine any capture–recapture data types
where identity cannot be resolved between methods. For example, Sollmann et al.
(2013b) combined capture–recapture data from camera traps and scat samples by
sharing σ between data sets. Using the SPIM, the latent structure (e.g., activity
centers and z) could also be probabilistically shared. In these cases, we expect im-
provements in precision over the separate analyses similar to the all single camera
trap designs, because they are both two sampling methods where identity cannot
be deterministically resolved between data sets for any individuals. Given these
alternative applications of the SPIM, we suggest the model presented in this paper
should be referred to as the 2-flank SPIM.

APPENDIX A: FULL MCMC ALGORITHM

The joint posterior we want to sample from is

[

z,S,ψ,λ
(B)
0 , λ
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0 , σ,Y |y,X

]

∝

{
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[σ ],

where M is the dimension of data augmentation. In practice, the analyst should
choose M ≫ N and will need to raise M if Ncurr = M at any point of the MCMC
algorithm. The following are our uninformative prior distributions:

1. π(λ
(m)
0 ) ∼ Uniform(0,∞), m ∈ {B,S}.

2. π(σ) ∼ Uniform(0,∞).
3. π(ψ) ∼ Uniform(0,1).
4. π(si) ∼ Uniform(S).

The full conditionals are:
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As previously described, conditional on ID(L) and ID(R), we can construct a
latent true capture history Yijk; so, our MCMC algorithm will follow the standard
algorithm as described by Royle et al. (2013) with the additional step of updating
ID(L) and ID(R) and constructing a new latent true capture history Yijk on each
MCMC iteration:

1. Update λ
(B)
0 and λS

0 sequentially. Both λ
(B)
0 and λS

0 are updated with
a Metropolis–Hastings step using the distribution Normal(λcurr

0 , σλ) to propose
λcand

0 , automatically rejecting if a negative value is proposed.
2. Update σ . σ is updated with a Metropolis–Hastings step using the distri-

bution Normal(σ curr, σσ ), to propose σ cand, automatically rejecting if a negative
value is proposed.

3. Update Y by updating ID(L) and ID(R). On each MCMC iteration, we up-
date both ID(L) and ID(R) by swapping nswap values of ID(B) stored in ID(L) and
ID(R). We first update ID(L). We need to identify the correctly ordered indices
ID(B) at which to swap the value of ID(L), mapping ID(L) to ID(B). We then iden-
tify the candidate set of ID(B) individuals that do not correspond to complete iden-
tities (ci = 0) and who are currently in the population (zi = 1). From this candidate
set, we remove the individuals that would lead to swapping a zi = 0 individual into
the population through the value stored in ID(L)

i . Next, we choose a focal candi-

date v to swap the value of ID(L)
v with equal probability across the candidate set.

Because proposals that combine candidates whose activity centers are far apart
will almost always be rejected, we apply a distance-based criterion to rule out im-
probable combinations, thus raising acceptance rates. To do this, we calculate the
Euclidean distance between the current activity center of the focal candidate v and
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the activity centers of all other individuals in the candidate set. We then identify
the set of possible candidate individuals to exchange values of ID(L)

i with the focal
candidate by identifying which candidate individual activity centers are within a
distance threshold, dmax, of the focal individual’s activity center. From this reduced
candidate set of size nforward, we randomly select individual w with equal proba-
bility Pr(swap to ID(L)

v | ID(L)
w ) = 1

nforward
across the remaining candidates and the

focal and selected candidate exchange values of ID(L)
i . Because this proposal pro-

cess is not symmetric, we repeat it in reverse to obtain nreverse, with the probability
of choosing this candidate being Pr(swap to ID(L)

w | ID(L)
v ) = 1

nreverse
. We recompute

the proposed true capture history Y
(L)prop
i for i ∈ {v,w} and accept the proposal

with probability

min
(

1,
f (Y

(L)prop
i )

f (Y
(L) curr
i )

1
nreverse

1
nforward

)

,(A.1)

where f (·) is the SCR observation model likelihood. This process is then repeated
to update ID(R) and thus, Y (R).

4. Update z. Each zi is updated by a Gibbs step using the full conditional
above where p∗

i is the probability individual i was not captured during the ex-

periment. Let p̄
(B)
ijk and p̄

(S)
ijk be the probability of not being captured on both

and single sides for each individual at each trap on each occasion, respectively.
Then p̄

(B)
ijk = 1 − p

(B)
ijk and p̄

(S)
ijk = (1 − p

(S)
ijk )2 (the squared term is needed be-

cause there are two ways to observe a single side capture, right or left side (see
model description and trap file sections for definition of p

(B)
ijk and p

(S)
ijk which de-

pend on the number of cameras deployed at each trap and trap operation). The
probability of not being captured during the experiment for each individual is then
p∗

i =
∏J

j=1
∏K

k=1 p̄
(S)
ijk p̄

(B)
ijk .

5. Update ψ . ψ is updated with a Gibbs step. Since π(ψ) ∼ Uniform(0,1)

is in the Beta family, the full conditional distribution for ψ is [ψ |z] ∝ Beta(1 +
∑

i zi,1 + M −
∑

i zi).
6. Update s. Each activity center si is updated with a Metropolis–Hastings

step using the distributions Normal(scurr
i1 , σs) and Normal(scurr

i2 , σs) to propose
scand
i1 and scand

i2 , respectively. Proposals that fall outside of the state space are re-
jected. The full conditional distribution is the SCR observation model likelihood.

7. Record the derived quantities population abundance, Ncurr =
∑M

i zcurr
i ,

and population density, Dcurr = Ncurr

‖S‖
.

APPENDIX B: SIMULATIONS

Here, we present a simulation study to assess the performance of the SPIM
and compare it to alternative estimators. In addition to the “pragmatic estimators”
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described in the main article, we will also assess the performance of the “naive
independence estimator.” An alternative to the SPIM is to ignore the dependence
between the left, right, and both side data sets and average the density estimates
from the individual analyses and derive a joint standard error assuming indepen-
dence. This method is proposed by Wilson, Hammond and Thompson (1999) and
while Bonner and Holmberg (2013) point out that assuming independence will
lead to the underestimation of standard errors, this estimator might perform rea-
sonably well in some scenarios, such as when data are sparse and thus there is less
dependence between data sets. A Bayesian analogue to this method is to perform a
joint MCMC analysis on both (when available), left, and right data sets, allowing
each data set to have its own latent structure (S, ψ , z), but sharing detection func-
tion parameters (λ0 and σ ). On each MCMC iteration, NB (when both side data
are available), NL, and NR (current population size values for the both, left, and
right side data sets) are independently calculated by summing zB , zL, and zR and
their average is recorded.

We conducted 384 simulations for each of 36 scenarios, grouped into four sets,
to compare the performance of the SPIM, pragmatic estimators, and the naive in-
dependence estimator across a range of trapping array designs and densities. In
order to vary the proportion of simulated individuals that produced complete iden-
tities, we set pS

0 = 0.13, p
(B)
0 = 0.2 in the first two sets of scenarios and pS

0 = 0.2,

p
(B)
0 = 0.13 in the second two sets. The first and third sets of scenarios were con-

ducted on a 6 × 6 array and the second and fourth was conducted on an 8 × 8
array. For all scenarios, K = 5, σ = 0.5, trap spacing was one unit (2σ ), and the
state space extended two units beyond the square trapping arrays in both the X
and Y dimensions. The number of identifications to swap on each MCMC itera-
tion, nswap, was set to 10, and the search radius for activity centers to swap IDs,
dmax, was set to 1. Three types of trapping arrays were considered—one with all
double camera stations, one with all single camera stations, and a hybrid array
with one-quarter double camera stations and three-quarter single camera stations
(Figure B1). We considered density, D ∈ {0.2,0.4,0.6} for the 6 × 6 array and
D ∈ {0.1,0.2,0.4} for the 8 × 8 array. Estimator performance was compared by
percent bias of the posterior mode, average mean squared error (MSE), frequen-
tist coverage of the 95% highest posterior density (HPD) intervals, and the mean
width of the 95% HPD interval for N . N was chosen over density as the parameter
of inferential interest because the number of individuals to simulate for a given
density on the 8 × 8 array of size 121 units2 (N = D × 121) had to be rounded to
the nearest integer; so, the realized data sets could not be simulated from the exact
density. The number of MCMC iterations varied from 35,000 to 150,000 across
scenarios with these numbers chosen to obtain effective sample sizes for N greater
than 400 and Monte Carlo standard errors for N of less than 0.5.

In the scenarios where data are more sparse, occasionally there were realiza-
tions of the capture process that did not produce a spatial recapture—a capture of
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FIG. B1. Trapping arrays for the simulation study. Single exes (X) depict single camera stations

and double exes (XX) depict double camera stations. Activity centers from one realization of the

capture process are displayed, with green dots representing complete identity individuals (B), yellow

dots representing partial identity individuals captured on the left side (L), right side (R) or left and

right side (LR). Black dots representing individuals never captured.

the same animal at more than one location. Analyzing data sets with no spatial
recaptures leads to density estimates that are biased high [Sun, Fuller and Royle
(2014)]; therefore, for simulated data sets with no spatial recaptures, data sets were
discarded. For simulated data sets with spatial recaptures between the three data
sets, but not within the single side or both plus single side data sets, the single side
estimators were not fit. For simulated data sets that did not have spatial recaptures
in all two or three data sets, the naive independence estimator was not fit. In our
simulations, the only way to obtain a complete identity was by being captured on
both sides simultaneously at least once during the survey. We used linear regres-
sion on the response variable of mean difference in 95% credible interval widths
between the SPIM and best side estimators to test the hypotheses that precision
gains in the SPIM are related to the mean number of complete identity individuals
captured and the percentage of captured individuals with complete identities.
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B.1. Simulation results. For all single camera trapping arrays, the random-
side estimator produced nearly unbiased density estimates (Figure B2), while the
best-side estimator was biased high roughly 5% when pS

0 = 0.2 and roughly 15%
when pS

0 = 0.13. The SPIM was biased high, but less than 5%, except for the sce-
nario with the lowest population size where it was biased low by 7%. Coverage
for these three estimators was roughly nominal or above nominal. On average, the
SPIM decreased the 95% HPD interval width by 30–40% with larger increases at
smaller population sizes and when pS

0 was lower [Figure B3(a)]. The SPIM de-
creased the MSE by 40–60% over the best-side estimator [Figure B3(a)] and the
random-side estimator [Augustine et al. (2018a)]. The naive independence estima-
tor was generally biased high (up to 12.8%), and bias decreased as N increased
[see Augustine et al. (2018a) for naive independence estimator results]. Coverage
for the naive independence estimator was slightly less than nominal and the mean
width of the 95% HPD interval was larger than that of the SPIM except in some
of the scenarios where pS

0 = 0.2 and N was larger; however coverage in these
scenarios was around 0.90.

For all double camera trapping arrays, the both-plus-random-side and both-plus-
best-side estimators were biased low 5–7% (Figure B2) due to the individual het-

FIG. B2. Bias and coverage of population size for the SPIM, best side, and random side estimators.

Scenarios labeled “a” correspond to scenarios with pS
0 < p

(B)
0 and those labeled “b” correspond to

scenarios with pS
0 > p

(B)
0 . Double indicates two camera per station, single indicates one camera per

station, and hybrid indicates a combination of double and single stations as depicted in Figure B1.
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erogeneity induced when constructing these data sets, but the both-plus-best-side
was less biased because always choosing the best side induces positive bias as seen
in the single camera simulations, counteracting the negative bias from ignored in-
dividual heterogeneity. The SPIM had a slight negative bias that disappeared as N

increased. The both-plus-best-side estimator had nominal coverage at low N , but
coverage tended to be less than nominal as N increased. The both plus random side
estimator had lower than nominal coverage that decreased with N . The SPIM had
nominal or greater than nominal coverage. On average, the SPIM produced 95%
HPD intervals that were of equal size or slightly wider (4%) than the best side
estimator [Figure B3(a)]. The SPIM produced point estimates with slightly lower
MSE with a greater improvement at larger N . The naive independence estimator
was biased high, but less so than in the all single trapping array scenarios, and
bias decreased with increasing N . Coverage for the naive independence estimator
was around 0.85 in all scenarios and the mean width of the 95% HPD interval was
similar to that of the SPIM and single-side estimators.

FIG. B3. (a) Performance difference between the SPIM and best side estimator as judged by the

mean reduction in the width of the 95% credible interval and the mean reduction in MSE. Scenarios

labeled “a” correspond to scenarios with pS
0 < p

(B)
0 and those labeled “b” correspond to scenarios

with pS
0 > p

(B)
0 . (b) The mean difference in the 95% credible interval width between the SPIM and

best side estimator by the mean number of complete identity individuals captured and the mean

percentage of captured individuals that had complete identities. The scenarios with >50% complete

identities are the all double camera scenarios and those with <50% complete identities are the

hybrid scenarios and the % complete identities are higher when λ
(B)
0 > λS

0 . Within each scenario,
the number of complete identities increase as N increases.
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For hybrid camera trapping arrays, the both-plus-single-side estimators exhib-
ited the same patterns as in the all double camera trapping arrays, but to a lesser de-
gree. The both-plus-random-side estimator was still biased low, but the both-plus-
best-side estimator was now unbiased due to the two sources of bias roughly can-
celing out (Figure B2). Coverage for the both-plus-best-side estimator was nom-
inal or higher and coverage for the both-plus-random-side was less than nominal
except at the lowest N . The SPIM performed about the same in terms of bias and
coverage as it did in the all double trap scenarios. On average, the SPIM produced
95% HPD intervals that were 5–17% more narrow than the both-plus-best-side es-
timator [Figure B3(a)], with the largest precision gains seen when N was lower.
MSE reductions were similar to the all double trap scenarios. The difference in pre-
cision between the SPIM and best side estimator was related to the mean number
of complete identity individuals captured, the percentage of captured individuals
whose identity was complete, and their interaction (all p < 0.0001). The number
of complete identity individuals influenced precision more when the percentage
of individuals whose identity was complete was lower [Figure B3(b)]. The naive
independence estimator was biased high, when pS

0 = 0.13 as much as 20% but
moderately biased low when pS

0 = 0.2. Coverage for the naive independence es-
timator was slightly less than nominal in all scenarios, and the mean width of the
95% HPD interval was larger than that of the SPIM and single-side estimators.

In the lowest density simulations on all single camera trapping arrays when
pS

0 = 0.13, 14–20% of the simulated data sets did not have spatial recaptures
within either the best side or random side data sets and, therefore, were excluded
from these analysis. In practice, one could deviate from the best side or random
side rule if the other data set had a spatial recapture, but the SPIM was able to
accommodate the realizations with spatial recaptures between, but not within data
sets while maintaining acceptable bias and nominal coverage. Full simulation re-
sults can be found in Augustine et al. (2018a).

B.2. Simulation discussion. When using all single camera trap stations, the
best-side estimator was significantly biased high and although the random-side-
estimator is unbiased, the SPIM was significantly more precise and accurate
Augustine et al. (2018a). The difference in precision between the SPIM and the
random side estimator was similar to the best side comparisons in Figure B3(a) and
MSE reductions were moderately less than the best side comparisons due to the
lack of bias in the random side analysis. When at least some double camera trap
stations are used, and thus some identities are complete, aggregating the single
side capture histories for the complete identity individuals introduced individual
heterogeneity in capture probability and thus negative bias and reduced coverage
into the single side analyses. For the best side estimator, the positive bias due to
always selecting the data set with the most individuals was roughly canceled out
by the negative bias from individual heterogeneity in the hybrid trapping array de-
signs; however, it is not likely this will hold across all combinations of parameter
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values. The best side estimator was biased low in the double camera trapping array
designs, suggesting that performance depends on the ratio of complete to partial
identity individuals, which determines the magnitude of individual heterogeneity
in capture probability. The SPIM had minimal bias and nominal coverage in the
hybrid and double trapping array designs, and we expect this to hold across a wide
range of parameter values and trapping array designs. Precision of the SPIM was
slightly less than the best side estimator in some of the double camera trapping
array designs; however, coverage of the best side estimator in most of these sce-
narios was slightly less than nominal. In the hybrid designs with fewer complete
identity individuals, the SPIM moderately increased precision and reduced MSE.
The performance gain of the SPIM is further increased when considering other op-
tions available to the researcher. If both data sets were analyzed rather than just the
best or random-side, the researcher could choose either the most precise estimate,
a protocol that will guarantee less than nominal coverage, or the most conservative
estimate in which case the precision gains of using the SPIM will be increased.
The naive independence estimator was biased high in all scenarios except when
pS

0 > p
(B)
0 on hybrid trapping arrays, exhibited slightly to moderately low cover-

age, and was not more precise than the SPIM except in a few scenarios with the
most captured individuals. If the goal is to maintain good frequentist properties,
researchers should choose the analysis method before examining their data; we
argue that the SPIM is the best all-around choice to achieve these ends.

SUPPLEMENTARY MATERIAL

Supplement A: Simulation tables for Appendix B (DOI: 10.1214/17-AOAS
1091SUPPA; .pdf). We provide a table containing the full simulation results that
are graphically summarized in Appendix B.

Supplement B: Comparison of spatial partial identity model to the non-

spatial partial identity model (DOI: 10.1214/17-AOAS1091SUPPB; .pdf). We
provide a comparison of the spatial partial identity model to it’s non-spatial coun-
terpart via simulation studies.
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