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Spatial Characteristics of Distortion Radiated from

Antenna Arrays with Transceiver Nonlinearities
Christopher Mollén, Ulf Gustavsson, Thomas Eriksson, Erik G. Larsson

Abstract—The distortion from massive MIMO (multiple-input–
multiple-output) base stations with nonlinear amplifiers is studied
and its radiation pattern is derived. The distortion is analyzed
both in-band and out-of-band. By using an orthogonal Her-
mite representation of the amplified signal, the spatial cross-
correlation matrix of the nonlinear distortion is obtained. It
shows that, if the input signal to the amplifiers has a dominant
beam, the distortion is beamformed in the same way as that beam.
When there are multiple beams without any one being dominant,
it is shown that the distortion is practically isotropic. The derived
theory is useful to predict how the nonlinear distortion will
behave, to analyze the out-of-band radiation, to do reciprocity
calibration, and to schedule users in the frequency plane to
minimize the effect of in-band distortion.

Index Terms—amplifiers, distortion, in-band distortion, mas-
sive MIMO, nonlinear, out-of-band radiation, reciprocity calibra-
tion, spectral regrowth.

I. INTRODUCTION

NONLINEAR hardware causes signal distortion that de-

grades both the performance of the own transmission, so

called in-band distortion, and the performance of systems using

adjacent frequency channels, so called out-of-band radiation.

Often the power amplifier is the main cause of nonlinear

distortion. Other nonlinear components are digital-to-analog

converters and mixers. While nonlinear distortion from single-

antenna transmitters is a well-investigated phenomenon, it has

been far less studied in the context of large arrays.

The radiation pattern of the nonlinear distortion from large

arrays has recently attracted attention because of its potential

impact on the performance of massive MIMO systems [2].

Papers such as [3], [4] have suggested that the distortion

combines non-coherently at the served users and vanishes

with an increasing number of transmit antennas. These results

were also corroborated to some extent (for in-band distortion)

via simulations in [5]. However, contrary to these results, [6]

showed that the amplifier distortion can combine coherently and

degrade the performance significantly. Just like [3], however,

the results in [6] rely on an over-simplified symbol-sampled

system model and on frequency-flat fading. The aim of this
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paper is to give a rigorous description of the distortion created

by nonlinear hardware in multi-antenna transmitters, and to

quantify to which degree the distortion combines coherently.

The contribution of this paper is to give a rigorous

continuous-time system model of a multi-antenna transmitter

for both single-carrier and OFDM (orthogonal frequency-

division multiplexing) transmission that uses digital precoding

to beamform to multiple users. Orthogonal polynomials are

used to partition the amplified transmit signal into a desired

signal—the linearly amplified signal—and a distortion term

that is uncorrelated from the desired signal in order to analyze

both the in-band and out-of-band distortion separately from the

desired linear signal. The orthogonal representation also allows

for a straightforward derivation of the radiation pattern of the

distortion and its spatial characteristics. If K is the number of

served users and L is the number of significant channel taps,

it is shown that the number of directions that the distortion is

beamformed in scales as O(K3L2). If all users are served with

the same power, the distortion is isotropic when this number

is greater than the number of antennas, and it is beamformed

otherwise. The beamforming gain of the distortion, however,

is not larger than that of the desired signal.

The analysis is based on the assumptions that the sig-

nals follow a Gaussian distribution because then the Itô-

Hermite polynomials form an orthogonal basis, in which

the nonlinearities can be described. Other distributions may

require other polynomial bases. However, many massive MIMO

signals closely follow a Gaussian distribution after modulation

and (linear) precoding. It is also assumed that the amplifier

nonlinearities can be described by memory polynomials, which

is a commonly used model for amplifiers whose memory effects

can be captured by one-dimensional kernels [7], [8]. For a

general nonlinearity, it might be possible, albeit tedious, to use

the method in [9] to generalize our results.

Other Related Work

Orthogonal polynomials have been used before to analyze

power amplifiers [10]–[12]. Previous work, however, is limited

to single-antenna transmitters and cannot be directly generalized

to analyze the radiation pattern from a transmitter with

multiple antennas. Only some special cases of arrays have

been considered before in the case of line-of-sight propagation.

For example, in [13], the directivity of the distortion in phased

arrays for satellite communication is studied and, in [14], a

phased array with two beams is studied.

Previously, we have addressed the topic of out-of-band

radiation in [1] and [15]. A preliminary study was conducted in
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[1], where a polynomial model of degree three was considered

and the cross-correlations were derived without the help

of orthogonal polynomials. In [15], the spatial behavior of

the out-of-band radiation was explained without giving any

mathematical details. In this paper, we present a deeper analysis

of the distortion from large arrays, not only the out-of-band

radiation, but also the in-band distortion. In doing so, we use

the theory about Hermite expansions that we have derived and

presented in [16] for a general nonlinearity.

II. SYSTEM MODEL

The transmission from an array with M antennas is studied.

The block diagram in Figure 1 shows the transmitter that will

be explained in this section. The input and output signals

to the amplifier at antenna m is denoted by xm(t) and ym(t)
respectively. By denoting the operation of the amplifier A, and

the amplified transmit signal is then:

ym(t) = A (xm(t)) . (1)

For later use, the following vector notation is introduced:

x(t) ,
(
x1(t), . . . , xM (t)

) T
, (2)

y(t) ,
(
y1(t), . . . , yM (t)

) T
. (3)

The signal received at location x is given by

rx(t) =
√
βx

∫ ∞

−∞
hT
x (τ)y(t − τ)dτ, (4)

where the M-dimensional impulse response hx(τ) models the

small-scale fading from the array to location x and βx ∈ R+
models the large-scale fading, i.e. the slowly changing signal

attenuation due to distance and shadowing. In a real system,

the received signal will be corrupted by thermal noise, which

commonly is modeled as an additional noise term in (4). The

noise term is neglected as it has no impact on the distortion.

A. Multi-Carrier Transmission

It is assumed that the analog transmit signal xm(t) is

generated from pulse amplitude modulation. In multi-carrier

transmission, N pulses pν(τ) are used to modulate the digital

signals xm[n, ν], where n is a time index and ν ∈ {0, . . . , N−1}
the index of the pulse. The complex baseband representation

of the analog transmit signal is given by:

xm(t) =
1
√

N

N−1∑
ν=0

∞∑
n=−∞

xm[n, ν]pν(t − nT + Ψ), (5)

where T is the symbol duration, and Ψ a random variable,

which is independent of all other sources of randomness and

uniformly distributed on the interval [0,T[, that is introduced

to make the transmit signals stationary. For later use, the vector

notation x[n, ν] ,
(
x1[n, ν], . . . , xM [n, ν]

) T
is introduced.

The array serves K users whose channel impulse responses

and large-scale fading are denoted by {hk(τ)} and {βk}, where

k = 1, . . . ,K is the user index. The receive filters employed

by the users are assumed to be matched to the transmit pulses

{pν(τ)} of the pulse amplitude modulation. The effect of the

channel and how the symbols transmitted with pulse ν affect

the signals received through receive filter ν′ is given by the

impulse response:

hk[ℓ, ν, ν′] ,
(
pν(τ)⋆ hxk (τ)⋆ p∗ν′(−τ)

)
(ℓT), k = 1, . . . ,K,

(6)

where ⋆ denotes convolution and ℓ is the tap index.

For common OFDM [17], [18], the pulses in (5), or subcar-

riers in the jargon of OFDM, are given by:

pν(τ) =
(
p(t)e j2πtν f0 ⋆ z(t)

)
(τ), ν = 0, . . . , N − 1, (7)

where f0 is the subcarrier spacing and p(τ) is a common pulse

shape. Since the pulse p(τ) usually is chosen as a time-limited

pulse shape, the transmit signal is not strictly bandlimited. To

mitigate the out-of-band radiation caused by the pulse, different

types of sidelobe suppression methods can be applied. Here,

the filter z(τ) is used to limit the frequency content of transmit

signal to a given frequency band. It will be chosen as an ideal

lowpass filter in the examples shown in later sections to make

the transmit signal strictly bandlimited prior to amplification.

Note that the pulse p(τ) is a baseband signal and that the low-

pass filter z(τ) is the same for all pulses, e.g. its cutoff frequency

does not depend on the subcarrier index. In the theoretical

analysis, however, we assume that pulses are unaffected by the

filter, i.e. that z(τ) = δ(τ) is an all-pass filter.

Besides filtering, which is discussed in [19], there are other

ways to suppress the sidelobes. For example, sidelobes can

be suppressed by precoding the symbols and making the

subcarriers correlated [20], [21] and by using pulses other than

rectangular [22]. The different sidelobe suppression methods

differ a bit in the amount of intercarrier interference they cause

or how much spectral resources they occupy, the effect on the

spectrum and the amplifier distortion, which is the main focus

of this paper, is similar to the effect of filtering the signal by

an ideal low-pass filter however. For the sake of clarity and

generality of the discussion and not to rely on any specific

sidelobe suppression technique, we therefore use a low-pass

filter when sidelobe suppression is discussed.

To avoid interference, the pulse p(τ)e j2πτν f0 has to be or-

thogonal to all other pulses {p(τ − nT)e j2πτν′ f0, (n, ν′) , (0, ν)}
and their time shifts. The rectangle pulse is one choice that

fulfills the orthogonality requirement and that also achieves

the smallest possible subcarrier spacing f0 = 1/T :

p(τ) = 1
√

T
rect

( τ
T

)
, (8)

where rect(τ) = 1 when 0 ≤ τ < 1 and zero otherwise. Other

pulse shapes can also be used, but they would require a larger

subcarrier spacing f0 for the same symbol period T , which

reduces the amount of subcarriers that fit in a given frequency

band.

A cyclic prefix that is longer than the delay spread of the

channel is assumed. It ensures that there is no intersymbol

interference when pure OFDM, z(τ) = δ(τ), is used. When a

sufficiently long cyclic prefix is inserted in the transmission
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W0[ℓ]s[n, 0]

p0(τ)

p0(τ)

p0(τ)

x[n, 0]

WN−1[ℓ]s[n, N − 1]

pN−1(τ)

pN−1(τ)

pN−1(τ)

x[n, N − 1]

y1(t)Ax1(t)

y2(t)Ax2(t)

yM (t)AxM (t)

PAM
(reciprocity
calibration)precoding

Fig. 1. A block diagram of the multi-carrier transmitter. In a single-carrier transmitter, there is only one branch N = 1. The position of the reciprocity filter
discussed in Section IV is marked in grey.

and removed in the detection, the effective channel coefficient

of the signal transmitted on subcarrier ν is given by

hk[ν] ,
∞∑
ℓ=0

hk[ℓ, ν, ν], (9)

where {hk[ℓ, ν, ν′]} are given in (6). Note that
∑

ℓ hk[ℓ, ν, ν′] =
0 for ν , ν′ with a cyclic prefix. No notation for the impulse

responses for which ν , ν′ is therefore introduced.

The data symbol that is to be transmitted on subcarrier ν

to user k is denoted sk[n, ν] and its power is normalized such

that E[|sk[n, ν]|2] = 1. Since the effective channel hk[ν] of

a given subcarrier is frequency flat, the frequency response

of the ν-th subcarrier is constant Hν[θ] , (h1[ν], . . . , hK [ν])T
over the normalized frequency θ. The data symbols s[n, ν] =(
s1[n, ν], . . . , sK [n, ν]

) T
are precoded individually for each

subcarrier by the precoder Wν[0] = w(Hν[θ]), which is

frequency flat and a function w : CK×M → CM×K of the

channel. Some common precoders will be defined at the end of

this section. The digital signals for subcarrier ν are, therefore,

given by:

x[n, ν] =Wν[0]D1/2
ξ

s[n, ν]. (10)

The diagonal matrix Dξ , diag(ξ1, . . . , ξK ) contains the relative

power allocations of each user, which are chosen such that

K∑
k=1

ξk ≤ 1. (11)

B. Single-Carrier Transmission

The use of just one pulse in (7), i.e. N = 1, is called single-

carrier transmission. Since using one pulse over the same

effective bandwidth as multi-carrier transmission gives a much

shorter symbol period, the relative time duration of the pulse

can be made longer, which means that bandlimited pulses are

feasible, e.g. a root-raised cosine can be used.

The impulse response of the discrete-time channel is given

by hk[ℓ, 0, 0], in the same notation as in (6), and the frequency

response at the normalized frequency θ is given by:

hk(θ) ,
∞∑

ℓ=−∞
hk[ℓ, 0, 0]e−j2πθℓ . (12)

Note that the impulse response of the continuous-time channel

has a finite support στ , sometimes referred to as delay spread,

and that the pulse pν(τ) quickly falls off to zero. The sum

in (12) therefore has a finite number L , στ/T of significant

terms.

The data symbols s[n, 0] , (s1[n, 0], . . . , sK [n, 0])T are

precoded and the discrete-time transmit signal is given by:

x[n, 0] =
(
W0[ℓ]⋆D

1/2
ξ

s[ℓ, 0]
)
[n], (13)

where the impulse response of the frequency-selective precoder

is:

W0[ℓ] ,
∫ 1

0

W0[θ]e j2πℓθdθ. (14)

The precoder W0[θ] = w(H0[θ]) is chosen as a function of the

channel H0[θ] , (h1(θ), . . . ,hK (θ))T.

By inserting a cyclic prefix also in the single-carrier

transmission, i.e. by letting

x[n, 0] = x[n + N, 0], for n < 0, (15)

and viewing the transmission only during the symbol periods

n = 0, . . . , N − 1, the received signal in (4) can be seen as a

circular convolution. This can simplify the equalization since

it can be done in the frequency domain symbol-per-symbol

as if the individual channels were frequency flat. This is the

idea used in single-carrier transmission with frequency-domain

equalization [23] and another type of OFDM [24], [25] (referred

to as OFDM type 2 here), both of whose transmit signals can

be described in this framework.

To demonstrate the difference between OFDM and OFDM

type 2, an example of their power spectral densities is shown
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Fig. 2. The power spectral density of OFDM with rectangular pulses and
OFDM type 2 with a cardinal sine pulse p(τ) = sinc(τ/T ). The dotted curve
shows the signal with 64 active tones, and the solid the signal with a single
non-zero tone.

in Figure 2. In contrast to the subcarriers in OFDM, which have

spectra with infinite bandwidth, the spectrum in OFDM type 2

is bandlimited. The spectrum of a signal from OFDM type 2,

where all frequency-domain symbols, except one, are set to

zero, consists of a cardinal sine that is aliased and windowed.

A rigorous description of the two types of OFDM is given in

[18]. When a system with linear hardware is studied without

consideration of the bandwidth of the actual continuous-time

signal, the distinction between OFDM and OFDM type 2 is

of little importance, since both transmission methods result

in N parallel, interference-free channels. Here, we make the

distinction because the sidelobe levels of the former has to be

taken into account when studying the out-of-band radiation.

C. Common Precoders

Common precoders are the maximum-ratio, the zero-forcing

and the λ-regularized zero-forcing precoder. They are given

by the following expressions in the same order:

w(H) = αH
H, (16)

w(H) = αH
H
(
HH

H
) −1

, (17)

w(H) = αH
H
(
HH

H
+ λIK

) −1

, (18)

where α is a constant used for power normalization that is

chosen such that

M∑
m=1

E

[��� [w(H)
]
m,k

���2
]
=

1

N
, ∀k . (19)

The regularization parameter λ is used to obtain a balanced

performance between array gain and interference suppression.

An introduction to different linear precoding techniques is

given in [26].

III. NONLINEAR AMPLIFICATION

In this section, the cross-correlation of the amplified transmit

signals will be derived. The amplified signals will also be

partitioned into a desired term and distortion that is uncorrelated

to the desired term. The transfer function of the nonlinear

amplifier is modeled by a memory polynomial [27] of order Π

with kernels {b̟(τ)}, where the amplifier output is assumed

to be given by

A (x(t)) =
∑

̟∈[1,Π]:odd

∫ ∞

−∞
b̟(t − τ)x(τ) | x(τ)|̟−1 dτ. (20)

It is noted that only odd powers are included in the sum.

The model is the baseband representation of a special case of

the general Volterra model [16], [28], where the off-diagonal

kernels are set to zero.

Because of multiple carriers in (5), multiuser precoding in

(10) and (13), and the central limit theorem, the distribution

of the digital transmit signals x[n, ν] is close to circularly

symmetric Gaussian. Note that this is true independently

of whether OFDM or single-carrier transmission is used and

independently of the order of the symbol constellations used

for the data symbols s[n, ν] when either the number of users

or number of filter taps in the precoding is large [29]. We

therefore assume that the digital transmit signals, and thus the

analog transmit signals, are circularly symmetric Gaussian.

To facilitate the analysis of the second-order statistics of

the amplifier output, the following subset of the complex Itô

generalization of the Hermite polynomials [30], [31]:

H̟(x) ,
̟−1

2∑
i=0

(−1)ii!
(
̟+1

2

i

) (
̟−1

2

i

)
x |x | ̟−1

2
−i, ̟ = 1, 3, 5, . . . ,

(21)

is used to rephrase the polynomial model as a Hermite

expansion [16]:

A (x(t)) =
∑

̟∈[1,Π]:odd

∫ ∞

−∞
a̟(t − τ)σ̟

x H̟

(
x(τ)
σx

)
dτ, (22)

where σx is the square root of the power of x(t). It is noted

that the input signal has been rescaled by 1/σx so that the

argument to the polynomial has unit power. Furthermore the

kernels {a̟(τ)} are normalized by σ̟
x . This is to make the

expressions that will be derived in the following sections of

the paper easier to write.

The new kernels {a̟(τ)} are given as linear combinations

of the original kernels {b̟(τ)}. For example when Π = 9, the

kernels for antenna m in the system that we study are given

by:

a1m(τ) = b1(τ)+2σ2
xm

b3(τ)+6σ4
xm

b5(τ)+24σ6
xm

b7(τ)+120σ8
xm

b9(τ)
(23)

a3m(τ) = b3(τ) + 6σ2
xm

b5(τ) + 36σ4
xm

b7(τ) + 240σ6
xm

b9(τ)
(24)

a5m(τ) = b5(τ) + 12σ2
xm

b7(τ) + 120σ4
xm

b9(τ) (25)

a7m(τ) = b7(τ) + 20σ2
xm

b9(τ) (26)

a9m(τ) = b9(τ), (27)



5

TABLE I
COMPLEX ITÔ GENERALIZATION OF THE HERMITE POLYNOMIALS

H1(x)= x
H3(x)= x |x |2 − 2x

H5(x)= x |x |4 − 6x |x |2 + 6x

H7(x)= x |x |6 − 12x |x |4 + 36x |x |2 − 24x

H9(x)= x |x |8 − 20x |x |6 + 120x |x |4 − 240x |x |2 + 120x

.

.

.

TABLE II
COMPLEX POLYNOMIALS AS GENERALIZED HERMITE POLYNOMIALS

x =H1(x)
x |x |2 =H3(x) + 2H1(x)
x |x |4 =H5(x) + 6H3(x) + 6H1(x)
x |x |6 =H7(x) + 12H5(x) + 36H3(x) + 24H1(x)
x |x |8 =H9(x) + 20H7(x) + 120H5(x) + 240H3(x) + 120H1(x)

.

.

.

where σ2
xm

is the power of the transmit signal xm(t). This is

easily obtained from Table I and II, where a few of the Hermite

functions are given.

The Hermite functions are orthogonal in the sense that, for

two jointly Gaussian random variables X,Y ∼ CN(0, 1), the

following holds [16]:

E
[
H̟(X)H∗

̟′(Y )
]

=

(
̟ + 1

2

)
!

(
̟ − 1

2

)
! E[XY ∗] |E[XY ∗]|̟−1

δ[̟ −̟′].

(28)

Thus, all the terms in the Hermite expansion in (22) are

mutually orthogonal. The amplified signal can therefore be

partitioned as:

ym(t) = um(t) + dm(t), (29)

where the linear term um(t) and the distortion dm(t) are given

by:

um(t) ,
∫ ∞

−∞
a1m(t − τ)xm(τ)dτ, (30)

dm(t) ,
∑

̟∈[3,Π]:odd

∫ ∞

−∞
a̟m(t − τ)σ̟

xm
H̟

(
xm(τ)
σxm

)
dτ.

(31)

By virtue of the orthogonality property in (28) and because

a convolution is a deterministic linear transformation and all

moments of xm are finite, these two terms are uncorrelated:

E
[
um(t)d∗

m′(t − τ)
]
= 0, ∀m,m′, τ. (32)

The partitioning in (29) can also be obtained using Bussgang’s

theorem. The Hermite expansion, however, simplifies the

derivation of the cross-correlation of the output signals, which

is easily obtained from the orthogonality property in (28).

If the input signals are Gaussian stationary random processes

with cross-correlations

Rxmxm′ (τ) , E
[
xm(t)x∗m′(t − τ)

]
, (33)

then the amplified signals are weak-sense stationary processes,

whose cross-correlations are:

Rymym′ (τ) , E
[
ym(t)y∗m′(t − τ)

]
(34)

=

∑
̟∈[1,Π]:odd

(
a̟m(t)⋆ a∗̟m′(−t)⋆ R

(̟)
xmxm′ (t)

)
(τ),

(35)

where the individual cross-correlations are

R
(̟)
xmxm′ (τ) =

(
̟ + 1

2

)
!

(
̟ − 1

2

)
! Rxmxm′ (τ)

��Rxmxm′ (τ)
��̟−1

.

(36)

Equivalently, these expressions can be studied in the frequency

domain in terms of the cross-spectrum Sxmxm′ ( f ), the Fourier

transform of the cross-correlation Rxmxm′ (τ). The cross-spectra

of the amplified signals are given by:

Symym′ ( f ) =
∑

̟∈[1,Π]:odd

A̟m( f )A∗
̟m′( f )S(̟)

xmxm′ ( f ), (37)

where {A̟m( f )} are the Fourier transforms of the kernels and

the individual cross-spectra:

S
(̟)
xmxm′ ( f ) =

(
̟ + 1

2

)
!

(
̟ − 1

2

)
!
(
Sxmxm′ (ϕ)⋆ · · ·⋆ Sxmxm′ (ϕ)︸                               ︷︷                               ︸

̟+1
2

factors

⋆ S∗
xmxm′ (−ϕ)⋆ · · ·⋆ S∗

xmxm′ (−ϕ)︸                                   ︷︷                                   ︸
̟−1

2
factors

)
( f ). (38)

It also follows that the spectral densities of the linearly

amplified signal and of the uncorrelated distortion terms in

(29) are given by:

Sumum′ ( f ) = A1m( f )A∗
1m′( f )Sxmxm′ ( f ) (39)

Sdmdm′ ( f ) =
∑

̟∈[3,Π]:odd

A̟m( f )A∗
̟m′( f )S(̟)

xmxm′ ( f ). (40)

IV. RECIPROCITY CALIBRATION

In massive MIMO, the full channel is only estimated in

the uplink. For the downlink, the uplink channel estimate is

used for the precoding and any differences between the uplink

and downlink channels are adjusted for by a calibration filter

after the precoding. Because the difference between the uplink

and downlink channels mostly stems from difference in the

hardware of the transmitter chains, the calibration filter can

be computed based on calibration pilots that are sent from

each antenna and received by the other antennas of the array,

which is the common approach to learning the calibration

filter [32]. Assuming that the amplifier is the dominant source

of the reciprocity error, we, here, propose to compute the

reciprocity filter by using the Hermite expansion of the amplifier

nonlinearity. The influence of the amplifiers on the downlink

channel is described by the linear impulse response a1m(τ).
With knowledge of the amplifier characteristics, the reciprocity

filter thus can be computed without transmitted calibration

pilots.
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V. RADIATED POWER SPECTRAL DENSITY PATTERN

The vector s[n, ν] consists of the K symbols that are

transmitted to the users at time n on pulse ν. It is assumed

that the data symbols s[n, ν] are circularly symmetric and i.i.d.

over both n and ν:

E

[
s[n, ν]sH[n′, ν′]

]
= δ[n − n′]δ[ν − ν′]IK, ∀n, n′, ν, ν′.

(41)

The precoded digital transmit signal of the ν-th pulse, then has

the power spectral density given by

S
(ν)
xx [θ] =Wν[θ]DξW

H
ν [θ], (42)

where the frequency response of the precoder is

Wν[θ] ,
∞∑

ℓ=−∞
Wν[ℓ]e−j2πℓθ . (43)

Note that, in the case of OFDM, the frequency responses are

flat and constant over θ.

The pulse-amplitude modulated analog transmit signal has

the operational power spectral density

Sxx( f ) = 1

NT

N−1∑
ν=0

|pν( f )|2 S
(ν)
xx [ f T], (44)

where pν( f ) ,
∫ ∞
−∞ pν(τ)e−j2πτtdτ is the Fourier transform of

pulse pν(τ). It is assumed that all pulses have the same energy.

The normalization by N is to ensure that the power is the same,

independently of the number of pulses.

The power spectral density of the amplified transmit signal

that was given in (37) is written in matrix notation as follows:

Syy( f ) =
∑

̟∈[1,Π]:odd

AH
̟( f )S(̟)

xx ( f )A̟( f ), (45)

where A̟( f ) , diag(A̟1( f ), . . . , A̟M ( f )), the ̟-th order

modulation term is given by

S
(̟)
xx ( f ) =

(
̟ + 1

2

)
!

(
̟ − 1

2

)
!
(
Sxx(ϕ) ⋆ · · · ⋆ Sxx(ϕ)︸                      ︷︷                      ︸

̟+1
2

factors

⋆ S∗
xx(−ϕ) ⋆ · · · ⋆ S∗

xx(−ϕ)︸                          ︷︷                          ︸
̟−1

2
factors

)
( f ), (46)

and ⋆ denotes elementwise convolution. Since the diagonal

elements describe the power radiated from the individual

antennas, the total power density transmitted at any frequency

f is given by:

Stx( f ) = tr(Syy( f )). (47)

To distinguish the desired signal from the distortion, it

is convenient to use the partitioning of the transmit signal

from (29). Since the desired signal and distortion terms are

uncorrelated, the power spectral density of the amplified

transmit signal is naturally partitioned as follows:

Syy( f ) = Suu( f ) + Sdd( f ), (48)

where the spectra of the linearly amplified term u(t) ,
(u1(t), . . . , uM (t))T and the uncorrelated distortion d(t) ,
(d1(t), . . . , dM (t))T are given by:

Suu( f ) = AH

1 ( f )Sxx( f )A1( f ) (49)

Sdd( f ) =
∑

̟∈[3,Π]:odd

AH
̟( f )S(̟)

xx ( f )A̟( f ). (50)

In the frequency domain, the channel to location x is

described by its transfer function:

hx( f ) ,
∫ ∞

−∞
hx(τ)e−j2πτ f , (51)

and the operational power spectral density of the received

signal in (4) is given by

Sx( f ) = βxhH
x ( f )Syy( f )hx( f ). (52)

Using the partitioning in (48), the operational power spectral

densities of the linearly amplified signal and the uncorrelated

distortion are then given by:

Slin
x ( f ) = βxhH

x ( f )Suu( f )hx( f ), (53)

Sdist
x ( f ) = βxhH

x ( f )Sdd( f )hx( f ). (54)

We note that the linear part has the same bandwidth as the

signal input to the amplifier.

VI. DISTORTION DIRECTIVITY AND MEASURES OF

OUT-OF-BAND RADIATION

The radiated distortion from the nonlinear amplifier is

beamformed. The directions and beamforming gain of the

distortion are given by the power spectral density matrix

Sdd( f ) and its eigenvectors and eigenvalues. A measure of

the directivity of the distortion at frequency f can be defined

as the power of the signal in the strongest direction (assuming

that the channel vector is normalized such that its energy is

βx ‖hx ‖2
= M) over the radiated power:

Gmax( f ) , Mρ(Sdd( f ))
Stx( f ) , (55)

where ρ(·) denotes the largest eigenvalue of a positive semi-

definite matrix. The factor M in the numerator is the average

channel power normalized by the large-scale path loss. Note

that Gmax( f ) ≥ 0 dBi with equality only if the distortion is

perfectly omnidirectional, i.e. all eigenvalues of Sdd( f ) are

equal.

The dimension of the correlation matrix Sdd( f ) is equal to

the number of antennas, M. When this number is large and

there is only one (or a few) large eigenvalues, the maximum

beamforming gain might be a pessimistic measure of the impact

of the distortion. With high probability the channel of a victim

will not be in the subspace spanned by the large eigenvalues,

at least not at all frequencies in the band. A victim that is

located at the position x, is operating in the right adjacent band

and is using the receive filter pv( f ), will pick up the following

amount of distortion:

Dx , βx

∫ 3B/2

B/2
|pv( f )|2h

H
x ( f )Sdd( f )hx( f )d f , (56)
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TABLE III
LINK BUDGETS FOR EXAMPLE 1

1 antenna 100 antennas

transmit power 40 dBm 30 dBm
array gain 0 dBi 20 dBi
max. path loss −140 dB −140 dB
noise power −100 dBm −100 dBm
nr. users 1 user 10 users
worst receive SNR 0 dB 0 dB
ACLR −45 dB −35 dB
radiated adjacent-band power −5 dBm −5 dBm

were B is the width of the band. By treating the location x of the

victim as random, the complimentary cumulative distribution

of the normalized adjacent-distortion power is given by:

F(p) , Pr

(
Dx

βx ‖hx ‖2
≥ p

)
. (57)

Given a realistic distribution of x, the distribution of the

distortion that is actually picked up can give a more complete

picture of the directivity of the distortion than the maximum

gain.

Traditionally, the distortion that is emitted outside the

allocated band is measured by the adjacent-channel-leakage

ratio (ACLR), which is the ratio between the leaked power that

is radiated in the adjacent band and the useful radiated power

inside the allocated band:

ACLR =

max
{∫ B/2

−3B/2 Stx( f )d f ,
∫ 3B/2
B/2 Stx( f )d f

}
∫ B/2
−B/2 Stx( f )d f

. (58)

In a legacy system, where the radiation pattern of the signal is

practically independent of the frequency, this measure makes

sense, because the received power ratio at any point is the

same as the transmitted. With an array, however, the useful

signal obtains an array gain that might be different from the

array gain of the received disturbing power in the adjacent

band. The ratio between the two received powers is therefore

different from the transmitted power ratio. This is illustrated

in the following example, where the array gives the in-band

signal a gain of 20 dBi and the distortion is assumed to be

isotropic, i.e. to have an array gain of 0 dBi.

Example 1: Consider the two systems in Table III. Both

systems are required to serve their users with a received SNR

greater than 0 dB. To do that, the single-antenna transmitter

has to transmit 40 dBm of power. The large array, however,

has an array gain and, even when the transmit power has to

be split among ten users, the array only has to emit 30 dBm

to achieve the target. Further, assume that the single-antenna

transmitter has a good ACLR of −45 dB and the large array

a somewhat poorer ACLR of −35 dB. Despite this, the power

emitted in the adjacent band by the two transmitters is the

same. Since the distortion is close to isotropic when there are

multiple served users, the power received by a victim receiver

in the adjacent band is the same too in the two systems.

Example 1 shows that the ACLR in (58) is not a fair measure

of out-of-band radiation, because it does not account for the

differences in array gain. An alternative way to measure the

TABLE IV
CASE STUDIES PER SECTION

single-carrier OFDM

frequency-flat fading VII-B, VII-C VII-E, VII-G
frequency-selective fading VII-D *

* Section VII-E discusses how the results from D carries over to OFDM when
all users are served on all subcarriers.

out-of-band power is to define the minimum useful power, the

lowest of the received powers at the served users, as:

Puseful , min

{
P =

∫ B/2

−B/2
Slin
xk
( f ) d f : k = 1, . . . ,K

}
(59)

and to look at the leaked power in the adjacent channel with

respect to reference point xref:

Pleak , max

{∫ −B/2

−3B/2
Sxref

( f ) d f ,

∫ B/2

3B/2
Sxref

( f ) d f

}
. (60)

In complete analogy to (58), an array ACLR can be defined as:

array ACLR =
Pleak

Puseful
. (61)

The array ACLR depends on the location of the reference

point. In many cases, however, the out-of-band radiation is

isotropic, as in Figure 11. Then, the reference point matters

little. In other cases, it might be desirable to treat the reference

point as a stochastic variable and estimate the distribution of

the array ACLR, to obtain a percentile, as was discussed in

connection to (57). This is illustrated for a uniform linear array

and line-of-sight propagation in Figure 3. It can be seen that

the array ACLR is much smaller than the ACLR most of the

time. Only in the worst case is the array ACLR equal to the

ACLR, which happens when a single user is served in a narrow

beam towards the served user.

The advantages of the array ACLR are: (i) It is easy to

measure and a standardized test can be set up in a reverberation

chamber [33]. (ii) It is a generalization of the classical ACLR

to arrays. How to fairly measure out-of-band radiation from

large arrays is also discussed in [1], [5], [34], where other

measures are proposed and evaluated.

VII. CASE STUDIES

To draw conclusions about the directivity of the distortion

and to illustrate the derived power spectral densities, some

case studies are provided in this section, see Table IV. The

first three cases study single-carrier transmission to show that

the distortion practically is omnidirectional when there are

multiple users or multiple channel taps. The extension to OFDM

is straightforward, albeit cumbersome, and the results are the

same.

The last cases are about OFDM transmission and how

subcarrier-specific beamforming affects the beamforming of the

distortion. The carrier frequency and beamforming direction of

the intermodulation products are given and the relation to the

carrier frequency and beamforming directions of the subcarriers

is given. It turns out this relation is intricate and hard to interpret

intuitively. Therefore, a special case is studied, where only two

subcarriers are active. This results in a “spatial” two-tone test,
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Fig. 3. Above: The array ACLR as measured at different angles to a uniform
linear array with 100 antennas that serves different number of users when the
emitted signal has −42 dB ACLR. Below: The distribution of the array ACLR

if the reference point is a considered random and its angle to the array is
uniformly distributed on the interval −90◦ to 90◦. The amplifiers are backed
off 8 dB from the one-dB compression point and all users are served with the
same power.

for which the frequencies and beamforming directions of the

intermodulation products are derived.

In the case study with two active subcarriers, the signal

is not Gaussian unless the transmitted symbols are Gaussian.

Strictly speaking, a non-Gaussian distribution would require a

different set of orthogonal basis polynomials. We conjecture,

however, that qualitatively the final results and conclusions will

be the same, though the coefficients {a̟m} may be different.

The main results in this section are: The number of distortion

directions (or beamforming modes) grows as the cube of the

number of significant users K3 and the square of the number of

significant channel taps L2. When the number of directions is

greater than the number of antennas M , the distortion becomes

omnidirectional. The amount of distortion received by the

served user scales as M/K2, if the amplifiers are operated

at the same input power and the power allocation to each

user is proportional to 1/K , until it saturates at approximately

βx tr(Sdd( f )). All results are obtained from the mathematical

formulas stated and derived in the previous sections.

The effect of the reciprocity filter is to adjust for the

differences in amplification between antennas and focus the

beam of the desired signal u(t). In the study of the distortion,

the reciprocity filter is neglected for clarity and A1m( f ) = 1

for all antennas m.

A. Random Channel Generation

To illustrate the behavior of the distortion in the following

sections, the channel model explained in this section will be

used. The theoretical results, however, are general and do not

rely on the following assumed channel model.

It will be assumed that the receivers are much farther away

from the array than the aperture of the transmitter. Then the

propagating waves are approximately planar and the frequency

response of the channel from the linear array to user k is given

by:

hkm( f ) = 1
√

V

V∑
v=1

e−j2π f (τkv+∆m sin θkv/c), (62)

where τkv is the delay of the signal from the reference antenna

to user k associated with propagation path v, the angle of

departure θkv of path v to user k and the distance ∆m between

the reference antenna and antenna m. The delays are assumed

to be uniformly distributed between 0 and the delay spread

στ .

The channel response in (62) will be used to model isotropic

fading by assuming that the number of paths is large (V = 60)

and that the angle of departure θkv of each path is uniformly

distributed over [−π/2, π/2] and independent between different

paths. Different values of the delay spread will be used to

model different degrees of frequency selectiveness.

The same channel response (62) will also be used to model

line-of-sight propagation. Then there is one tap V = 1 and the

delay spread is set to στ = 0.5 ns, which is the reciprocal of a

carrier frequency of 2 GHz, to model the randomness of the

phase of the channel due to differences in propagation distance.

B. Frequency-Flat Fading and Single-Carrier Transmission

A single-carrier scenario with one pulse, N = 1, is considered.

It is assumed that the spectrum of the discrete channel to user

k is flat, i.e. hk[θ] is constant over θ. Further, it is assumed

that the same precoder is used at all frequencies, i.e. that W0[θ]
and S

(0)
xx [θ] are constant over θ. Because the precoding matrix

is frequency flat, the third-degree term of the distortion, the

first term in (50)

S
(3)
xx ( f ) = 2

(
Sxx(ϕ) ⋆ Sxx(ϕ) ⋆ S∗

xx(−ϕ)
)
( f ), (63)

which often dominates the distortion, is:

S
(3)
xx ( f ) = 2

T3

(
|p0(ϕ)|2 ⋆ |p0(ϕ)|2 ⋆ |p0(−ϕ)|2

)
( f )

× S
(0)
xx [ f T] ⊙ S

(0)
xx [ f T] ⊙ S

(0)
xx

∗
[− f T], (64)

where ⊙ stands for elementwise product (Hadamard product).

The beamforming of the third-degree term of the distortion is

thus determined by S
(0)
xx [θ] ⊙ S

(0)
xx [θ] ⊙ S

(0)
xx

∗
[θ], a product of the

matrix in (42), which is constant over θ.
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To study this third-degree term, the (m,m′)-th term of the

matrix AH

3 ( f )S(3)
xx ( f )A3( f ) is investigated closer. It is given by:

S
(3)
xmxm′ ( f ) = 2

T3

(
|p0(ϕ)|2 ⋆ |p0(ϕ)|2 ⋆ |p0(−ϕ)|2

)
( f )

×
K∑
k=1

K∑
k′=1

K∑
k′′=1

ξkξk′ξk′′ A3m( f )wmkwmk′w
∗
mk′′

(
A3m′( f )wm′kwm′k′w

∗
m′k′′

) ∗
,

(65)

where wmk is the (m, k)-th element of the frequency-flat

precoding matrix W0[θ]. We compare the structure of this

term and the corresponding term of the linearly amplified

signal in (39):

Sumum′ ( f ) = 1

T
|p0( f )|2

K∑
k=1

ξkwmkw
∗
m′k, (66)

which we know is beamformed in the directions given by the

precoding vectors:



©­­«
w1k

...

wMk

ª®®¬
: k = 1, . . . ,K



. (67)

The beamforming directions of the linear term are thus given

by the terms that show up as conjugated pairs in the sum

in (66). In the same way, the beamforming directions of the

third-degree distortion term are given by:



©­­«

w1kw1k′w
∗
1k′′

...

wMkwMk′w
∗
Mk′′

ª®®¬
: k, k ′, k ′′

= 1, . . . ,K



. (68)

By counting the number of vectors in this set, it is seen that the

distortion is beamformed in more directions than the linearly

amplified signal. Note that the directions in (68) that are

given by (k, k ′, k ′′) = (k0, k
′
0
, k ′′

0
) and (k, k ′, k ′′) = (k ′

0
, k0, k

′′
0
)

are identical for all choices of (k0, k
′
0
, k ′′

0
). Straightforward

combinatorial arguments give the following conclusion.

Theorem 1: In general, the number of vectors in (68), and

thus the number of directions of the third-degree term, is at

most (K3
+ K2)/2.

Thus in a scenario with four users, K = 4, the distortion

should be radiated in approximately (K3
+ K2)/2 = 40

directions. Figure 4 shows such a scenario in a line-of-sight

setting. Even though many of the lobes partly overlap, a count

shows that the number is reasonable.

Since the signal space is M dimensional, the uncorrelated

distortion can only be omnidirectional if the number of

directions is greater than the number of dimensions, i.e. when

(K3
+ K2)/2 > M. This number is shown in Figure 5. For

example, for an array with M = 100 antennas, the distortion

becomes omnidirectional at K ≥ 6 users.

Remark 1: The directions of the third-degree distortion are

affected by the amplifier characteristics and operating point

of the amplifiers given by the diagonal third-degree Hermite

matrix A3( f ), as is seen in (50). It can be seen in (24) that the

diagonal elements in A3( f ) are non-zero for a system that is

not perfectly linear and that the matrix thus has full rank and

does not affect the number of directions of the distortion. In

−90
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0
◦

30
◦

60
◦

90
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10 30 50 dB

Fig. 4. The radiation pattern at f = 0 and f = B in a single-carrier system
with K = 4 users and M = 300 antennas in line-of-sight. Even though it is
difficult to count the number of directions, in which the distortion at f = B

is beamformed, because the beams partly overlap, it can be seen that the
predicted number (K3

+ K2)/2 = 40 is reasonable.
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Fig. 5. The maximum number of directions of the third-degree term of the
distortion, (K3

+ K2)/2, for different number of served users K .

general, the diagonal elements in A3( f ) are different and the

amplifier characteristics affect the direction of the distortion.

In the special case, where the powers of the input signals

all are equal, the diagonal elements in A3( f ) are equal too

and the amplifier characteristics do not affect the directions

of the distortion. This can happen if the channel coefficients

between the array and the user all have the same modulus and

maximum-ratio precoding is used, e.g., when there is only one

strong propagation path between the array and each user.

As can be seen in (65), the beamforming directions of the

third-degree distortion term are scaled by ξkξk′ξk′′ . If all users

are allocated the same power, i.e. if ξk is the same for all k,

only then will all the (K3
+ K2)/2 directions be significant. If

the power allocation is not uniform, then only the directions,

for which ξkξk′ξk′′ is large, are significant. To approximate the

number of directions in this case, we can assume that ξk = 0

for non-significant users, i.e. users k whose power allocation

ξk ≪ max{ξk′}. The remaining K ′ users then give rise to

(K ′3
+K ′2)/2 distortion directions, and (K ′3

+K ′2)/2 > M is a

necessary requirement for the distortion to be omnidirectional.

Furthermore, if there is a single dominant user, i.e.

a user k such that ξk ≫ ξk′ for all k ′
, k, the

distortion is mostly directed in one direction, given by

(A3,1( f )w1k |w1k |2, . . . , A3M ( f )wMk |wMk |2)T, which is similar

to the direction of the dominant user (w1k, . . . ,wMk)T.

Remark 2: In the following, we will argue that the distortion
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power in the strongest direction scales approximately as M/K2.

For simplicity, the influence of the amplifier characteristics

given by the matrices {A̟( f )} on the directions of the

beamforming is neglected. As noted in Remark 1, this effect

can be neglected when the transmit powers at the different

antennas are close to equal, for example, when a line-of-sight

channel is considered.

For the indices (k, k ′, k ′′) = (k0, k
′
0
, k ′

0
), k ′

0
= 1, . . . ,K , each

coefficient of the beamforming vector in (68),

(A3,1( f )w1kw1k′w
∗
1k′′, . . . , A3M ( f )wMkwMk′w

∗
Mk′′)

T, (69)

shares the same relative phases as the linearly amplified

term that is beamformed in the direction (w1k0
, . . . ,wMk0

)T,

assuming that {A3m( f )} have the same phase for all antennas

m. Thus, the array gain in the direction of user k0 is the

same for the third-degree distortion and the linearly amplified

signal, whose array gain scales linearly with the number of

antennas M . Furthermore, there are at least K distortion terms

that build up constructively at each user k0. If we assume

uniform power allocation, i.e. ξk = ξk′ = ξk′′ = 1/K , then the

distortion power of one of the terms in the sum (65) decreases

as ξkξk′ξk′′ = 1/K3 as K grows. Because there are K of these

terms that build up constructively at each user, with an array

gain that is proportional to M, the received distortion power

is proportional to M/K2 for different number of antennas M

and users K . This proportionality only applies as the number

of directions is significantly smaller than the signal space,

i.e. when (K3
+ K2)/2 ≪ M. When the number of distortion

directions increases and approaches the dimension of the space,

the distortion becomes omnidirectional and the distortion power

stops decreasing and approaches the constant level βxStx( f ).
Remark 3: A consequence of the fact that the received

distortion power at the served user scales as M/K2 when all

amplifiers are operated at the same power level, is that the

received distortion power does not vanish in the limit of infinite

number of antennas and a fixed number of users, which is a

scenario where (K3
+ K2)/2 ≪ M holds. The received SINR

after IQ demodulation is then limited by the ratio between power

of the transmitted linear term and the transmitted distortion.

Since this ratio commonly is tens of decibels, this limitation

might be of little practical consequence however.

Remark 4: The direction of the distortion in (68) is a function

of the precoding weights. With knowledge of the nonlinearity

characteristics {A̟m( f )}, it is therefore possible to steer the

distortion away from the served user, i.e. make the distortion

vector (68) orthogonal to the channel of the user. With such

distortion steering, the scaling of the received distortion power

in Remark 3 would be different, and the distortion would not

necessary upper bound the received SINR in the limit of infinite

number of antennas. Distortion steering would, however, reduce

the array gain of the desired signal and require knowledge

of the nonlinearity coefficients. Distortion steering is further

complicated by the fact that the coefficients {A̟m( f )} depend

on the per-antenna transmit power and thus the precoding

weights. Nevertheless, such distortion steering would improve

performance, especially in a system where most of the transmit

power is beamformed towards one user and a significant amount

of distortion is radiated in the direction of the users that are

served with little power.

If there is only one user and maximum-ratio precoding is

used, the precoding weights are wm1 = h∗
1m

[θ], where h1m[θ]
is the m-th element of the channel vector h1[θ]. The only

direction of the third-degree distortion term is then

(A3,1( f )h∗
11[θ]|h11[θ]|2, . . . , A3M ( f )h∗

1M [θ]|h1M [θ]|2)T. (70)

When the coefficients {A3m( f )} have the same phases for

all antennas m, the elements of this vector have the same

relative phases as the linearly amplified term, which is

beamformed in the direction given by (h∗
11
[θ], . . . , h∗

1M
[θ])T.

The radiation pattern of the distortion is therefore similar to

the radiation pattern of the desired signal: the distortion builds

up constructively at the served user and destructively in almost

all other directions.

C. Narrowband Line-of-Sight and Maximum-Ratio Precoding

For simplicity of the exposition, in this section, where line-

of-sight propagation will be investigated, we assume that the

array is uniform with antenna spacing ∆. We also use the

narrowband assumption, i.e. assume that the channel response

to user k, who stands at an angle θk to the array, is frequency

flat and given by:

hk[θ] =
©­­­­«

e jφk

e j2φk

...

e jMφk

ª®®®®¬
, ∀θ, (71)

where φk , −2π sin(θk)∆/λ and λ = c/ fc is the wavelength

of the carrier frequency fc. The illustrations are however

generated without the narrowband assumption, using the

channel described in Section VII-A.

If maximum-ratio transmission is used, the (m,m′)-th ele-

ment in the linear part of the radiation pattern is given by (66)

as:

Sxmxm′ ( f ) = 1

T M
|p0( f )|2

K∑
k=1

ξke jφk (m′−m). (72)

The K beamforming directions are thus given by the phases

{φk : k = 1, . . . ,K} in the exponent. This can be compared to

the radiation pattern of the third-degree term of the uncorrelated

distortion:

S
(3)
xmxm′ ( f ) = A3m( f )A3m′( f )

T3M3

(
|p0(ϕ)|2 ⋆ |p0(ϕ)|2 ⋆ |p0(−ϕ)|2

)
( f )

×
K∑
k=1

K∑
k′=1

K∑
k′′=1

ξkξk′ξk′′e
j(φk+φk′−φk′′ )(m′−m).

(73)

Because the power of the transmit signals is the same at all

antennas and all amplifiers are identical and operated with the

same input power, the coefficients {A3m( f )} are the same for all

antennas m and do not affect the beamforming directions. We

see that the distortion is beamformed in more directions than

the linearly amplified term, which is stated by the following

theorem that also gives the beamforming directions of the

distortion.
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Fig. 6. The maximum gain of the distortion at f = B (the center frequency
of the adjacent band to the right) in a single-carrier system with M = 100
antennas that serves K users over a line-of-sight channel. The grey curve
shows the approximation M/K2 from Section VII-B, which only is applicable
when (K3

+ K2)/2 ≪ M , i.e. when K < 6. The amplifiers are operated 7 dB
below the one-dB compression point.

Theorem 2: The third-degree distortion is beamformed in

the (K3
+K2)/2−K(K − 1) = (K3 −K2

+ 2K)/2 directions that

are given by the phases {φk + φk′ − φk′′ : k, k ′, k ′′
= 1, . . . ,K}.

Proof: The phase φk+φk′−φk′′ is the same for (k, k ′, k ′′) =
(k0, k

′
0
, k ′′

0
) and (k, k ′, k ′′) = (k ′

0
, k0, k

′′
0
) as in Theorem 1.

Additionally, the phase equals φk0
when (k, k ′, k ′′) = (k0, k

′
0
, k ′

0
)

for all k ′
0
.

It is noted that the original beamforming directions (given by

{φk}) of the linearly amplified term are among the directions

of the distortion (obtained when k ′
= k ′′).

Remark 5: In the special case, where there is only a single

user, K = 1, it is evident from (70) that the beamforming

pattern of the distortion is identical to that of the linearly

amplified term. This is different from the general case studied

in Section VII-B, where we only could conclude that the

distortion would combine constructively at the served user if

no attempt is made to steer it away.

A consequence of Remark 5 is that, in a comparison between

a single-antenna transmitter and an antenna array, where the

amplifiers have the same operating point as in the single-

antenna transmitter, the amount of received distortion at the one

served user is the same in the two systems independently of the

number of antennas in the array. In other directions, however,

barely any distortion is received from the array, which stands

in contrast to the single-antenna array that radiates distortion

in all directions. This point was not correctly described in [1],

where it was claimed that the distortion always has an array

gain smaller than the desired signal.

Figure 6 shows how the maximum beamforming gain at the

out-of-band frequency f = B is changing as the number of

users increases. As expected, the signal becomes more and

more omnidirectional as the number of users is increased, which

is seen on the decreasing maximum beamforming gain. The

approximation 1/K2 obtained in Section VII-B, is seen to hold

for small number of users. For a signal space with M = 100

dimensions, however, the approximation rapidly becomes loose

as the number of users increases.

D. Frequency-Selective Fading

Next, a single-carrier scenario with a general frequency-

selective channel is considered. Many of the results from the

frequency-flat scenario carry over to the frequency-selective

case: the distortion is beamformed, the directions of the

beamforming are functions of the beamforming directions of

the input signal, and the number of directions grows with the

number of input beamforming directions. A difference, however,

is that the out-of-band radiation is not necessarily beamformed

to the served users, since their out-of-band channels are

different from their in-band channels, and that the number

of directions also scales with the number of significant taps in

the precoding filter, which is approximately the same as the

number of significant taps in the channel impulse response.

By denoting column k of the precoding matrix W0[θ] by

wk[θ], the power spectral density of the third-degree term of

the distortion can be written as:

S
(3)
xx ( f ) = 2

(
Sxx(ϕ) ⋆ Sxx(ϕ) ⋆ S∗

xx(−ϕ)
)
( f ) (74)

= 2

∫ ∞

−∞

∫ ∞

−∞
Sxx(ϕ) ⊙ Sxx(ϕ′) ⊙ S∗

xx(ϕ + ϕ′ − f ) dϕdϕ′

(75)

=

2

T3

∬
B( f )

|p0(ϕ)|2 |p0(ϕ′)|2 |p0(ϕ+ϕ′− f )|2

×
K∑
k=1

K∑
k′=1

K∑
k′′=1

ξkξk′ξk′′

×
(
wk[ϕT] ⊙ wk′[ϕ′T] ⊙ wk′′[(ϕ+ϕ′− f )T]

)

×
(
wk[ϕT] ⊙ wk′[ϕ′T] ⊙ wk′′[(ϕ+ϕ′− f )T]

) H

dϕdϕ′

(76)

The integration is done over the two-dimensional area defined

by the set B( f ). If we assume that the pulse p0(ϕ) is

bandlimited to [−B/2, B/2], the set equals:

B( f ) = {(ϕ, ϕ′) : ϕ ∈ [a, b], ϕ′ ∈ [a′, b′]}, (77)

where the end values depend on f . For example for f ∈
[B/2, 3B/2], the end values are:

a = f − B (78)

b = B/2 (79)

a′
=

{
ϕ − B/2, if ϕ > 0

−B/2, if ϕ ≤ 0
(80)

b′ =

{
B/2, if ϕ > 0

ϕ + B/2, if ϕ ≤ 0
(81)

and the area, over which is integrated, is

A( f ) =
∬

B( f )
dϕdϕ′ =

15

8
B2 − 2B f +

1

2
f 2, (82)

for f ∈ [B/2, 3B/2].
To approximate the number of directions at a given frequency

f , it will be assumed that the directions of the integrand change

smoothly over the area of integration and that coherence interval

of these changes is 1/στ . The integral can thus be considered

as a sum of A( f )στ integrands. Each integrand is a sum of

matrices with rank one, which is similar to the sum (65) that

was studied for frequency-flat fading in Section VII-B. As
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was concluded in that section, the number of unique terms in

the sum is approximately (K3
+ K2)/2. The total number of

directions is therefore approximately equal to

A( f )στ(K3
+ K2)/2. (83)

If we write the bandwidth in terms of the excess bandwidth α

as B = α/T , the number of integrands is thus approximately

A( f )στ = (στ/T)2
(
15

8
α2 − 2

f α

B
+

f 2α2

2B2

)
︸                          ︷︷                          ︸

,υ( f )

= L2υ( f ), (84)

which is proportional to the square of the number of significant

taps in the channel L = στ/T . Thus, each of the (K3
+ K2)/2

terms contributes to approximately L2 directions. The number

of directions of the distortion at frequency f is therefore upper

bounded by

min

{
M,

K3
+ K2

2
L2υ( f )

}
. (85)

An increased number of channel taps, thus, makes the distortion

more isotropic, which is summarized in the following theorem.

Theorem 3: A necessary condition for the distortion to behave

omnidirectionally is

K3
+ K2

2
L2υ( f ) ≥ M . (86)

A practical phenomenon with a significant impact on the

amount of distortion created by the amplifiers is the variation

in transmit power at individual amplifiers across time. In an

environment with isotropic fading, the channel coefficients of

individual channels will vary and a few antennas, for which

the channel coefficients are good, will use very high transmit

power compared to the average. The effect of this is that a

few power amplifiers will be operated close to, or even in,

saturation, which cause a few antennas to emit much more

distortion than the average and an increase in the total amount

of radiated distortion.

To illustrate this phenomenon, the transmit power of individ-

ual antennas was computed for many channel realizations. The

antenna with the highest transmit power during each channel

realization has been compared to the average and the following

average maximum power deviation computed for different delay

spreads:

E

[
maxm{E[|xm(t)|2] | H]

E[|xm(t)|2 | H]

]
, (87)

where E[ · | H] denotes expectation given a specific channel

realization. The outer expectation averages over channel

realizations. The average maximum power deviation is shown

in Figure 7, where it can be seen that, for channels with small

delay spreads, the variations in power can be large—in this

case up to 6 dB.

We have thus identified two phenomena connected to the

delay spread:

1) The directivity of the distortion decreases with longer

delay spreads.

2) The total amount of radiated distortion decreases with

longer delay spreads.
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Fig. 7. The difference between the average and maximum power of the
transmit signals prior to amplification in an array with M = 100 antennas
that serves K = 1 user over a channel with isotropic fading. The definition of
average maximum power deviation is given in (87).
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Fig. 8. Distribution of the normalized adjacent-distortion power from a uniform
linear array with 100 antennas that are used to beamform a signal at an angle
9◦ off its normal. The channel is assumed to be isotropic with delay spreads
equal to different multiples of the symbol period T . The amplifiers are backed
off by 8 dB from the one-dB compression point on average.

The combined effect of these phenomena can be seen in

Figure 8, which shows the distribution (57) of the power

received in the adjacent band. It can be seen how the curves

become more vertical as the delay spread increases; this is

the effect of the lower directivity, which makes the received

distortion power the same at all positions around the array. It

can also be seen how the curves move to the right as the delay

spread decreases;1 this is the effect of increased variations

in transmit power caused by precoding and increased fading

variations, which makes a few amplifiers operate much closer

to saturation than on average and cause a high amount of

distortion.

From a distortion perspective, a long delay spread is thus

beneficial since it reduces the power variations, which allows

the amplifiers to be operated close to the chosen power

level, and makes the distortion omnidirectional. In an outdoor

environment, a high delay spread is to be expected. For example,

if the maximum difference in length between two propagation

paths is d = 1 km, then the delay spread is approximately

στ ≈ d/c ≈ 3 µs. With a symbol period of T = 1/(20 MHz),
the delay spread is στ ≈ 67T . In an indoor environment,

however, the delay spread might be much shorter.

Another way to illustrate the directivity of the distortion is

to show the eigenvalue distribution of the correlation matrix

1It should be noted that a line-of-sight channel does not result in variations
in transmit power because all channel coefficients have the same modulus.
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Fig. 9. The eigenvalue distribution of Sdd( f ) at f = 0 and f = 1.22 with
an array with 100 antennas and a delay spread στ = 60T . The per-antenna
power of the distortion is marked with a vertical line. In all cases, this power
varied less than 0.5 dB. The amplifiers were backed off by 10 dB on average.

of the transmitted distortion Sdd( f ); see Figure 9. It can be

seen that the worst direction has an array gain of 7 dB with

one user and 2–3 dB with ten users, c.f. (55).

E. OFDM in Line-of-Sight

When each user is served over the whole spectrum, the

OFDM system behaves almost identically to the single-carrier

system studied above. Specifically, the criterion derived in (86)

is then also applicable to OFDM. The transmitted power spectral

density when K = 10 users are served over the whole band are

shown in Figure 10 and the radiation patterns at the in-band

frequency f = 0 and the out-of-band frequency f = B is shown

in Figure 11. An ideal low-pass filter has been used to make

the input signal to the amplifier perfectly bandlimited to a band

of width 1.22N/T , i.e. to limit the excess bandwidth to 1.22.

It can be seen that, in the immediate adjacent band, the third-

degree distortion term is dominant. Only as one moves further

away from the in-band signal in the spectrum, the higher-order

terms become significant. This is true both for the transmitted

spectrum and the received one that can be seen in Figure 11.

It can be seen that the third-degree distortion term is

approximately 30 dB below the linear signal for this particular

back-off and amplifier. This emission level happens to be

similar to the out-of-band emission of the linear signal without

sidelobe suppression (without the low-pass filter), which is

shown as a dotted contour in Figure 10. To maximize power

efficiency, the back-off should be chosen such that the distortion

is level with the sidelobes; and, to maximize spectral efficiency,

the sidelobe level should be suppressed to meet the out-of-band

radiation requirement (with some margin to accommodate for

the distortion).

In many multi-user scenarios, different beams can be radiated

with very different powers. This is illustrated in Figure 12,

where K = 4 users are served but there is one dominant user

whose beam is much stronger than the other beams. In this

case, it can be seen that the distortion behaves as if there

were only one served user—it is highly directive and directed

towards the dominant user.

Instead of studying the case, where all users are served on

all subcarriers, we study a scenario, where each user is served

on only a subset of the available subcarriers. Such a scenario
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Fig. 10. The power spectral density of the precoded OFDM signal transmitted
from one of the 100 antennas in the array. There are N = 512 subcarriers
and 10 served users. Rectangular pulses as in (8) are used with f0 = 1/T . The
OFDM signal is filtered by an ideal bandpass filter of bandwidth B = 1.22N f0.
The contour of the unfiltered, unamplified signal is drawn with a dotted line.
On average the amplifiers operate 7 dB below the one-dB compression point.
The frequency B is the measurement point used in Figure 11. The power
spectral density labeled “linear” is one of the diagonal elements in Suu( f ) in
(49), and the “third”, “fifth”, . . . , refer to the same diagonal element in the
different terms in the sum Sdd( f ) in (50).
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Fig. 11. The radiation pattern from the same system that is studied in Figure 10
at the frequencies f = 0 (in-band) and f = B (out-of-band). The array has 100
antennas and transmits precoded OFDM signals with N = 1024 subcarriers to
10 users. The allocated band has bandwidth B = 1.22N f0, where f0 = 1/T .
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Fig. 12. The radiation pattern at frequencies f = 0 (in-band) and f = B

(out-of-band) of an array with 100 antennas transmitting a precoded OFDM

signal with N = 1024 subcarriers that serves 4 users with different powers:
−34 dB, −31 dB, −0.022 dB, −24 dB from left to right. The allocated band
has bandwidth B = 1.22N f0, where f0 = 1/T . The power amplifiers are, on
average, operated 7 dB from the one-dB compression point.

might happen when there are users that continuously have

to be served with a small data rate. We denote the index set

of users that are served on subcarrier ν by Kν . Assume that

all users are in line-of-sight, i.e. that the user channels are

given by (71). Further, assume that maximum-ratio precoding

is used, so that the precoding weights wmk[ν] = e−jmφk for all

subcarriers ν. The linearly amplified term, then, has the power

spectral density:

Sxmxm′ ( f ) = 1

NT

N−1∑
ν=0

|pν( f )|2
∑
k∈Kν

ξkwmk[ν]w∗
m′k[ν] (88)

=

1

NT

N−1∑
ν=0

|pν( f )|2
∑
k∈Kν

e jφk (m′−m). (89)

To alleviate the notation, the third-degree pulse is defined as:

p
(3)
ν ( f ) ,

(
|p(ϕ)|2 ⋆ |p(ϕ)|2 ⋆ |p(−ϕ)|2

)
( f − ν/T). (90)

The third-degree term of the distortion is then:

S
(3)
xmxm′ ( f ) = 1

N3T3

2N−2∑
ν=−N+1

p
(3)
ν ( f )

×
∑
ν′,ν′′

∑
k∈K

ν
′

∑
k′∈K

ν
′′

∑
k′′∈K

ν
′
+ν

′′−ν

ξkξk′ξk′′e
j(φk+φk′−φk′′ )(m′−m).

(91)

Theorem 4: At a given tone ν, the distortion is beam-

formed towards the directions given by φk + φk′ − φk′′ , where

(k, k ′, k ′′) ∈ Kν′×Kν′×Kν′+ν′′−ν , for some ν′, ν′′ = 0, . . . , N−1.

Note that all beamforming directions of the linearly amplified

signal at a given subcarrier are also present at the same

subcarrier in the uncorrelated distortion. For example, if

k0 ∈ Kν , then the pulse p
(3)
ν ( f ) is beamformed, among other

directions, in the direction given by φk0
.

Remark 6: Given a subcarrier ν and a user k0 ∈ Kν , the pulse

p
(3)
ν+n( f ) at an adjacent subcarrier, n subcarriers away from ν,

will be beamformed in the direction given by φk0
, if there

exists a ν′ = 0, . . . , N − 1 and a k ′
0

such that k ′
0
∈ Kν′ ∩Kν′−n.

As a consequence of Remark 6, if there is a user k ′
0

who is

served on all subcarriers k ′
0
∈ ⋂N−1

ν=0 Kν , then the uncorrelated

distortion at all in-band subcarriers ν = 0, . . . , N − 1 is beam-

formed in all directions {φk : k = 1, 2, . . . ,K}. The strength

of the beam in the direction given by φk , however, depends

on the number of summands in (91) that correspond to that

direction. While this number is
∑N−1

ν′=0 |Kν′ | at a frequency ν

such that k ∈ Kν , it shrinks to∑
ν′

| {k : k ∈ Kν′ ∩ Kν′−n}| (92)

at frequencies n subcarriers away from ν.

F. Distortion-Aware Frequency Scheduling

As has been demonstrated in Section VII-E, it is possible

to use the theory presented in this paper to predict the

beamforming directions of the distortion that is created by

the nonlinear amplifiers. This could potentially be used to

schedule users in frequency in such a way that the influence

of the distortion is minimized. For example, if a large piece

of the spectrum is beamformed towards a single user, another

user that has a similar channel should not be scheduled to use

subcarriers close to that user.

G. Two Tones

Now assume that there are only two users, each allocated its

own subcarrier: ν1 and ν2 respectively. Then the third-degree

term consists of eight terms (counted with multiplicities):

S
(3)
xmxm′ ( f ) = 1

N3T3

(
3p

(3)
ν1
( f )e jφ1(m′−m)

+ p
(3)
2ν1−ν2

( f )e j(2φ1−φ2)(m′−m)

+ p
(3)
2ν2−ν1

( f )e j(2φ2−φ1)(m′−m)

+ 3p
(3)
ν2
( f )e jφ2(m′−m)

)
(93)

In a two-tone system, the frequencies and directions of the

distortion are thus given by the following theorem.

Theorem 5: The third-degree distortion consists of four

distortion terms pulse-shaped by p
(3)
ν ( f ). Two at the frequencies

of the users, ν = ν1 and ν2, and two intermodulation products

at ν = 2ν1 − ν2 and 2ν2 − ν1—one above max{ν1, ν2} and one

below min{ν1, ν2}. They are beamformed in the directions of

the two users φ1 and φ2 and in the directions given by 2φ1−φ2

and 2φ2 − φ1 respectively.
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Fig. 13. The power spectral density of the transmitted signal at one antenna
when two subcarriers are beamformed towards two different angles. The signal
is backed off by 9 dB from the one-dB compression point.

The findings of Theorem 5 can be seen in Figure 13 that

shows the transmitted power spectral density and in Figure 14

that shows the radiation pattern at the frequency of pulse ν2
and the intermodulation product at f = 2 f2 − f1. It can be seen

that the intermodulation product indeed is beamformed in the

direction predicted by 2φ2 − φ1.

VIII. MEASUREMENT-BASED RESULTS

To illustrate and verify our theoretical results, we performed

measurements on a gallium-nitride (GaN), class AB amplifier.

The measurement were performed in the lab using the on-

line interface “web-lab” that is described in [35]. Single-

carrier transmission with a root-raised cosine, roll-off 0.22,

was considered. Free-space (line-of-sight) propagation with

a uniform linear array (half-wavelength element spacing)

was then simulated, assuming all amplifiers were identical.

Specifically, maximum-ratio precoding with two directions

was used to generate the transmit signals per amplifier. The

amplified signals were split up in desired signal and distortion,

as in (29), and the radiation patterns of these two signal

components were computed. The amount of power received in

different directions was computed and the result is shown in

Figure 15.

It can be seen in Figure 15 that the desired signal is beam-

formed in the two desired directions. Furthermore, both the in-

band distortion and the out-of-band radiation are beamformed

in the expected angles, which coincide with the angles derived

in Section VII-G. The amount of received in-band distortion

in the direction of the users is approximately −22 dB.

IX. CONCLUSION

We have developed a framework for rigorous analysis of

the spatial characteristics of nonlinear distortion from arrays.

The theory can be used in system design to predict the

effects of out-of-band radiation and to take distortion effects

into account when, e.g., scheduling users in frequency and
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Fig. 14. The radiation pattern (a) at the carrier frequency f = f2 of the
pulse aimed at user 2 and (b) at the frequency f = 2 f2 − f1 of the second
intermodulation product. Two pulses, with carrier frequencies f1 = −50 f0 + fc
and f2 = 35 f0+ fc , are beamformed towards the angles θ1 = −15◦ and θ2 = 5◦

(marked with solid rays). The amplifiers are backed off 9 dB from the one-dB-
compression point. The directions of the intermodulation products as predicted
by 2φ1 − φ2 and 2φ2 − φ1 are marked with dotted rays. The linear term has a
null at the frequency of the intermodulation product. Therefore, the linear term
cannot be seen in (b), even though the linear term in Figure 13 has significant
sidelobes around the frequency of the intermodulation product.
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performing reciprocity calibration. Our theory also characterizes

the radiation pattern of the distortion and shows that the

radiation pattern of the distortion resembles that of the desired

signal, when there is a dominant user. If there is no dominant

user, the distortion is close to isotropic.

The effect of the number of served users and the frequency-

selectivity of the channel on the radiation pattern of the

distortion was also studied and criteria for when the distortion

can be viewed as isotropic are derived. The effects of the

distortion do not disappear, i.e. the received SINR remains

finite, as the number of antennas is increased. The limit,

however, is large even with low-end amplifiers and would

therefore not constitute a significant impairment to a practical

implementation.
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