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ABSTRACT The majority of stochastic channel models rely on the electromagnetic far-field assumption,
which allows to decompose the channel in terms of plane waves. The far-field assumption breaks down
in future applications that push towards the electromagnetic near-field region, such as those where the
use of electromagnetically large antenna arrays is envisioned. Motivated by this consideration, we show
how physical principles can be used to derive a plane-wave scalar channel model that is also valid in
the reactive near-field region. Precisely, we show that narrowband wave propagation through a three-
dimensional scattered medium can be generally modeled as a linear and space-variant system. We first
review the physics principles that lead to a closed-form deterministic plane-wave representation of the
channel impulse response. This serves as a basis for deriving a stochastic representation of the channel
in terms of statistically independent Gaussian random coefficients for spatially stationary random prop-
agation environments. The very desirable property of spatial stationarity can always be retained in the
radiative near-field region by excluding reactive propagation mechanisms confined in close proximity to
the source. Remarkably, the provided stochastic representation is directly connected to the Fourier spectral
representation of a general stationary spatial random field.

INDEX TERMS Physical channel modeling, electromagnetic wave propagation, stochastic channel
modeling, Fourier spectral representation, Fourier theory, electromagnetically large antenna arrays,
high-frequency communications.

I. INTRODUCTION

UNDERSTANDING the foundations of wireless com-
munications systems requires accurate, yet tractable,

channel models that reflect their main characteristics and
properties. Their development is crucial to achieving a
genuine fusion of electromagnetic theory with communi-
cation theory [2], which is the basis of the wave theory of
information at the intersection of the two disciplines [3].
The physics of electromagnetism sets the boundary of

what wireless communication systems are capable of [4].
Physically meaningful channels are obtainable from the wave
equation, whose solution yields an eigendecomposition of
the channel in terms of plane waves or spherical waves [5].

Unlike models based on a spherical wave expansion [6]–[8],
channel models that are based on plane waves allow to
treat radio wave propagation as a linear system by lever-
aging Fourier theory and without the recourse to special
functions [9].
Plane-wave models are historically linked to the far-field

(Fraunhofer) propagation regime wherein wavefronts are
approximated as locally planar [10]. This has been exten-
sively used in the past wireless research at sub-6 GHz
frequency bands [11]–[14]. However, as communications
scale up in frequency entering the millimeter-wave and sub-
terahertz frequency bands [15]–[17], antenna arrays become
electromagnetically large (compared to the wavelength). The
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plane-wave assumption breaks down naturally in this regime,
with potentially dramatic effects on system performance. For
example, the incorporation of the wavefront curvature in
line-of-sight (LoS) channels offer spatial multiplexing capa-
bilities – similar to the ones of non-line-of-sight (NLoS)
channels – even for a single user scenario [17]. Research
in this direction is taking place under the names of holo-
graphic multiple-input-multiple-output (MIMO) [18]–[20],
large intelligent surfaces [21], and reconfigurable intelligent
surfaces [22].
Based on the above discussion, there is a common belief

in the wireless community that plane-wave models are inad-
equate to describe future wireless networks. The objective
of this paper is to show that is not correct. In fact, classical
physics teaches us that wave propagation can always be for-
mulated in terms of plane waves irrespective of the commu-
nication range (i.e., even in the near-field region) and under
arbitrary propagation environments [5], [23]. This result
builds upon Weyl’s decomposition of a spherical wave into
plane waves [5], [24] and scattering matrix theory [25]–[28].
For simplicity, we focus on scalar electromagnetic fields,
which physically correspond to acoustic propagation in gen-
eral [29]. Generalization to vector electromagnetic channels
would allow incorporating polarization [30], [31].

A. CONTRIBUTIONS
We start by uncovering the fundamentals of scalar wave
propagation theory in deterministic environments. These are
typically modeled by using ray-tracing tools or numer-
ical electromagnetic solvers [32]. Both are not analyti-
cally tractable [9]. Similarly to [13], [33], we consider a
continuous-space model that enables a functional viewpoint
of MIMO channels; spatial sampling and discrete formula-
tion tend to hide fundamental results, which are otherwise
revealed by a continuous analysis [18]. Our development
breaks down the entire wave propagation problem into three
parts:
1) The transmission of (possibly) an infinite number of

plane waves by a source distribution;
2) The reception of another (possibly) an infinite number

of plane waves at receiver, upon interaction with the
environment;

3) A linear scattering operator mapping the input spec-
trum onto the output spectrum of plane waves.

The analysis shows that the electromagnetic channel can
generally be modeled as a linear and space-variant system
that is fully described by its six-dimensional spatial impulse
response h(r, s) at point r due to a unit impulse (point
source) applied at point s. This is obtained exactly as a four-
dimensional (4D) Fourier plane-wave representation that is
function of the two horizontal wavenumber coordinates at
source and receiver – each one parametrizing every transmit
and receive directions. In agreement with [34], electromag-
netic channels have only an apparent full informational
structure, which is subjected to a lower dimensional rep-
resentation. In the above representation, Fourier transforms

at source and receiver provide a map between the spatial and
the wavenumber (or angular) domains. The entire effect of
the propagation environment is captured by an angular kernel
describing the coupling between every pair of transmit and
receive directions. Compared to previous plane-wave rep-
resentations available in the wireless literature [11], [13],
ours is applicable even in the reactive near-field region
and embodies the lower dimensionality of electromagnetic
channels.
Deterministic characterization of the angular kernel

applies only to a specific environment. Instead, a stochastic
description represents an environmental class with common
physical properties, with every ensemble describing propaga-
tion into hypothetically different environments. A stochastic
channel encompasses a large-scale fading and a small-scale
fading. This paper only considers the small-scale fading. Any
large-scale fading model can be applied verbatim if the array
size at both ends does not exceed the size of the local scat-
tering neighborhood [35, Sec. 3.6]. Our development builds
upon the two following assumptions: complex Gaussian dis-
tribution and wide-sense spatial stationarity. These yield a
Rayleigh fading model where h(r, s) is a spatially stationary
circularly symmetric complex Gaussian electromagnetic ran-
dom field [9], [18]. Unlike [18], this paper accounts for the
presence of a radiating source. We show that the stochastic
angular kernel has jointly Gaussian entries that are statisti-
cally independent from one direction to another. Altogether,
we obtain a Fourier spectral representation of the electro-
magnetic random channel that exactly describes h(r, s) only
asymptotically, i.e., as the normalized array size (compared
to the wavelenght) grows to infinity.

B. OUTLINE OF THE PAPER
The manuscript is organized as follows. In Section II, we
provide a linear-system theoretic description of LoS prop-
agation environments and derive the Fourier plane-wave
representation of the channel impulse response. This is
extended in Section III to deterministic NLoS environments
under arbitrary conditions. Stochastic propagation environ-
ments are introduced in Section IV. Customization of the
developed channel model to a prescribed environmental class
is exemplified in Section VI. Final discussions and possible
extensions of this paper are set forth in Section VII.

C. NOTATION
We use upper (lower) case letters for spatial-frequency
(spatial) entities. Blackboard bold letters denote integral
operators. Boldfaced letters indicate vectors and matrices.
The superscripts T and H stand for transposition and her-
mitian. � denotes the Hadamard product. R

n and C
n

denote the n-dimensional Euclidean spaces of real- and
complex-valued numbers, Re(·) and Im(·) denote real and
imaginary parts, | · | denotes absolute value, �x� denotes
the least integer greater than or equal to x, δ(x) is the
Dirac delta function, δn is the Kronecker delta function.
Calligraphic letters are used for sets. m(X ) denotes the
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FIGURE 1. LoS wave propagation into a homogeneous and isotropic medium. A
source density j(r) creates an upgoing and a downgoing spectrum of plane waves
traveling along the z- and −z-axis, respectively.

Lebesgue measure, 1X (x) is the indicator function. A gen-
eral point r = xx̂ + yŷ + zẑ in R

3 is described by its
Cartesian coordinates (x, y, z) with ‖r‖ = √

x2 + y2 + z2

the Euclidean norm. ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
is the scalar

Laplace operator. E{·} denotes the expectation operator. The
notation n ∼ NC(0, σ 2) stands for a circularly-symmetric
complex-Gaussian random variable with variance σ 2.

II. LINE-OF-SIGHT PROPAGATION
Consider a LoS propagation scenario wherein source and
receiver are in visibility to each other due to the absence of
any obstacle. This scenario is illustrated in Fig. 1 and can be
modeled as a linear and space-invariant (LSI) system, which
is fully described by its channel impulse response at any
point r [29]. Linearity is due to the Maxwell’s equations [5],
while space-invariance is physically due to the fact that a
LoS propagation environment appears the same irrespective
of any space translation applied at source and/or receiver.

A. LINEAR AND SPACE-INVARIANT ELECTROMAGNETIC
CHANNELS
A space-time source density j(r, t) occupies a physical vol-
ume VS ⊂ R

3 and generates a scalar electric field e(r, t).
Propagation takes place into a three-dimensional (3D) homo-
geneous, isotropic and unbounded1 medium with velocity
c = 1/

√
με, μ and ε being the permeability and permittivity

constants. The electric field must obey the inhomogeneous
wave equation driven by j(t, r). After taking a Fourier trans-
form to both sides, this is equivalent to the inhomogeneous
Helmholtz equation in the temporal-frequency domain:

∇2e(ω, r) + (ω/c)2e(ω, r) = jωμj(ω, r). (1)

The above equation describes a linear and space-time invari-
ant system [29], as the output spectrum is obtained by
multiplying the input and output spectra

E(ω, κ) = H(ω, κ) J(ω, κ) (2)

1. For an unbounded medium we do not need to specify boundary
conditions.

which is shown by taking a spatial Fourier transform2 of both
sides of (1). In (2), H(ω, κ) is the wavenumber-frequency
response of the space-time invariant system given by

H(ω, κ) = jωμ

‖κ‖2 − (ω/c)2
. (3)

The essence of LoS propagation is so fully captured
by (3), which describes a two-poles system. Nevertheless, the
majority of signals used in wireless communications are nar-
rowband, implying that J(ω, κ) is a time-harmonic source at
frequency ω. Hence, we can neglect the temporal (frequency)
dependence of (3), which corresponds to a phasor notation
in electromagnetism [5, Sec. 1.1.3].
The resulting LSI system is completely characterized by its

spatial response h(r) due to an impulse (point source) applied
at any point r. This response must obey the inhomogeneous
Helmholtz equation driven by δ(r):

∇2h(r) + κ2h(r) = jκηδ(r). (4)

where we introduced the wavenumber κ = ω/c and the wave
impedance η = √

μ/ε constants. Here, h(r) is found by
solving the second-order partial differential equation in (4),
whose solution is well-known and given by

h(r) = −jκηG(r) (5)

where G(r) is the scalar Green’s function [5, eq. (1.3.42)]

G(r) = ejκr

4πr
= G(r) (6)

which only depends on r = ‖r‖. Physically, (6) describes an
outgoing scalar spherical wave that propagates radially from
the point source. In fact, the total phase shift accumulated
by the spherical wave over a sphere of fixed radius r is the
same regardless of the observation point r. The input-output
relationship between e(r) and j(r) is the spatial convolution

e(r) =
∫

R3
ds j(s)h(r − s) (7)

where h(r − s) is the space-invariant channel impulse
response in (5) at point r due to an impulsive input (point
source) applied at s. Physically, the output field is described
by an integral superposition of spherical waves each one of
which is generated at point s. Superimposing contributions
generated by all points s ∈ VS yields a non-planar wave
with some curvature.
In summary, the field e(r) created by any spatially dis-

tributed source j(r) can be essentially described in terms of
spherical waves. We next show that the same argument is
valid for plane waves.

2. We use the convention H(ω, κ) = ∫
R3
∫∞
−∞ drdt a(r, t)ej(ωt−κTr) for

space-time Fourier transforms. Time and space domains are mapped onto
frequency and spatial frequency (or wavenumber) domains [3, Sec. 1.2].
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B. IMPULSE RESPONSE OF LOS ELECTROMAGNETIC
CHANNELS
The Weyl’s identity [24] relates a spherical wave to an
uncountably infinite number of plane waves traveling to
every directions [5, eq. (2.2.27)],

ejκr

r
= j

2π

∫∫ ∞

−∞
dκxdκy

ej(κxrx+κyry+γ (κx,κy)|rz|)

γ
(
κx, κy

) . (8)

This is found by computing the inverse spatial Fourier
transform of (6) with respect to the κz-coordinate, now
γ (κx, κy), that is parametrized by the horizontal wavenumber
coordinates (κx, κy) ∈ R

2 as

γ (κx, κy) =
⎧
⎨

⎩

√
κ2 − κ2

x − κ2
y κ2

x + κ2
y ≤ κ2

j
√

κ2
x + κ2

y − κ2 κ2
x + κ2

y > κ2.
(9)

Notice that Re(γ ) ≥ 0 and Im(γ ) ≥ 0 in (9), which are
known as the Sommerfeld’s radiation condition at infin-
ity for an unbounded medium and ensure convergence of
the improper integral in (8) [5], [23]. The triplet (κx, κy, γ )

always satisfies the condition κ2
x + κ2

y + γ 2 = κ2 for all
(κx, κy) ∈ R

2 and, after normalization, specifies the direction
of propagation of each outgoing plane wave, namely

κ̂± = x̂
κx

κ
+ ŷ

κy

κ
± ẑ

γ (κx, κy)

κ
(10)

= x̂ sin θt cos φt + ŷ sin θt sin φt + ẑ cos θt (11)

where (θt, φt) ∈ [0, π ]×[0, 2π) are the elevation and azimuth
angles in the source reference frame. Due to the connec-
tion between the wavenumber and angular domains, we will
refer to spatial frequencies or angles indistinctly. For each
direction, there are two types of plane waves, i.e., upgoing
and downgoing plane waves. The former travel in the half-
space z > 0 (i.e., θt ∈ [0, π/2]) and are specified by a term
ejγ rz . Instead, the latter travel in the half-space z < 0 (i.e.,
θt ∈ (π/2, π ]) and are of the form e−jγ rz . We will use the +
and − convention to distinguish between quantities associ-
ated with upgoing and downgoing waves, respectively. The
plane-wave decomposition of h(r) is obtained by substitut-
ing the Weyl’s identity (8) into (5) and is finally reported
next.
Lemma 1: The channel response h(r) modeling a LoS

propagation environment is exactly given by the 2D Fourier
plane-wave representation

h(r) = κη

2

∫∫ ∞

−∞
dκx
2π

dκy
2π

ej(κxrx+κyry+γ (κx,κy)|rz|)
γ (κx, κy)

(12)

where γ (κx, κy) is defined in (9).
The channel impulse response is obtained as an integral

superposition of upgoing and downgoing plane waves each
one having angle-dependent amplitude 1/γ . Notice that this
representation is perfectly consistent with physics as plane
waves are natural eigen-solutions of the Helmholtz equa-
tion [5]. In the physics literature, representations in the form
of (12) are known as angular representations for obvious
reasons [36]–[38]. A linear system-theoretic interpretation
of (12) is given next.

C. WAVENUMBER RESPONSE AND MIGRATION FILTER
For any fixed rz ∈ R, each plane wave can be regarded as
a phase-shifted version of a 2D spatial-frequency Fourier
harmonic, namely

ej(κxrx+κyry+γ |rz|) = ej(κxrx+κyry)ejγ |rz| (13)

where the phase-shift is applied along the z-axis. Based on
this observation, h(r) in (12) can be rewritten in terms of
its wavenumber response via a 2D inverse spatial Fourier
transform

h(r) =
∫∫ ∞

−∞
dκx
2π

dκy
2π

H(κx, κy)e
j(κxrx+κyry) (14)

with spectrum

H(κx, κy) = κη

2

1

γ (κx, κy)
ejγ (κx,κy)|rz| (15)

where the dependence of the channel’s spectrum on the
parameters rz is omitted. Due to the multiplicative nature
of (15), the LoS channel can be regarded as a cascade of
two LSI systems having wavenumber responses given by 1/γ

and ejγ |rz|. The former uniquely describes the channel at the
rz = 0 plane and is due to the Helmholtz equation in (4) that
enforces a ‘bowl-shaped’ behavior in the channel’s spectrum.
This agrees with the plane-wave nature of the channel for
which the spherical constraint κ2

x + κ2
y + γ 2 = κ2 holds.

When parametrized on the κxκy-plane, 1/γ accounts for the
area change of the parametrized surface element [18]. At any
non-zero rz, the channel is obtained by passing h(rx, ry, 0)

through an LSI system with wavenumber response ejγ |rz|.
This filtering operation is known in physics as migration
and the associated system as migration filter [39]. This
behaves as either an all-pass filter that simply introduces
a phase shift or as a low-pass filter that cuts out spatial
frequencies above certain values. This is because (κx, κy) can
vary independently in R

2 and hence γ in (9) is either real-
or imaginary-valued. In particular, γ is real-valued within

D =
{
(κx, κy) ∈ R

2 : κ2
x + κ2

y ≤ κ2
}

(16)

given by a disk of radius κ = 2π/λ and imaginary-valued
elsewhere. Hence, the exponential

ej(κxrx+κyry+γ |rz|) = ej(κxrx+κyry)ejRe(γ )|rz|e−Im(γ )|rz| (17)

is either an oscillatory or an exponentially-decaying function
in rz with decay factor proportional to rz/λ. Plane waves
with horizontal wavenumber coordinates (κx, κy) ∈ D are
called propagating – due to their capability of propagating
wirelessly over longer distances – or evanescent otherwise.
Hence, for communication ranges of at least a few wave-
lengths, the LoS channel begin showing a low-pass filtering
behavior; see [39, Fig. 1]. Moreover, since H(κx, κy) depends
only on κ2

x + κ2
y through γ in (9), this filter is of circular

low-pass type, as summarized next.
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Corollary 1: When evanescent waves are discarded, the
channel impulse response h(r) is circularly bandlimited with
spatial bandwidth

m(D) = πκ2 = 4π3

λ2
(18)

inversely proportional to the wavelength squared.
An application of the above result is the generalization of

the sampling theorem for bandlimited time-domain signals
to spatial electromagnetic channels [39].

D. FRAUNHOFER FAR-FIELD APPROXIMATION
We now recall the conditions under which h(r) becomes the
Fraunhofer far-field model [40]. We consider a reference
point r0 = x̂rx,0 + ŷry,0 + ẑrz,0 of radius r0 = ‖r0‖ and
observe h(r) in a neighbourhood of this point, i.e., at all
points r = r0 − r′ with r′ = x̂r′x + ŷr′y + ẑr′z. The Weyl
identity in (8) yields

ejκ‖r0−r′‖

‖r0 − r′‖ = j
2π

∫∫ ∞

−∞
dκxdκy

1

γ (κx, κy)

ej(κx(x0−x′)+κy(y0−y′)+γ (κx,κy)|z0−z′|) (19)

given γ (κx, κy) as in (9). In the half-space z′ > z0,

h(r) =
∫∫ ∞

−∞
dκxdκy

F
(
κx, κy

)

γ
(
κx, κy

)ejκr0g(κx,κy) (20)

where F(κx, κy) = κη

2(2π)2 e
−j(κxx′+κyy′+γ (κx,κy)z′) and

g
(
κx, κy

) = κx

κ

x0

r0
+ κy

κ

y0

r0
+ γ

(
κx, κy

)

κ

z0
r0

. (21)

When at least one of the Cartesian coordinates of r0 is
much larger than the wavelength, i.e., r0/λ is very large, the
term ejκr0g(κx,κy) in (20) rapidly oscillates as a function of
(κx, κy) thus creating an almost zero net contribution due to
several periodic cycles adding together destructively. Most
of the contributions to the integral will come from around
the stationary point of g(κx, κy) where the function slowly
varies [5, Sec. 2.5.1]. Hence, the integral is amenable to
the stationary phase approximation based on which the only
non-negligible contribution to (20) is around the stationary
points of g(κx, κy) where its partial derivatives are zero,

(
κx,0, κy,0

) =
(

κ
x0

r0
, κ
y0

r0

)
(22)

so that κz,0 = κ z0/r0. The stationary phase point describes
a propagation direction κ̂0 = x̂ x0/r0 + ŷ y0/r0 + ẑ z0/r0 that
points toward the reference point r0. Hence, even though a
source emanates plane waves in all directions, several wave-
lengths away from the source, only one (or a few at most)
plane waves around the stationary point are important [40].
The contribution to the channel field from all other direc-
tions becomes negligible. Pulling out the slowly varying part
in (20) sampled at (22), i.e., F(κx,0, κy,0), and applying the
Weyl identity (8) to the remaining integral yields

h(r) ≈ −jκη
ejκr0

4πr0
e
−j κ

r0
(x0x′+y0y′+z0z′) (23)

= −jκη

4πr0
ejκ(r0−r′·r̂0). (24)

Thus, in the Fraunhofer far-field region, all points in a neigh-
borhood of the reference point see plane waves coming
from the same direction κ̂0. The level of this approxima-
tion depends on r0. The larger the distance, the higher the
approximation accuracy. As an example, for a squared obser-
vation region of size L m, a maximum phase error of π/8
across this region requires r0 ≥ 2L2/λ where the minimum
value for which this approximation is valid is known as
Fraunhofer distance [10, eq. (4.47)].
Next, we show that the wave propagation problem can

be modeled exactly in terms of plane waves regardless
the communication range and under arbitrary propagation
conditions.

III. NON LINE-OF-SIGHT PROPAGATION
Wave propagation between communicating devices generally
takes place in a NLoS environment due to the presence of
scatterers in their surroundings. The transmitted plane-wave
spectrum created by the source interacts with these objects
through different propagation mechanisms (e.g., scattering,
reflection, diffraction) before reaching the receiver distorted.
We will refer to the interacting objects simply as scatter-
ers, without distinguishing between the different types of
interaction. The scatterers can be of any shape and size. The
wave propagation problem can be studied exactly in terms
of plane waves and decomposed into three subproblems:
i) the creation of a transmit spectrum of plane waves by
the source, ii) the measurement of another receive spectrum
of plane waves by the receiver, and iii) the linear mapping
between the two spectra [30].
Next, we elaborate on each subproblem separately and

put them together to obtain a linear and space-variant (LSV)
description of the channel.

A. FOURIER PLANE-WAVE REPRESENTATION OF
TRANSMITTED FIELD
We evaluate the transmitted field by the source at an
intermediate point r′ = x̂r′x + ŷr′y + ẑr′z placed before
any interaction with the scatterers could possibly occurs.
Plugging (12) at r′ into (7), we obtain

et(r′) = κη

2(2π)2

∫∫ ∞

−∞
dκxdκy

e
j
(
κxr′x+κyr′y

)

γ (κx, κy)∫

R3
ds j(s)e−j(κxsx+κysy)ejγ (κx,κy)|r′z−sz|. (25)

Since source and receiver shall never be physically over-
lapped, outside of a sphere of radius R0 > 0 embedding VS,

et(r′) =

⎧
⎪⎪⎨

⎪⎪⎩

∫∫ ∞

−∞
dκx
2π

dκy
2π

E−
t (κx, κy)e

j
(
κxr′x+κyr′y−γ r′z

)

r′z < −R0
∫∫ ∞

−∞
dκx
2π

dκy
2π

E+
t (κx, κy)e

j
(
κxr′x+κyr′y+γ r′z

)

r′z > R0

(26)
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where each plane wave has complex-valued amplitude

E±
t (κx, κy) = κη

2

J±(κx, κy)

γ (κx, κy)
(27)

with J±(κx, κy) the wavenumber spectrum of j(r) obtained
via a 3D spatial Fourier transform evaluated at κz = ±γ ,
i.e.,

J±(κx, κy) =
∫∫∫

VS
j(s)e−j(κxsx+κysy±γ sz)ds. (28)

As a check, for a unit impulse (point source) located at the
origin, i.e., j(s) = δ(s), the use of the Weyl identity (8)
into (26) correctly yields the spherical wave solution in (5).
In brief, the external effect of any current density is the cre-
ation of an outgoing spectrum of plane waves (propagating
and evanescent). The corresponding transmitted field is given
by the 2D Fourier plane-wave representation in (26) with a
possible interpretation as either a plane-wave representation
or an inverse 2D spatial Fourier transform. This is due to
the connection between plane waves and Fourier harmonics
in (13).
Accordingly, (28) is the Fourier plane-wave transform of

the source density. Notably, only the wavenumber points
at κz = ±γ (κx, κy) contribute to the plane wave spec-
trum in (27), which reveals the lower dimensional nature
of the channel. This was also pointed out in [34], stating
that the world has only an apparent 3D informational struc-
ture, which is subject to a 2D representation. Notably, the
3D spectra J±(κx, κy) of the source density is parametrized
by (κx, κy) ∈ R

2, which means the volumetric source can
always be replicated exactly by a planar source of infinite
extent. This in agreement with the fundamental Huygens
principle in electromagnetic theory and the physics Stokes’
theorem [5, Sec. 1.4].
Finally, it is worth mentioning that an alternative approach

leading to (26) may be followed. This involves comput-
ing the inverse spatial Fourier transform of (2) with respect
to κz. Due to the presence of real-valued poles in (3) for
any lossless medium, integration must be performed in the
complex κz plane by using Cauchy’s integral theorem and
Jordan’s lemma [29]. However, some of the steps in [29]
are already included into the proof of the Weyl’s iden-
tity (e.g., [5, Sec. 2.2]), which simplifies the analytical
treatment.

B. FOURIER PLANE-WAVE REPRESENTATION OF
RECEIVED FIELD
While the transmitted field in (26) is artificially created by
the current density, a received field er(r), upon interaction
with the scatterers, is measured at any point r. Clearly, er(r)
does not require any external stimulus at the receiver to exist
and is thus locally source-free. Physically, it must obey the
homogeneous Helmholtz equation [5, Sec. 1.2.2]

∇2er(r) + κ2er(r) = 0 (29)

which constitutes an eigenvalue equation of the Helmholtz
operator (∇2 + κ2). Natural eigen-solutions of (29) are the

receive plane waves ej(kxrx+kyry±γ rz) [5, eq. (1.2.23)]. The
general solution to (29) is constructed by considering the
entire eigenspace spanned by these eigenfunctions in the
form of a 2D Fourier plane-wave representation [41, Sec. 6.7]

er(r) =
∫∫ ∞

−∞
dkx
2π

dky
2π

ej(kxrx+kyry)

×
(
E+
r (kx, ky)e

jγ rz + E−
r (kx, ky)e

−jγ rz
)

(30)

where each plane wave has arbitrary complex-valued ampli-
tude E±

r (kx, ky) for every received direction

k̂± = x̂
kx
κ

+ ŷ
ky
κ

± ẑ
γ
(
kx, ky

)

κ
(31)

= x̂ sin θr cos φr + ŷ sin θr sin φr + ẑ cos θr (32)

given (θr, φr) ∈ [0, π ] × [0, 2π) as elevation and azimuth
angles in the receiver reference frame. Similar to (26),
the received field in (30) is created by an integral super-
position of upgoing (i.e., θr ∈ [0, π/2]) and downgoing
(i.e., θr ∈ (π/2, π ]) plane waves (propagating and evanes-
cent). Differently to (26), where each plane-wave amplitude
E±
t (κx, κy) depends deterministically on j(r) through (27),

the exact values of E±
r (kx, ky) in (30) are generally not known

as they may be related to E±
t (κx, κy) through complicated

interaction mechanisms.
Summarizing, the sole action of a source density is to

create a pair of transmitted plane-wave spectra E±
t (κx, κy)

(upgoing and downgoing) in each of the two half-spaces
created by the source. An observer measures another pair of
received plane-wave spectra E±

r (kx, ky) (upgoing and down-
going). These four possible connections will be studied next
in its most general form.

C. LINEAR SCATTERING OPERATOR
Each plane wave from receive propagation direction k̂±
is the result of an interaction between all transmit plane
waves traveling towards κ̂± and the scatterers. In other
words, each receive plane-wave amplitude E±

r (kx, ky) is
induced by all transmitted plane-wave amplitudes E±

t (κx, κy)

for (κx, κy) ∈ R
2 through an integral functional operator

modeling propagation in arbitrary environments [25]–[28].
There are four possible physical interactions among the two
plane-wave spectra created at source and other two spec-
tra measured at receiver with associated functionals, which
calls for a more suitable vector formulation. To this end,
we stack upgoing and downgoing quantities associated with
both fields together into a column vector. At the source, we
define for all (κx, κy) a complex-valued transmit plane-wave
spectrum

Et(κx, κy) =
(
E+
t (κx, κy)

E−
t (κx, κy)

)
(33)

and an array response vector

a(κx, κy, s) =
(
e−j(κxsx+κysy+γ (κx,κy)sz)

e−j(κxsx+κysy−γ (κx,κy)sz)

)
(34)
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FIGURE 2. Wave propagation into a homogeneous and isotropic medium with scatterers (possibly) located everywhere in space.

FIGURE 3. Block diagram illustration of wave propagation in arbitrary NLoS channels.

where the latter is known a-priori as depend uniquely on the
source geometry. Similarly, at receiver, (30) becomes

e(r) = 1

(2π)2

∫∫ ∞

−∞
dkxdky aH

(
kx, ky, r

)
Er
(
kx, ky

)
(35)

with complex-valued receive plane-wave spectrum

Er(kx, ky) =
(
E+
r (kx, ky)
E−
r (kx, ky)

)
(36)

and associated array response vector a(kx, ky, r) obtained
from (34). The entire informational structure of the
interaction mechanism is contained in the wavenumber
domain. Precisely, in a 2 × 2 matrix functional mapping
Et(κx, κy) in (33) onto Er(kx, ky) in (36). Due to linearity of
the Helmholtz equation in (1) (and Maxwell’s equation in
general), we expect this map to be linear given by a complex
integral operator Er = (KEt)(kx, ky) defined as [25], [26]

Er(kx, ky) =
∫∫ ∞

−∞
dκxdκyK(kx, ky, κx, κy)Et(κx, κy) (37)

where

K(kx, ky, κx, κy) =
(
K++(kx, ky, κx, κy) K+−(kx, ky, κx, κy)
K−+(kx, ky, κx, κy) K−−(kx, ky, κx, κy)

)

(38)

is the propagation kernel matrix of the operator K map-
ping transmitted plane waves to every received plane wave.
We keep the same sign convention used elsewhere in this
paper for the entries of (38) being associated with upgoing
and downgoing waves. Precisely, the first subscript refers to
received plane waves, while the second subscript refers to
transmitted plane waves; see Fig. 2. For example, the sub-
script −+ stands for upgoing transmitted plane waves and
downgoing received plane waves. Also, since the propaga-
tion medium shall never amplify the transmitted field, every

entries of (38) must be a square-integrable kernel such that
∫∫∫∫ ∞

−∞
dkxdkydκxdκy

∣∣K±±
(
kx, ky, κx, κy

)∣∣2 ≤ 1 (39)

which implies conservation of energy for any source of finite
energy via Cauchy-Schwarz inequality. Equality in (39) is
achieved when the propagation medium is lossless so that
no radiated energy is lost during transmission.
Despite our formulation is applicable to every possible

propagation scenario, a particular choice of the propagation
kernel customizes the developed model to a prescribed envi-
ronmental class (e.g., rural, urban, canyon). To this purpose,
we next provide a few simplified examples on how to model
K(kx, ky, κx, κy) in (38).
Example 1 (LoS Propagation): With no scatterers, all

transmitted plane waves reach the receiver unaltered so that

K(kx, ky, κx, κy) = (2π)2δ(ky − κy)δ(kx − κx)

(
1 0
0 0

)
(40)

for all rz > R0. The impulsive nature of this kernel is due
to the one-to-one correspondence k̂+ = κ̂+ between every
pair of source and receive directions.
Example 2 (Propagation via Reflection): Consider an infi-

nite, z-oriented, smooth surface of arbitrary composition
(ε, μ) that is located at rz = d1. The reflected channel created
by the interaction with this surface is modeled as [42]

K(kx, ky, κx, κy) = (2π)2δ(ky − κy)δ(kx − κx)

R(kx, ky)e
j2γ (κx,κy)d1

(
0 0
1 0

)
(41)

for all d1 > R0. Here, R(kx, ky) is the Fresnel reflection coef-
ficient that specifies the fraction of transmitted plane-wave
spectrum that is reflected off by the surface [5, Sec. 2.1.2].
The phase term in (51) accounts for the round-trip phase
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delay accumulated by each transmitted plane wave during
its travel to the surface and backwards, along the z-axis.
Example 3 (Multi-Path Propagation): With scatterers

located in the far field regions of source and receiver, propa-
gation is specified by a finite number of preferred directions
(or paths) generated by a cluster i. Each path j is associated
with a transmitted plane wave to direction κ̂+,j and another
receive plane wave from direction k̂+,j. Both are related
to a complex propagation coefficient Ki,j. Altogether, for
scatterers separating source and receiver,

K(kx, ky, κx, κy) = (2π)4
Nc∑

i=1

∑

j∈Ci
Ki,j δ(ky − ky,j)

δ(kx − kx,j)δ(κy − κy,j)δ(κx − κx,j)

(
1 0
0 0

)
(42)

where Nc is the number of clusters and Ci the number of
paths within each cluster.
In general, the interaction mechanism between the plane-

wave spectra at source and receiver will be given by a
composition of different physical phenomena. Nevertheless,
due to linearity of the scattering operator, each of these phys-
ical interactions can be modeled independently by specifying
a suitable kernel matrix K(kx, ky, κx, κy) and finally added
together in (37) to obtain the total contribution.

D. IMPULSE RESPONSE OF NLOS ELECTROMAGNETIC
CHANNELS
The input-output relationship between e(r) and j(s) is the
spatial convolution:

e(r) =
∫

R3
ds j(s)h(r, s) (43)

where h(r, s) is the space-variant channel impulse response
at point r due to a unit impulse (point source) applied at
point s. Compared to the LoS scenario, the space variance of
the channel is caused by the propagation environment now
being sensitive to a space-shift of source and/or receiver (i.e.,
the relative distances and angles among source, receiver, and
scatterers change). The closed-form expression of h(r, s) is
provided next.
Theorem 1: The channel response h(r, s) modeling an

arbitrary NLoS propagation environment is exactly given by
the 4D Fourier plane-wave representation

h(r, s) = 1

(2π)2

∫∫∫∫ ∞

−∞
dkxdkydκxdκy aH(kx, ky, r)

H(kx, ky, κx, κy)a(κx, κy, s) (44)

where a(·, ·) is the array response vector in (34) and we
introduced the angular response matrix

H(kx, ky, κx, κy) = κη

2

K(kx, ky, κx, κy)√
γ (kx, ky)

√
γ (κx, κy)

(45)

parametrized by K(kx, ky, κx, κy) in (38).
Proof: The proof is given in Appendix A.

The above result generalizes the channel impulse response
in (12), derived for a LoS scenario, to arbitrary propagation
environments. The LoS channel is obtainable from (44) after
substituting the corresponding propagation kernel in (40).
We can breakdown (44) as generated by three contribu-

tions. The first term is the array response vector a(κx, κy, s)
in (34) that maps an impulsive excitation current at s to
every outgoing propagation direction κ̂±. Similarly, the sec-
ond term is the array response vector aH(kx, ky, r) that maps
every incoming propagation direction k̂± to the induced cur-
rent at r. The third term H(kx, ky, κx, κy) of the channel
h(r, s) is given in (45) and represents the angular response
matrix that maps every incident direction κ̂± into every other
receive direction k̂±, for all four combinations of upgoing
and downgoing directions. Clearly, the sole action of an array
response is to change domain of representation, i.e., from
spatial to angular and vice-versa. Both contain information
about the source and receiver geometry. Everything else is
embedded into the angular response that fully describes the
underlying interaction mechanism through (38).
Remarkably, the separate structure of h(r, s) in (44) is

enforced by physics without any additional assumption.
Suitably sampled in the spatial domain, it leads to a decou-
pled structure of the MIMO channel matrix where impact of
array configuration and scatterers are separated. This prop-
erty can be leveraged to build a transceiver architecture
where antenna placement and signal processing algorithms
are designed independently [19]. Also, the number of radio
frequency chains required for data processing is fundamen-
tally lower than the number of antennas used at the front end,
as it depends on the solid angle subtended by the scatterers
and array size jointly. Altogether brings a significant com-
plexity reduction in channel estimation, optimal signaling,
and coding [19].

E. WAVENUMBER RESPONSE
For any fixed pair (rz, sz), each entry of (34) correspond
to a phase-shifted version of a 2D spatial-frequency Fourier
harmonic, where the phase shift is applied along the z-axis,

a(κx, κy, s) = e−j(κxsx+κysy)φ(κx, κy, sz) (46)

with φ(κx, κy, sz) = [e−jγ (κx,κy)sz , ejγ (κx,κy)sz ]T. Building on
this analogy, h(r, s) in (44) may be rewritten as a 4D inverse
spatial Fourier transform3

h(r, s) = 1

(2π)2

∫∫∫∫ ∞

−∞
dkxdkydκxdκy e

j(kxrx+kyry)

H
(
kx, ky, κx, κy

)
e−j(κxsx+κysy) (47)

in terms of its wavenumber response

H
(
kx, ky, κx, κy

)

= φH(kx, ky, rz
)
H
(
kx, ky, κx, κy

)
φ(κx, κy, sz) (48)

3. The change of sign in (47) at the receiver, with respect to the standard
Fourier transform, is due to a change of the reference system.
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where the spectrum dependence on the parameters (rz, sz) is
omitted. The obtained Fourier representation in (47) should
be compared to the plane-wave representation in (44). While
the former is the map between the space domain and angu-
lar domain in terms of plane waves, the latter represents the
map between the space domain and wavenumber (spatial-
frequency) domain in terms of Fourier harmonics. The entire
information of the channel is embedded into the wavenum-
ber response H(kx, ky, κx, κy) of the channel in (48), which
specifies the response at spatial frequency (kx, ky) due to an
oscillating input at spatial frequency (κx, κy). The upgoing-
upgoing term in (15) is one of the four spectral contributions
obtained by using (45) into (48).
Similarly to the LoS scenario, the channel is subjected to

a filtering operation due to migration filters that determines
the maximum spatial bandwidth [39], [43]. On the contrary,
in a NLoS scenario, the spatial bandwidth depends on the
richness of the scattering through the wavenumber support
of the propagation kernel, say K ⊆ D,

m(K) ≤ m(D) (49)

where the equality is achieved under isotropic propagation
for which we have that K = D (see also Section VI-A). The
above consideration can be used to determine the dimen-
sionality of an electromagnetic channel under arbitrary NLoS
conditions, namely the degrees of freedom (DoF). In particu-
lar, the number of DoF per unit area is derived from Landau’s
eigenvalue formula as m(K)/(2π)2 [39]. This result is as
tight as the array size is large compared to the wavelength
and has similar implications to the Shannon’s DoF formula
for time-domain channels.

F. CHANNEL RECIPROCITY FOR DOWNLINK
COMMUNICATIONS
The behavior of a scalar electromagnetic channel is governed
by the Helmholtz equation in (1). Rooted in the symmetry
of the Helmholtz operator, the reciprocity theorem states
that the channel remains unchanged if one interchanges the
points where the source is placed and the field is measured
[10, Sec. 3.8]. For a scalar LoS channel, it yields reci-
procity of the Green’s function in (6), i.e., G(r, s) = G(s, r).
Notice that this is a stronger condition than the space-
invariance of h(r−s) and it is due to the rotational symmetry
of (6). Generalization to a vector electromagnetic channel
(i.e., including polarization) implies an additional symmetry
of the dyadic Green’s function matrix [5, Sec. 1.3.4].
Building upon this, we apply reciprocity theorem to arbi-

trary NLoS channels and look at its implication on the
angular domain. The main result is summarized next.
Lemma 2: Let h(r, s) be the channel response of an

arbitrary NLoS channel system given by Theorem 1. The
response h(s, r) of the reciprocal system obtained interchang-
ing source and receiver has the same form, but with angular
response matrix HT(−κx,−κy,−kx,−ky).
Proof: The proof is given in Appendix B.

Intuitively, interchanging source and receiver while main-
taining the same reference system, implies reversing the
direction of propagation. This operation has a three-fold
effect on the angular response matrix: the interchange
between source and receive propagation directions with
change of variables from (kx, ky) to (κx, κy) and vice versa, a
reflection of all propagation directions about the z-axis with
additional negative sign from (kx, ky) to (−κx,−κy), and a
transpose operation due to upgoing (downgoing) plane waves
becoming downgoing (upgoing) plane waves. As an exam-
ple of channel reciprocity, we next provide the propagation
kernel leading to the reciprocal channel for the examples
provided in Section III-C. For the LoS case, we obtain

K
(
kx, ky, κx, κy

) = (2π)2δ
(
ky − κy

)
δ(kx − κx)

(
0 0
0 1

)
(50)

for all rz < −R0. With respect to (40), we notice a
downgoing-downgoing interaction only in the scattering
matrix. Instead, for the reflected channel from a z-oriented
half-space,

K(kx, ky, κx, κy) = (2π)2δ(ky − κy)δ(kx − κx)

R(−kx,−ky)ej2γ (κx,κy)d1

(
0 1
0 0

)
(51)

for all d1 < −R0.

IV. STOCHASTIC CHARACTERIZATION OF AN
ELECTROMAGNETIC CHANNEL
Stochastic channel models have been used by communica-
tion theorists since their introduction due to their wide range
of applicability [44]. In a stochastic formulation, the chan-
nel response is modeled as a spatial electromagnetic random
field with each realization being representative of wave prop-
agation into a hypothetically different environment. This is
generally given by the sum of a deterministic component
plus another zero-mean random component, which yields
Rician fading. We next focus on the random component.
Small variations of the propagation environment are typi-
cally accounted by modeling h(r, s) as a zero-mean circularly
symmetric complex Gaussian random field, which yields a
Rayleigh small-scale fading. Here, the Gaussian assumption
arises as a diffusion approximation of the scattering mecha-
nism [45]. Moreover, we assume the second-order statistics
of the channel are space invariant, leading to a substantial
model simplification. Hence, we will develop our stochas-
tic model under two main assumptions: complex Gaussian
distribution and spatial stationarity; h(r, s) being a spa-
tially stationary complex Gaussian electromagnetic random
field [9]. Larger variations of the propagation environment
should be modeled by a non-stationary large-scale fading
field [32, Sec. 7].

A. SPATIALLY STATIONARY GAUSSIAN RANDOM
CHANNELS
Spatial stationarity is a desirable property for time-domain
Gaussian random processes as they are fully characterized by
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a second-order description of their statistics.4 For example,
it is at the basis of the wide-sense stationary uncorrelated
scattering (WSSUS) model for linear and time-variant chan-
nels [44]. Let h(t, τ ) be the time-variant channel impulse
response at time t due to a unit impulse applied at t − τ

(with a delay τ ). A Gaussian random channel featuring
a WSSUS model is characterized by a stationarity with
respect to the variable t and uncorrelated values at different
delays τ .

For the channel response h(r, s), we assume spatial sta-
tionarity with respect to both spatial variables, so that a joint
autocorrelation function (ACF) can be defined as

c(r, s) = E
{
h(r, s) h∗(r + r′, s + s′)

}
. (52)

We will now show that both assumptions on h(r, s) lead to
an independent scattering model for the propagation kernel
K(kx, ky, κx, κy) whose structure is given next.
Theorem 2: The propagation kernel matrix

K(kx, ky, κx, κy) leading to a spatially stationary circu-
larly symmetric complex Gaussian random h(r, s) in (44)
must be of the form

K
(
kx, ky, κx, κy

) = A
(
kx, ky, κx, κy

)� W
(
kx, ky, κx, κy

)
(53)

where A(kx, ky, κx, κy) ∈ R
2×2+ whose entries are

arbitrary non-negative functions defined within
(kx, ky, κx, κy) ∈ D × D with D given by (16) and
W(kx, ky, κx, κy) ∈ C

2×2 is a random matrix with
white-noise complex random field entries of unit-variance,

E

{
[W]i,�

(
kx, ky, κx, κy

)
[W∗]i′,�′

(
k′x, k′y, κ ′

x, κ
′
y

)}
= δii′δ��′

δ
(
kx − k′x

)
δ
(
ky − k′y

)
δ
(
κx − κ ′

x

)
δ
(
κy − κ ′

y

)
. (54)

Proof: The proof is given in Appendix C and
is articulated in two parts involving Gaussianity and
stationarity.

The propagating kernel K(kx, ky, κx, κy) in (53) is obtained
as an element-wise multiplication of two terms. The first
term A(kx, ky, κx, κy) is a non-negative real-valued matrix,
which models directionality of the channel field. Precisely, it
physically accounts for the angular power transfer between
every upgoing (downgoing) transmitted direction and every

4. We refer to a stationary process since strict stationarity and stationarity
in the wide-sense coincide for any random process with joint Gaussian
distribution.

other upgoing (downgoing) received direction, averaged over
all possible realizations of a certain environmental class;
see Fig. 2. This is the only functional parameter that must
be specified in our model. We will return to this later on
in Section VI. The second term W(kx, ky, κx, κy) is a ran-
dom matrix whose objective is to allow for small variations
among different realizations. Both model microscopic effects
on the channel small-scale fading caused by small changes in
the propagation environment. Combined together, Theorem 1
and Theorem 2 yield the following closed-form expression
of h(r, s).
Lemma 3: The random channel impulse response h(r, s)

modeling an arbitrary propagation environment is exactly
given by the Fourier plane-wave representation in (55),
shown at the bottom of the page. Here, A±±(kx, ky, κx, κy) are
four non-negative functions defined within a support D given
by (16) and W±±(kx, ky, κx, κy) are four i.i.d. white-noise
complex random fields of unit variance.
A physical interpretation of the result reported in Lemma 3

is as follows. The channel impulse response modeling a
spatially stationary random medium is obtained as an inte-
gral superposition of (upgoing and downgoing) propagating
plane waves having statistically independent amplitudes from
one direction to another and jointly having circularly sym-
metric complex Gaussian distribution. Alternatively, due to
the interchangeability between plane waves and Fourier har-
monics, (55) can also be regarded as the Fourier spectral
representation of a stationary random field of electromag-
netic nature, returning a Fourier description similar to (47).
This will be shown in Section V.
As stated in Appendix C, spatial stationarity requires the

exclusion of evanescent waves from our analysis. These are
associated to the high wavenumber modes outside of D
that are generated by the source and possibly by induced
currents on the surface of scatterers. Since these modes
decay exponentially fast as z/λ, their contribution may be
neglected at a few wavelengths from the radiators. Notice
that the same property was inspected in Corollary 1 for
LoS channels and is extended here to arbitrary NLOS chan-
nels. The downside is that some of the available channel
information is lost in this low-pass filtering operation [39].
Consequently, wireless transfer of information is always a
lossy operation with the majority of communication modes
wasted in the reactive propagation region of source and
scatterers [39], [43].

h(r, s) = 1

(2π)2

∫∫∫∫

D×D
dkxdkydκxdκy

ej(kxrx+kyry)
√

γ (kx, ky)

e−j(κxsx+κysy)
√

γ (κx, κy)(
A++(kx, ky, κx, κy)W++(kx, ky, κx, κy)e

−jγ (κx,κy)szejγ (kx,ky)rz

+ A+−(kx, ky, κx, κy)W+−(kx, ky, κx, κy)e
−jγ (κx,κy)sze−jγ (kx,ky)rz

+ A−+(kx, ky, κx, κy)W−+(kx, ky, κx, κy)e
jγ (κx,κy)szejγ (kx,ky)rz

+ A−−(kx, ky, κx, κy)W−−(kx, ky, κx, κy)e
jγ (κx,κy)sze−jγ (kx,ky)rz

)
(55)
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B. SECOND-ORDER CHARACTERIZATION OF
STATIONARY CHANNELS
For a stationary Gaussian random field h(r, s), the spatial
ACF c(r, s) in (52) provides a complete statistical description
of the field. Its general expression for arbitrary propagation
environments is provided next. Similarly to h(r; s) in (44),
c(r, s) is also described by a Fourier plane-wave representa-
tion. This comes with no surprise as the ACF of the channel
also satisfies the Helmholtz equation [9], [18].
Lemma 4: The spatial ACF c(r, s) of the channel impulse

response h(r, s) modeling an arbitrary propagation environ-
ment is exactly given by

c(r, s) = 1

(2π)2

∫∫∫∫ ∞

−∞
dkxdkydκxdκy aH

(
kx, ky, r

)

S
(
kx, ky, κx, κy

)
a
(
κx, κy, s

)
(56)

where a(·, ·) is the array response vector in (34) and we
introduced the power density matrix5

S(kx, ky, κx, κy) = (A � A)(kx, ky, κx, κy)

γ (kx, ky)γ (κx, κy)
(57)

which is parametrized by A(kx, ky, κx, κy) in (53).
Proof: Substitute the Fourier plane-wave representa-

tion in Theorem 1 into (52). Then, use the sec-
ond order characterization of the propagation kernel in
Theorem 2.
The standard six-dimensional power spectral density

(PSD) S(kx, ky, kz, κx, κy, κz), function of the three spatial
frequencies at source plus other three spatial frequencies
at receiver, is related to c(r, s) through the Fourier rela-
tionship in (58), shown at the bottom of the page due to
Wiener-Kintchine theorem. In (58), we have changed the
sign of Fourier harmonics at the source – with respect to
the ordinary inverse Fourier transform – to comply with the
notation used in this paper. The general form that the PSD of
a stationary channel must have under arbitrary propagation
conditions was determined in [9], [18] for the source-free
case at receiver. We extend that result to an end-to-end
propagation scenario including a source.
Lemma 5: The PSD of any spatially stationary channel

impulse response h(r, s) is impulsive of the form

S
(
kx, ky, kz, κx, κy, κz

) = A2(kx, ky, kz, κx, κy, κz
)

δ
(
k2
x + k2

y + k2
z − κ2

)
δ
(
κ2
x + κ2

y + κ2
z − κ2

)
(59)

for some non-negative function A(kx, ky, kz, κx, κy, κz).
Proof: The proof is given in Appendix D.
The PSD in (58) is impulsive defined on a double

sphere S ⊂ R
3 of radius κ = 2π/λ. Clearly, this is

5. The channel response under spatial stationarity has constant power.
Hence, we remove the multiplicative term (κη/2)2 that would have appeared
in (57) and embedded it into the spectral factor.

FIGURE 4. Illustration of the PSD S(kx , ky , kz , κx , κy , κz ) of a spatially stationary
channel impulse response h(r, s), fully parametrized by the four non-negative
functions A±±(kx , ky , κx , κy ) defined within D × D.

due to the Fourier (plane-wave) description of the spa-
tial ACF that yields a pair of Dirac delta functions in
the wavenumber dual domain, at source and receiver. The
term A(kx, ky, kz, κx, κy, κz) in (59) describes how the chan-
nel power is distributed over the spectral support, called
the spectral factor. Clearly, these six-dimensional quanti-
ties shall never be used since they are only meaningful
when integrated. A 4D second-order representation should
be used instead. This is provided in Lemma 4 wherein each
entry A±±(kx, ky, κx, κy) of A(kx, ky, κx, κy) is obtained by
sampling the spectral factor in the wavenumber domain at
kz = ±γ (kx, ky) and κz = ±γ (κx, κy), as illustrated in Fig. 4
(see also Appendix D). As previously observed in [18], due
to the Dirac delta functions, the above sampling operation
corresponds to a wavenumber integration of the PSD over
kz and κz. Precisely, we divide the two spectral spheres S
into four hemispheres – two hemispheres (upper and lower)
at source and other two hemispheres (upper and lower) at
receiver. Each 3D hemisphere is then parametrized onto
the corresponding 2D disk D in (16); see Fig. 4. To this
regard, the γ (·, ·) functions in (57) are the Jacobians of
these parametrizations.
The average channel power P = E{|h(r, s)|2} is obtained

by integrating the PSD in (59) over its entire support.
Alternatively, P may be derived from (56) by sampling the
array response vectors in (34) at the origin,

P = 1

(2π)4

∫∫∫∫ ∞

−∞
S(kx, ky, κx, κy) dkxdkydκxdκy (60)

where S(kx, ky, κx, κy) is obtained by summing all four
entries of S(kx, ky, κx, κy) in (57). The above expression
motivates the name attributed to S(kx, ky, κx, κy) in Lemma 4,
being the power density matrix of the channel. This is
because, when integrated over the four horizontal wavenum-
ber components, the sum of its entries yields the channel
power.

c(r, s) = 1

(2π)3

∫
· · ·
∫ ∞

−∞
S
(
kx, ky, kz, κx, κy, κz

)
ej(kxrx+kyry+kzrz)e−j(κxsx+κysy+κzsz)dkxdkydkzdκxdκydκz (58)
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V. FOURIER SPECTRAL REPRESENTATION
Signals can be represented as an integral superposition
of complex oscillations via the classical inverse Fourier
transform. Similarly, stationary random processes may be
represented as an integral superposition of uncorrelated
complex oscillations, also known as the Fourier spectral
representation [46, Ch. 4]. If, in addition, we require the
process to have Gaussian distribution, these oscillations are
statistically independent and the random process is fully
described by its PSD function. We show how this generalizes
to spatially stationary Gaussian electromagnetic channels.

A. STATIONARY RANDOM PROCESSES
The Fourier spectral representation of a stationary Gaussian
random process h(t) for t ∈ R reads as [46]

h(t) =
∫ ∞

−∞
ejωt dZ(ω) (61)

where the above equality must be understood to hold as
a limit in mean-squared-error sense. Here, Z(ω) is the
complex-valued integrated Fourier transform of h(t) such
that

E{dZ(ω)dZ∗(λ)} =
{
dP(ω)/2π λ = ω

0 otherwise
(62)

with dP(ω) being the real-valued differential power incre-
ment of h(t). For any random process that contains no
periodic terms, we have that dP(ω) = S(ω)dω where S(ω)

is the real-valued and absolutely continuous PSD of h(t).
Hence, (61) can be rewritten in its Riemann form as [47]

h(t) = 1√
2π

∫ ∞

−∞

√
S(ω)W(ω)ejωt dω (63)

where W(ω) is a white-noise complex random process
with unit variance. The ACF is obtained from the Wiener-
Khintchine theorem as

c(t) = 1

2π

∫ ∞

−∞
S(ω)ejωt dω. (64)

B. SPATIALLY-STATIONARY RANDOM
ELECTROMAGNETIC CHANNELS
The Fourier spectral representation of a stationary Gaussian
random channel h(r, s) for r, s ∈ R

3 would be obtained
similarly to (63) as a function of its six-dimensional PSD.
However, we uncovered in Lemma 5 that the general
form of this PSD is impulsive and thus only meaning-
ful when integrated. Conveniently, from Lemma 3 we
notice that at any fixed pair (rz, sz), the random vari-
able W±±(kx, ky, κx, κy)e∓jγ (κx,κy)sze±jγ (kx,ky)rz is statistically
equivalent to W±±(kx, ky, κx, κy) for all (kx, ky, κx, κy).
Hence, we may rewrite each one of the four channel
contributions in (55) equivalently as

h(r, s) = 1

(2π)2

∫∫∫∫ ∞

−∞
dkxdkydκxdκy e

j(kxrx+kyry)

e−j(κxsx+κysy)
√
S±±(kx, ky, κx, κy)W±±

(
kx, ky, κx, κy

)

(65)

where equality must be understood in a distribution sense
and

S±±
(
kx, ky, κx, κy

) = A2±±
(
kx, ky, κx, κy

)

γ
(
kx, ky

)
γ
(
κx, κy

)

1D×D
(
kx, ky, κx, κy

)
(66)

where we have embedded the integration domain into a func-
tional dependence through an indicator function. We have
thus shown that the channel response h(r, s) between every
pair of parallel z-oriented planes at source and receiver is
exactly described by a 4D Fourier spectral representation
with parameters rz and sz. Comparing the two spectral rep-
resentations in (63) and (65), we observe that the complex
oscillations ejωt in (63) are replaced by two 2D Fourier
harmonics ej(kxrx+kyry) and e−j(κxsx+κysy). Also, S(ω) is sub-
stituted by S±±(kx, ky, κx, κy) in (66). Summing together all
possible four contributions yields the total PSD in (60),

S
(
kx, ky, κx, κy

) = S++
(
kx, ky, κx, κy

)+S+−
(
kx, ky, κx, κy

)

+ S−+
(
kx, ky, κx, κy

)+ S−−
(
kx, ky, κx, κy

)

(67)

with S±±(kx, ky, κx, κy) given by (66). In summary, the entire
effect due to wave propagation along the arbitrarily chosen
z-axis is purely deterministic and known a priori. A remark-
able consequence of this observation is that a 3D volumetric
array offers no extra DoF over a 2D planar array [39], [43].
The same conclusion is drawn in [34] where it is pointed
out that the world has only an apparent 3D informational
structure, which is subject to a 2D representation.

C. FOURIER PLANE-WAVE SERIES EXPANSION
Let h(t) be now a bandlimited stationary Gaussian pro-
cess of bandwidth � that is observed over an interval of
duration T . The Karhunen-Loeve expansion of h(t) provides
an orthonormal description of h(t) over some basis set of
functions with a finite number of statistically independent
coefficients [3, Sec. 6.4]. The ACF c(t) is expressed by a
Hilbert-Schmidt decomposition over the same basis set of
functions [3, Sec. 3.4]. However, finding this basis set is hard
in practice, as an explicit solution is only available for a few
cases. As an example, for a constant S(ω), it can be found
by solving the Slepian’s concentration problem [3, Sec. 2].
Fortunately, as the time-bandwidth product grows large, but
finite, i.e., �T � 1, the Karhunen-Loeve decomposition
becomes a Fourier series expansion [46, Sec. 3]. Precisely,
the Karhunen-Loeve eigenfunctions become Fourier harmon-
ics and the associated eigenvalues statistically independent
Gaussian coefficients, whose variances are obtained by sam-
pling S(ω) at integer multiples of the fundamental frequency
2π/T . This Fourier series expansion tends to the Fourier
representation in (63), asymptotically as �T → ∞. Simply
put, the Fourier spectral representation in (63) accomplishes
the same result as �T → ∞ of the Karhunen-Loeve
decomposition for finite �T values.
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FIGURE 5. ACF at receiver under isotropic propagation. The Fourier plane-wave series expansion with different L/λ values is compared to the closed-form Clarke’s isotropic
function.

The key in providing a generalization of the time-domain
theory to spatial electromagnetic channels is the bandlimited
property in (66) that naturally arise from physics con-
siderations. Without loss of generality, we observe h(r, s)
over a z-oriented planar region of maximum dimension
L m. In analogy with the time-domain case, any Karhunen-
Loeve expansion of h(r, s) becomes a Fourier (plane-wave)
series expansion as the space-(spatial) bandwidth prod-
uct along each dimension grows large, but finite, i.e.,
L/λ → ∞ [19, Sec. 3]. The main difference with the time-
domain case lies in the computation of the variances of
Fourier coefficients. These cannot be obtained by sampling
S±±(kx, ky, κx, κy) in (66) at integer multiples of the funda-
mental frequency 2π/L because of the singularity appearing
at its denominator. Instead, we rather integrate (66) over a
neighborhood of these frequencies, which is always possi-
ble since the PSD is singularly-integrable [19, Sec. 3], [18,
Sec. 5]. Convergence to the Fourier spectral representation
in (65) occurs asymptotically as L/λ → ∞.

The validity of the Fourier plane-wave series expansion
is as tight as the assumption L/λ � 1. To show how large
this value must be in order to obtain a good approximation
of the Karhunen-Loeve expansion, in Fig. 5 we illustrate the
autocorrelation function at receiver c(r) under isotropic prop-
agation, as there is an explicit closed-form solution in this
case, namely the Clarke’s formula c(r) = sinc(2r/λ) with
r = ‖r‖. This is compared to the ACF obtained by averaging

realizations of the channel response h(r), each created by
the Fourier plane-wave series expansion, for different L/λ
values. With L/λ = 4, the level curves of the approximated
ACF are slightly blurred, but become quite similar to those
obtained with Clarke’s model already for L/λ = 10.

D. CONVERGENCE OF FOURIER SPECTRAL
REPRESENTATION
Integral representations are subjected to a convergence cri-
teria. For a stationary random process with finite average
power, mean-squared-error convergence is guaranteed by
Mercer’s theorem [3], [46]. Hence, due to the space-time
duality leveraged above, convergence of (65) to the actual
random field in the mean-squared-error sense is guaran-
teed for any channel with finite average power (60). We
expand (60) by plugging (67) with (66), which yields the
final power expression in (68), shown at the bottom of
the page for some non-negative functions A±±(kx, ky, κx, κy)
modeling field directionality. The convergence criteria is
summarized as follows.
Lemma 6: The Fourier plane-wave spectral representation

in (65) converges in the mean-squared-error sense to the
actual channel impulse response for any bounded piecewise-
continuous functions A±±(kx, ky, κx, κy).
Proof: Due to the boundedness assumption, we can always

find a value A < ∞ such that A±±(kx, ky, κx, κy) < A for

P = 1

(2π)4

∫∫∫∫

D×D
dkxdkydκxdκy

1

γ
(
kx, ky

)
γ
(
κx, κy

)
(
A2++

(
kx, ky, κx, κy

)

+ A2+−
(
kx, ky, κx, κy

)+ A2−+
(
kx, ky, κx, κy

)+ A2−−
(
kx, ky, κx, κy

))
(68)

P =
∫∫∫∫

S+×S+
d�rd�t A

2++(θr, φr, θt, φt) +
∫∫∫∫

S+×S−
d�rd�t A

2+−(θr, φr, θt, φt)

+
∫∫∫∫

S−×S+
d�rd�t A

2−+(θr, φr, θt, φt) +
∫∫∫∫

S−×S−
d�rd�t A

2−−(θr, φr, θt, φt) (70)
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all (kx, ky, κx, κy). Plugged into (68) this inequality yields

P ≤ 4

(
A

(2π)2

∫∫

D
dκxdκy

γ
(
κx, κy

)

)2

. (69)

Since
∫∫

D 1/γ (kx, ky)dkxdky = π2κ , then P ≤ A2κ2/4 < ∞.
Convergence follows from Mercer’s theorem [3], [46].
Physically, the above condition implies that transfer of

power between every transmit and receive propagation direc-
tions is bounded across the entire angular domain. This is
always satisfied in real-world propagation environments.

VI. PHYSICAL MODELING OF THE SPECTRAL FACTOR
While maintaining a high level of abstraction, we now show
how to analytically model field directionality to fit a realistic
propagation environment. Since the average channel power is
constant, due to the stationarity assumption, the small-scale
fading h(r, s) can thus be normalized such that it has unit aver-
age power, i.e., P = 1. The PSD S(kx, ky, κx, κy) in (60) can
thus be regarded as a power distribution function of the chan-
nel, as it yields one when integrated. Conveniently, we change
domain of representation in (68) from wavenumber coordi-
nates to elevation and azimuth angles (θ, φ) ∈ [0, π ]×[0, 2π)

at source and receiver; see (11) and (32). This yields (70),
shown at the bottom of the previous page for some non-
negative functionals A±±(θr, φr, θt, φt), each one including all
proportionality constants due to power normalization. In (70),
S± are the upper (lower) hemisphere of unit radius (see Fig. 4),
whereas d� = sin θdθdφ is the differential element of solid
angles pointed by the direction (θ, φ). Notice the disappear-
ance of the γ (·, ·) terms in (68), as they are embedded into
the Jacobian of the map, given by

∣∣∣∣∣
∂
(
κx, κy

)

∂(θ, φ)

∣∣∣∣∣
= κ2 cos θ sin θ

= κγ
(
κx, κy

)
sin θ (71)

where we used cos θ = γ (κx, κy)/κ . Hence, each function
A2±±(θr, φr, θt, φt) becomes an angular power distribution
function (PDF), say p±±(θr, φr, θt, φt), of the channel.

Henceforth, directionality of the field is specified by
the arbitrary functions p±±(θr, φr, θt, φt), which uniquely
parametrized the channel in the angular domain. We stress
that these are the only parameters that need to be specified
in our model. Clearly, an accurate fit of reality is condi-
tioned on the availability of reliable channel measurements.
Although necessary for conducting real-world research, our
model is customizable to every possible propagation condi-
tions. We next provide general guidelines on how to choose
these PDF for a practical setting. Since they can be modeled
separately, we focus on only one of the four contribution,
e.g., the upgoing-upgoing contribution p(θr, φr, θt, φt) for
(θr, φr, θt, φt) ∈ S+ × S+ where we omit the ++ subscript.

A. ISOTROPIC PROPAGATION
The simplest model occurs when the angular power transfer
between source and receiver is distributed uniformly on the

entire angular spectrum; that is, an isotropic channel [32].
Under this setting, the scattering naturally decouples and
p(θr, φr, θt, φt) has a separable uniform structure at both link
ends. This model has been studied in [18, Sec. 4], at the
receiver only, and leads to a constant bounded angular PDF
p(θr, φr) for all (θr, φr). Nevertheless, this result can also be
extended to the source side due to model separability,

p(θr, φr, θt, φt) = 1

(2π)2
(72)

for all (θr, φr, θt, φt) ∈ S+ × S+ with 2π being the solid
angle subtended by S+.

B. NON-ISOTROPIC PROPAGATION
A more realistic model that capture the angular selectivity
of the scattering involves a non uniform angular PDF. For
simplicity, we assume a separable structure at source and
receiver that leads to the Kronecker model [32]

p(θr, φr, θt, φt) = pr(θr, φr)pt(θt, φt) (73)

for some arbitrary smooth functions pr(θr, φr) and pt(θt, φt).
The use of the separability assumption is confined to this
Section. In general, wave propagation is coupled at both link
ends, as correctly shown by a joint PDF p(θr, φr, θt, φt). We
focus on of the two functions in (73) indistinctly, say p(θ, φ),
as the other follows similarly.
Radio wave propagation is typically clustered around some

Nc modal propagation directions [32, Ch. 7]. Thus, p(θ, φ) is
modeled as a linear combination of all cluster contributions
pi(θ, φ) with i = 1, . . . ,Nc, that is, the PDFs mixture

p(θ, φ) =
Nc∑

i=1

wi pi(θ, φ) (74)

with non-negative weights such that
∑Nc

i=1 wi = 1, which
specify how the channel power is distributed in each cluster.
The simplest model of each pi(θ, φ) is a uniform function
over a certain angular region �i ⊂ S+ [13],

pi(θ, φ) = 1�i(θ, φ). (75)

Despite incorporating directionality of the channel, this
model is not realistic as it models discontinuous energy
transitions in the angular domain – not available in classical
physics. Also, the sharp decay in the Fourier domain leads
to long tails in the spatial domain with possible convergence
issues.
Analytical modeling of pi(θ, φ) is a trade-off between

mathematical tractability and model accuracy. In directional
statistics, this issue is addressed by specifying a family of
PDF that are indexed by some physical parameters, rather
than a single function [48]. Desirably, we would like to
have a low number of parameters that incorporates sufficient
information to provide an acceptable accuracy. The perfect
example is the Gaussian distribution, which is fully described
by a mode μ and a standard deviation σ ≥ 0, indicating the
value around which the distribution is most concentrated
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and how spread is the distribution. Its analogue on a 3D
sphere is the von Mises-Fisher (vMF) distribution,6 given
by [48, eq. (9.3.4)]

pi(θ, φ) = c(αi)e
αiμ̂

T
i k̂ (76)

= c(αi)e
αi(sin θ sin μθ,i cos(φ−μφ,i)+cos θ cos μθ,i) (77)

which is specified by a modal direction μ̂i ∈ S+,

μ̂i = x̂ sin μθ,i cos μφ,i + ŷ sin μθ,i sin μφ,i + ẑ cos μθ,i (78)

with elevation and azimuth angles (μθ,i, μφ,i) and a con-
centration parameter αi ≥ 0. The former specifies the
propagation direction around which the channel power is
most concentrated while the latter determines the power con-
centration angularly; it can be regarded as an inverse standard
deviation. Analytically, (77) is obtained by restricting a 3D
Gaussian with circular level curves onto a unit sphere and
renormalizing by a constant c(αi) = αi/(4π sinh αi) to obtain
a PDF [50].7 More general PDFs with elliptical level curves
may be considered likewise [51]. As limiting cases, when
αi = ∞, then (77) becomes an impulsive function

pi(θ, φ) = δ(k̂ − μ̂i) (79)

that implies power concentrated in only one direction μ̂i.
Instead, when αi = 0, (77) reduces to

pi(θ, φ) = 1

4π
(80)

all (θ, φ) ∈ S+. Multiplying (80) by 2, to account for
the lower hemispherical support, and squaring the obtained
result, to include the other receiver/source side, we obtain
the isotropic angular PDF in (72).

C. NUMERICAL GENERATION OF VMF DISTRIBUTION
The vMF distribution is specified by its mode μi and (nor-
malized) variance ν2

i ∈ [0, 1] for each cluster i = 1, . . . ,Nc.
The former is given by (78) and specified by a pair of eleva-
tion and azimuth angles (μθ,i, μφ,i). The latter is expressed
as a function of the concentration parameter αi and is
obtained by solving the fixed-point equation

ν2
i = 1 − (coth αi − 1/αi)

2 (81)

for any ν2
i ∈ (0, 1). The limit case ν2

i = 1 correspond-
ing to the isotropic scenario must be treated separately by
setting p(θ, φ) = 1/(2π) as specified in (72). To gen-
erate the desired vMF distribution with parameters {wi},
Nc, {(μθ,i, μφ,i)}, and {ν2

i } one should follow the follow-
ing steps. First, compute the concentration parameter αi by
solving (81). Second, generate the PDF in (77) with param-
eters (αi, μθ,i, μφ,i). Third, repeat the previous steps for all
clusters i = 1, . . . ,Nc and use all generated PDFs in the
weighted sum in (74) with parameters wi.

6. The classical vMF distribution is defined on a unit sphere [48]. Instead,
we consider only the (upper) hemisphere and divide the PDF by a factor of
2. This leads to no mistake as power in practical scenarios spans a narrow
angular interval in elevation angle [49].

7. Integral over spherical supports must include the Jacobian term sin(θ).

FIGURE 6. Illustration of angular PDF p(θr , φr , θs, φs ) generated by a 3D vMF
distribution with different parameters.

As an example, we plot the vMF distributions p(θ, φ) sin θ

(inclusive of Jacobian) generated by the described method
with uniform weights as a function of (θ, φ) ∈ S+ at
source and receiver. In Fig. 6(a), we have a single clus-
ter at the source side with (μθ,1, μφ,1) = (20◦, 90◦) and
ν2

1 = 0.05, whereas the receiver sees an isotropic propaga-
tion with ν2

1 = 1. In Fig. 6(b), multiple clustering is shown
at both link ends. At the source, we have three clusters
with (μθ,1, μφ,1) = (60◦, 90◦), (μθ,2, μφ,2) = (30◦, 15◦),
and (μθ,3, μφ,3) = (10◦, 180◦) to which correspond the
variances ν2

1 = 0.01, ν2
2 = 0.02, and ν2

3 = 0.005. At the
receiver, we have two clusters with (μθ,1, μφ,1) = (0◦, 45◦)
and (μθ,2, μφ,2) = (0◦, 45◦) to which correspond ν2

1 = 0.03
and ν2

2 = 0.01.

VII. CONCLUSION
The continuous-space electromagnetic channel can always
be modeled as an LSV system. Hence, it is fully described
by its deterministic channel impulse response that can be
exactly described in terms of plane waves. This argument is
supported by the availability of a closed-form Fourier plane-
wave representation, which builds upon the first principles of
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wave propagation theory. Our formulation is the most gen-
eral as it encompasses arbitrary propagation environments,
abstracts from the particular array topology, and is valid irre-
spective of the communication range (i.e., embeds wavefront
curvature even in the reactive near-field region).
When the desirable properties of Gaussian distribution

and spatial stationarity are retained, a convenient statis-
tical Rayleigh fading model is obtained in the radiative
near-field region. The latter is subjected to the exclusion
of reactive propagation mechanisms that unveils the low-
pass spatial filtering behavior of electromagnetic channels,
due to the absence of high communication modes asso-
ciated with evanescent waves [39]. As for time-domain
stationary Gaussian random processes [46], we derived a
Fourier spectral representation that provides a second-order
characterization of the channel in terms of statistically
independent Gaussian random coefficients. This enjoys
asymptotic convergence properties in the mean-squared-error
sense, as the array size becomes large compared to the
wavelength [18], [19].
Real-world measurements are needed to correctly extract-

ing model parameters for a prescribed environmental class.
To bring out the key concept, we considered scalar elec-
tromagnetic channels that physically correspond to acoustic
propagation [29]. The electromagnetic MIMO channels is
obtained by sampling the continuous-space model at antenna
locations [18], [19]. At the current stage, non-idealized
antennas, mutual coupling among antenna elements [52], and
wideband transmissions are still missing. Polarization effects
may be incorporated by replacing every antenna point by
three mutually perpendicular electric dipoles. Consequently,
the vector-valued electromagnetic channel is given by a
Fourier plane-wave representation encompassing horizontally
polarized and vertically polarized plane waves [30], [31].

APPENDIX A
PROOF OF THEOREM 1
Plugging (33) with (27) into (37),

Er(kx, ky) = κη

2

∫∫ ∞

−∞
dκxdκy

K(kx, ky, κx, κy)

γ (κx, κy)

[
J+(κx, κy)

J−(κx, κy)

]

(82)

for all (kx, ky) ∈ R
2. Then, using (82) into the receive field

expression in (35) while replacing the source spectrum with
its Fourier plane-wave transform in (28) yields the convolu-
tional model in (43). The channel response is given by (44)
with

H
(
kx, ky, κx, κy

) = κη

2

K
(
kx, ky, κx, κy

)

γ
(
κx, κy

) (83)

while K(·, ·) is given by (38). To obtain a symmetric
expression of the angular response, without loss of gen-
erality, we pull out from the propagation kernel the term√

γ (κx, κy)/
√

γ (kx, ky) so that (83) becomes

H
(
kx, ky, κx, κy

) = κη

2

K
(
kx, ky, κx, κy

)

√
γ (kx, ky)

√
γ (κx, κy)

(84)

FIGURE 7. Geometry used for reciprocity theorem. When the source j1(s) is turned
on, generates the field e1(r). When the source j2(r) is on, generates the field e2(s).

while
√

γ (·, ·) is derived from (9) as

√
γ (κx, κy) =

⎧
⎪⎨

⎪⎩

(
κ2 − κ2

x − κ2
y

)1/4
κ2
x + κ2

y ≤ κ2

√
j
(
κ2
x + κ2

y − κ2
)1/4

κ2
x + κ2

y > κ2
(85)

where
√

j should be understood as ejπ/4.

APPENDIX B
PROOF OF LEMMA 2
Consider two different source distributions j1(s) and j2(s)
with corresponding scalar fields e1(r) and e2(r). Each pair
(ji(s), ei(r)) is related through the spatial convolution in (43)
where hi(r, s) is the associated channel impulse response
with i = 1, 2. Since both fields obey the inhomogeneous
Helmholtz equation in (1), Green’s reciprocity theorem
holds [5, eq. (1.3.23)]

∫

V
j1(s)e2(s) ds =

∫

V
j2(r)e1(r) dr (86)

for any arbitrary volume V where measurements and injec-
tion operations are carried out. Plugging (43) into (86),

∫

V
j1(s)

(∫

R3
j2(r)h2(s, r) dr

)
ds

=
∫

V
j2(r)

(∫

R3
j1(s)h1(r, s) ds

)
dr. (87)

Without loss of generality, we let j1(s) be non-zero within a
volume VS, whereas j2(r) is defined within another volume
VR. In turn, (87) becomes

∫

VS
j1(s)

(∫

VR
j2(r)h(s, r) dr

)
ds

=
∫

VR
j2(r)

(∫

VS
j1(s)h(r, s) ds

)
dr (88)

where we used h1(r, s) = h(r, s) and applied channel reci-
procity, i.e., h2(s, r) = h1(s, r). The above equality implies
that h(r, s) must be insensitive to the interchange of source
and receive locations, namely h(r, s) = h(s, r) for all points.
We therefore interchange r and s in (44) to determine under
what conditions on H(kx, ky, κx, κy) the above reciprocity
relation holds. To this end, we begin with noticing the
relationships

a∗(kx, ky, s
) = a

(−kx,−ky, s
)

(89)

a
(
κx, κy, r

) = a∗(−κx,−κy, r
)

(90)
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which follow from (34) plus change of sign in the z
component due to upgoing(downgoing) waves becoming
downgoing(upgoing) waves. After the change of integration
variables (kx, ky) = (−κx,−κy) in (44), and vice versa, we
obtain

H
(
kx, ky, κx, κy

) = HT(−κx,−κy,−kx,−ky
)

(91)

for all (kx, ky, κx, κy).

APPENDIX C
PROOF OF THEOREM 2
A. GAUSSIAN DISTRIBUTION
A set of random variables H1,H2, . . . ,HN have circularly-
symmetric complex-Gaussian joint distribution if all their
linear combinations are also Gaussian [46, Sec. 2.6], namely,
if the random variable

h =
N∑

n=1

anHn (92)

is circularly-symmetric complex-Gaussian for all possible
coefficients a1, a2, . . . , aN , i.e., h ∼ NC(0, σ 2) with any
variance σ 2. The generalization of the above definition to a
double-indexed complex random process h(t) with generat-
ing functions an(t) and bm(t) defined within t ∈ (−∞,∞)

yields

h(t) =
N∑

n=1

N∑

m=1

an(t)Hn,mbm(t) (93)

where Hn,m ∼ NC(0, σ 2
n,m) with some variances σ 2

n,m. Now,
by letting the number N increase without bound, provided
the limit of (93) exists, we can replace the sum with an
integral

h(t) =
∫∫ ∞

−∞
a(ω, t)H(ω, ξ)b(ξ, t) dωdξ (94)

which implies H(ω, ξ) must be a circularly-symmetric
complex-Gaussian random process in the variables (ω, ξ)

for any a(ω, t) and b(ξ, t). Hence, we can generally write

H(ω, ξ) = A(ω, ξ)W(ω, ξ) (95)

where W(ω, ξ) is a complex white-noise field of unit vari-
ance and A(ω, ξ) is an arbitrary non-negative functional. For
example, when complex exponential generating functions are
chosen, i.e., a(ω, t) = ejωt and b(ξ, t) = e−jξ t, we obtain a
Fourier-type relationship

h(t) =
∫∫ ∞

−∞
ejωtH(ω, ξ)e−jξ t dωdξ. (96)

In our setup, we add another variable to h(t) and replace
time with space and frequency with wavenumber to obtain
h(r, s) in (47). Study of mean-squared-error convergence
of the resulting stochastic integral representation is post-
poned to Section V-D. Based on the above discussion,
in order for h(r, s) to be a Rayleigh fading everywhere

in space, H(kx, ky, κx, κy) in (48) must be a circularly-
symmetric complex-Gaussian random field in the variables
(kx, ky, κx, κy). In turn, each entry of H(kx, ky, κx, κy) (and
so each entry of K(kx, ky, κx, κy) due to (45)) must have
joint Gaussian distribution. A general expression for the
propagation kernel is as follows

K
(
kx, ky, κx, κy

) = A
(
kx, ky, κx, κy

)� W
(
kx, ky, κx, κy

)
(97)

where A(kx, ky, κx, κy) ∈ R
2×2+ whose entries are arbitrary

non-negative functions and W(kx, ky, κx, κy) ∈ C
2×2 is a

random matrix with circularly-symmetric complex-Gaussian
random field entries of unit variance, i.e.,

[W]i,�(kx, ky, κx, κy) ∼ NC(0, 1) (98)

for all (kx, ky, κx, κy) and i, � = 1, 2. Notice that statistical
correlation is allowed among entries of W(kx, ky, κx, κy) and
within each entry.

B. SPATIAL STATIONARITY
A random process h(t) is said to be stationary if its joint
distribution is invariant to time-shifts, i.e., h(t) and h(t− τ)

have the same distribution for all τ . The shifted process
obtained from (96) reads as

h(t − τ) =
∫∫ ∞

−∞
ejωt

(
H(ω, ξ)ej(ξ−ω)τ

)
e−jξ t dωdξ. (99)

For a circularly-symmetric complex-Gaussian random pro-
cess h(t), stationarity is achieved by requiring H(ω, ξ) to
have statistically uncorrelated entries for all (ω, ξ). Under
this assumption, the joint distribution of H(ω, ξ) is deter-
mined from its marginals, each one of which is not affected
by a phase shift being of circularly-symmetric complex-
Gaussian distribution. Mapping this condition onto (95)
yields

E{W(ω, ξ)W∗(ω′, ξ ′)} = δ(ω − ω′)δ(ξ − ξ ′). (100)

Altogether, W(ω, ξ) must be a white-noise complex ran-
dom field of unit variance. The weaker form of wide-sense
stationarity of h(t) holds as well. This may also be veri-
fied analytically by using (100) into the computation of the
correlation function of h(t).

Generalization of the above result to spatially-stationary
electromagnetic channels h(r, s) requires the entries of
K(kx, ky, κx, κy) be uncorrelated with each other and individ-
ually having correlation function proportional to a Dirac delta
function in the wavenumber domain. Mapping this condition
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onto (97) yields

E

{
[W]i,�

(
kx, ky, κx, κy

)
[W]∗i′,�′

(
kx, ky, κx, κy

)} = δii′δ��′

(101)

E

{
[W]i,�

(
kx, ky, κx, κy

)
[W]∗i,�

(
k′x, k′y, κ ′

x, κ
′
y

)}

= δ
(
kx − k′x

)
δ
(
ky − k′y

)
δ
(
κx − κ ′

x

)
δ
(
κy − κ ′

y

)
. (102)

Compared to the time-domain case, there is an additional
requirement in the spatial domain. Notice that the generating
functions in (96) are pure oscillating complex exponentials.
Hence, the power of h(t) averaged over all possible realiza-
tions is invariant to any time shift. However, we recall that
the Fourier plane-wave representation in (44) comprises two
types of complex exponentials leading to propagating and
evanescent waves, as discussed in Section II-C. Since the
power carried by evanescent waves decays along the z-axis,
for spatial stationarity we must require the propagation kernel
to vanish in the evanescent region. Analytically, we embed
this condition into A(kx, ky, κx, κy) in (97) by limiting its
wavenumber support to a domain

(
κx, κy, kx, ky

) ∈ D × D (103)

where D is given by (16). We notice that dispersive
media having complex-valued wavenumber κ inevitably
lead to a non-stationary representation of the channel,
being their effect similar to the one created by evanescent
waves. Differently than evanescent waves, however, spatial
stationarity is never achieved in this case.

APPENDIX D
PROOF OF LEMMA 5
By equating (56) with (58) while plugging (13) we obtain

φH(kx, ky, rz
)
S
(
kx, ky, κx, κy

)
φ
(
κx, κy, sz

)

= 1

(2π)2

∫∫ ∞

−∞
S
(
kx, ky, kz, κx, κy, κz

)
ej(kzrz−κzsz) dkzdκz.

(104)

Replacing S(kx, ky, κx, κy) with its expression in (57), the
left-hand side of (104) becomes

φ H(kx, ky, rz
)

γ
(
kx, ky

) (A � A)
(
kx, ky, κx, κy

)φ
(
κx, κy, sz

)

γ
(
kx, ky

)

= A2++
(
kx, ky, κx, κy

)
ejγ (kx,ky)rze−jγ (κx,κy)sz

+ A2+−
(
kx, ky, κx, κy

)
e−jγ (κx,κy)sze−jγ (kx,ky)rz

+ A2−+
(
kx, ky, κx, κy

)
ejγ (κx,κy)szejγ (kx,ky)rz

+ A2−−
(
kx, ky, κx, κy

)
ejγ (κx,κy)sze−jγ (kx,ky)rz (105)

where A±±(·, ·) are the non-negative functions included into
A(kx, ky, κx, κy) in (53). As an intermediate step, notice that
the composition of the Dirac delta function δ(x) with a
differentiable function g(x) with non-zero derivative yields

δ(g(x)) =
∑

i

δ(x− xi)

| ∂g(x)
∂x |x=xi

(106)

for g(xi) = 0 with i = 1, 2, . . . For example, when g(κz) =
κ2
z − γ 2, for any γ , we obtain

δ
(
κ2
z − γ 2

)
= δ(κz − γ ) + δ(κz + γ )

2 γ
. (107)

The sampling property of the Dirac delta function yields
∫ ∞

−∞
δ
(
κ2
z − γ 2

)
e−jκzsz dκz = e−jγ sz + ejγ sz

2γ
(108)

and (at receiver),
∫ ∞

−∞
δ
(
k2
z − γ 2

)
ejkzrz dkz = ejγ rz + e−jγ rz

2γ
(109)

where we change the sign of the complex exponentials and
replace transmit coordinates with the receive counterparts.
Finally, (59) is obtained by equating (104) with (105) while
using (108) and (109).
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