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Abstract
Background: Conservation of the spatial binding organizations at the level of physico-chemical

interactions is important for the formation and stability of protein-protein complexes as well as

protein and drug design. Due to the lack of computational tools for recognition of spatial patterns

of interactions shared by a set of protein-protein complexes, the conservation of such interactions

has not been addressed previously.

Results: We performed extensive spatial comparisons of physico-chemical interactions common

to different types of protein-protein complexes. We observed that 80% of these interactions

correspond to known hot spots. Moreover, we show that spatially conserved interactions allow

prediction of hot spots with a success rate higher than obtained by methods based on sequence or

backbone similarity. Detection of spatially conserved interaction patterns was performed by our

novel MAPPIS algorithm. MAPPIS performs multiple alignments of the physico-chemical

interactions and the binding properties in three dimensional space. It is independent of the overall

similarity in the protein sequences, folds or amino acid identities. We present examples of

interactions shared between complexes of colicins with immunity proteins, serine proteases with

inhibitors and T-cell receptors with superantigens. We unravel previously overlooked similarities,

such as the interactions shared by the structurally different RNase-inhibitor families.

Conclusion: The key contribution of MAPPIS is in discovering the 3D patterns of physico-

chemical interactions. The detected patterns describe the conserved binding organizations that

involve energetically important hot spot residues and are crucial for the protein-protein

associations.

Background
Protein-protein interfaces (PPIs) are defined as regions of
interaction between two non-covalently linked protein

molecules. As binding is closely related to function, anal-
ysis of the properties of PPIs have long been a problem of
major interest [1-7]. The pioneering work of Clackson and
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Wells has shown that only a small and complementary set
of cooperative contact residues, termed "hot spots" main-
tains the binding affinity [8]. Hot spots are identified by
alanine scanning experiments. They are defined as resi-
dues whose mutation to alanine leads to a significant
drop in the binding free energy [9,10]. Several works have
studied the nature and organization of hot spots [11-13]
as well as their computational prediction [14-19]. Using
the double mutant cycle, Schreiber and Fersht have shown
the cooperativity of residues and interactions across the
interface [20]. Furthermore, it was shown that PPIs are
built in a modular fashion [21] and there is a cooperativ-
ity between the hot regions [22] and the conserved resi-
dues [23,24].

A key underlying concept in many studies postulates that
functionally important properties are conserved through-
out evolution [13,25] and can be recognized by the com-
parison of a set of protein sequences [26-29] or structures
[30-32]. Structural classification of protein-protein inter-
faces by their Cα patterns [33,34] has led to an insight into
interface organizations [35] and preferred residues con-
formations [36]. However, backbone atoms do not fully
capture the physico-chemical nature of the interfaces and
chemical interactions are known to be created by atoms of
side chains with different residue identities. Current
methods that do compare physico-chemical properties
align single binding sites (i.e. one side of the interface)
and do not consider the interacting partner [37-40].
Recently, we have presented a method that aligns a pair of
PPIs by simultaneously considering the two pairs of com-
plementary binding sites [41,42]. However, a combina-
tion of high scoring pairwise patterns does not necessarily
provide a high scoring pattern common to a set of PPIs
[43]. Several studies considered the chemical interactions
formed across the interface [44-46] and used them for
classification [47,48] and complex prediction [49]. How-
ever, the spatial conservation of these interactions was not
systematically addressed, mostly due to the lack of com-
putational tools for recognition of spatial patterns of
interactions shared by a set of PPIs.

Here, we present the first extensive study of the spatial
conservation of physico-chemical interactions shared
within families of PPIs formed by functionally similar
proteins. This study was performed with our novel
method, MAPPIS (Multiple Alignment of PPIS). The
method is based on physico-chemical interactions formed
across the interface between groups of atoms, which may
derive from amino acids with different identities and
backbone locations [50]. The uniqueness of MAPPIS lies
in its ability to detect spatially conserved patterns of inter-
actions even when there is no sequence and fold homol-
ogy between the corresponding proteins. By applying
MAPPIS to different families of PPIs, we observed that (i)

most of the conserved physico-chemical interactions are
contributed by the hot spot residues, and (ii) conse-
quently, MAPPIS predicts hot spots with a high success
rate, indicating the functional importance of the con-
served chemical interactions. Using MAPPIS, we further
provide specific biological examples that reveal previously
overlooked similarities between structurally different
though functionally related complexes.

Results and discussion
We assess the significance of spatially conserved patterns
of interactions. First, we describe the physico-chemical
patterns we look for and the concept behind MAPPIS.
Next, we present an extensive analysis of the families of
PPIs that were previously studied by experimental alanine
scanning, and show that spatially conserved interactions
can predict hot spots. Finally, we provide the details of the
specific patterns of interactions shared within these fami-
lies.

Recognition of shared interactions

A PPI is defined by a pair of interacting binding sites. The
area of each binding site is determined by the solvent
accessible surface points [51] that are located less than 4Å
from the surface of the binding partner. Following the def-
inition of Schmitt et al [39], each amino acid in a protein
is represented by points in 3D space termed pseudocent-
ers. Each pseudocenter represents a group of atoms
according to the interactions in which it may participate:
hydrogen-bond donor, hydrogen-bond acceptor, mixed
donor/acceptor, hydrophobic aliphatic and aromatic (π)
contacts. Some of the atoms of a pseudocenter may be
buried and some may be exposed. We considered all the
pseudocenters with at least one surface exposed atom.
These were assigned the following attributes: (i) charge;
(ii) normal vectors that denote the surface direction and
ring plane orientation (for aromatic rings); (iii) surface
patch size and curvature (estimated by the solid angle
shape function [52]); Figure 1A presents examples of a
representation of amino acids by pseudocenters. For
example, the side chain of Lys is represented by a donor,
located at the nitrogen atom, and a hydrophobic aliphatic
pseudocenter, located at the center of mass of its four car-
bons [39].

An interaction is defined by a pair of close enough pseu-
docenters, one from each side of the interface, possessing
complementary physico-chemical properties. Specifically,
hydrogen bond donors are complementary to acceptors,
while hydrophobic aliphatic and aromatic centers can
interact with similar ones. Pseudocenters with the mixed
donor/acceptor property, such as the nitrogen atoms of
His, can interact with both donors and acceptors. The
interaction distance thresholds are 3.9Å [53] for hydrogen
bonds and 8Å for the rest (according to the maximal pos-
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sible distance between pseudocenters that represent
groups of atoms). As the exact computational definition
of real interactions is not straightforward [53], we practi-
cally overcame this problem by considering all possible
interactions at the early stages and selecting only those
that are conserved in all the complexes.

We compared the spatial arrangements of the following
three interaction types: hydrogen bonds, hydrophobic
aliphatic and aromatic (π) contacts. Two interactions are
considered similar if they are created by similar pseudo-
centers that are superimposed to nearby spatial locations
(e.g. ≤ 3Å). The similarity of pseudocenters was measured
by a scoring function that compares properties like spatial
proximity (after the superimposition), charge, surface cur-
vature as well as aromatic ring plane orientation. The sim-
ilarity of interactions from two different PPIs is scored
according to the similarity of the corresponding pseudo-
centers and the complementarity of their properties. Spe-
cifically, we measured the complementarity in terms of
the pseudocenter proximity, charge complementarity, sur-
face fit as well as aromatic ring orientations (favoring per-
pendicular and parallel π stacking). Given a set of PPIs,
MAPPIS finds a set of transformations that superimpose
them in 3D space in a way that maximizes the spatial and

chemical similarity of their interactions and pseudocent-
ers (see Methods).

To illustrate the concept behind MAPPIS we aligned six
PPIs of serine proteases with inhibitors. These are formed
between serine proteases of two structural folds (trypsin
and subtilisin) with inhibitors that have different struc-
tural classifications [54] and less than 4% sequence iden-
tity. Figure 1B presents a pattern of nine common
interactions recognized by MAPPIS (six hydrogen bonds,
two hydrophobic aliphatic and one aromatic). The correct
alignment of the catalytic residues of the serine proteases
indicates the accuracy of the MAPPIS solution. Studying
the PPIs of trypsins, Scheidig et al [55] have stressed the
importance of the interactions formed with the hot spots
Lys15 and Arg15 of the trypsin inhibitors (1cbw, 1taw,
1ca0). Our results are consistent with this observation.
Moreover, MAPPIS found that the PPIs of subtilisins
exhibit five spatially similar interactions formed with the
residues Leu45 (1cse), Met73 (2sic) and Arg5 (1oyv) of
the corresponding subtilisin inhibitors. In particular, as
can be seen these interactions are formed by amino acids
with different identities and backbone locations. How-
ever, these amino acids have similar physico-chemical
properties (pseudocenters) that form similar spatially

Shared interactionsFigure 1
Shared interactions. (A) The left figure shows a PPI represented by the solvent accessible surfaces (small dots [51]) and the 
pseudocenters (balls). Only surface exposed pseudocenters are considered. Hydrogen bond donors are blue, acceptors – red, 
donors/acceptors – green, and aromatic – white. The right figure illustrates the definition of pseudocenters and the bar at the 
bottom illustrates the complementarity of the pseudocenter properties. (B) Alignment of 6 PPIs of serine proteases with inhib-
itors. The trypsins (1cbwHG, 1tawA, 1ca0HG) are gray and the subtilisins (1cseE, 2sicE, 1oyvB) are blue. The corresponding 
inhibitors (1cbwI, 1tawI, 1ca0I, 1cseI, 2sicI, 1oyvI) are colored ranging from yellow to purple respectively. The right figure 
presents the 9 spatially conserved interactions (purple arrows). The catalytic residues of the serine proteases (gray sticks) 
were recognized to form 5 similar interactions (3 hydrogen bonds, 1 hydrophobic aliphatic and 1 aromatic) with the corre-
sponding hot spots of the inhibitors K15(1cbw), R15(1taw,1ca0), K45(1cse), M73(2sic) and R5(1oyv). These residues, which 
have different amino acid identities and backbone locations are represented as black sticks.
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conserved interactions. Hence, residue-based methods
would not have detected these conserved (hot spot) inter-
actions.

Hot spot prediction

Here, we perform an extensive analysis of the available
structural data and show that recognition of spatially con-
served interactions can predict hot spots. We have
retrieved all complexes with significant numbers of
alanine mutations deposited in the AseDB database [10]
and analyzed by Kortemme et al. [14].

For each such complex, we retrieved all the complexes cre-
ated by molecules with the same molecule name in the
PDB [56] and the same family id in SCOP [54]. As simi-
larity of the overall sequences and structures does not nec-
essarily implies the similarity in the binding patterns and
vice versa, we did not remove sequence homologues and
retained SCOP family members only if they shared more
than three interactions with the constructed PPI family.
Following this procedure we obtained a dataset of 12 PPI
families, each with an average of six members (see Table
1).

We have observed that in these families, on average 80%
of the shared interactions with similar spatial physico-
chemical organization are created by the hot spot residues
(following Kortemme et al. hot spots are defined as resi-
dues with ∆∆G ≥ 1 kcal/mol [14]). Moreover, we show that
these conserved interactions can be used to predict hot
spots with a mean success rate of 0.75, calculated as the

average of the true positive rate (specificity) and the true
negative rate (sensitivity) of the hot spot predictions. The
specificity is defined by TN/(TN + FP), and the sensitivity
is TP/(TP + FN), where TP and FP are the numbers of true
and false positives and TN and FN are the number of true
and false negatives respectively. In addition, we con-
structed (ROC) curves, which plot the sensitivity as a func-
tion of the true negative rate (1-specificity), while varying
the prediction threshold. The area under this curve indi-
cates the performance gain over a random predictor (with
an area of 0.5).

Remarkably, the average ROC area of MAPPIS is 0.77 and
it is thus considered to be a good hot spot predictor. Table
2 presents a comparison of MAPPIS with two state-of-the
art computational methods: Consurf [27], which calcu-
lates the evolutionary conservation within a protein fam-
ily, and Robetta [14,15], which explicitly calculates the
expected change in the binding free energy upon muta-
tion to alanine. The performance of MAPPIS was signifi-
cantly better than Consurf, which had a ROC area of 0.48.
When compared to Robetta both methods had almost the
same specificity (0.86 for MAPPIS and 0.85 for Robetta).
The sensitivity of MAPPIS and Robetta were also quite
similar, with only a slight difference (0.66 for MAPPIS ver-
sus Robetta's 0.64). These results show that MAPPIS cap-
tures the energetics of the protein-protein interactions and
can predict hot spots with a high success rate. As compu-
tational alanine scanning methods, like Robetta [15], con-
sider single structures, MAPPIS can not replace them.
Rather, it complements them by showing the important

Table 1: The dataset of PPI families with available alanine scanning data [10,14]. The complexes tested by experimental alanine 
scanning, are detailed in columns 1–3. Column 4 presents the number of PPI family members created by molecules with the same 
functional description by PDB [56] and SCOP [54]. In the case of multiple structures of exactly the same complexes, we have 
arbitrarily chosen half of the structures. Crystal structures with resolution lower than 2.5Å were ignored. Column 5 details the PDB 
codes and the chain identifiers of the proteins in PPIs. Column 6 provides the percentage of sequence identity between the complexes 
in each family, measured by structure based sequence alignment method Staccato [63])

Mutated PDB: 
Chain

Name Partner Family size Family data set details (PDB Chain 1: Chain 2) Seq. Id. (%)

1a4y:A RNase inhibitor Angio genin 4 1a4y A:B, 1z7x Z:Y, 1dfj I:E, 2bex A:C 48

1brs:A Barnase Barstar 6 1brs A:D, 1b2s A:D, 1b27 A:D, 1x1u A:D, 1x1w A:D, 1b2u A:D 94

1brs:D Barstar Barnase 6 1brs A:D, 1b2s A:D, 1b27 A:D, 1x1u A:D, 1x1w A:D, 1b2u A:D 94

1cbw:I BPTI Trypsin 7 1cbw I:HG, 1taw B:A, 1ca0 I:HG, 1ejm B:A, 3tgk I:E,1fak I:H, 1p2k 
I:A, 1f7z I:A

24

1gc1:C CD4 gp120 6 1gc1 C:G, 1g9n C:G, 1rzk C:G, 1rzj C:G, 1g9m C:G, 1yym M:G 54

1bxi:A Im9 E9 DNase 6 1bxi A:B, 1emv A:B, 1fr2 A:B, 1znv A:B, 1mz8 A:B, 1ujz A:B 56

1dan:L Factor VII Tissue Factor 6 1dan LH:TU, 1fak LH:TU, 2aer LH:T, 1wun LH:T, 1wtg LH:T, 1wqv 
L:T, 2a2q L:T

49

1jck:A TCR Vb SEC3 6 1jck A:B, 2aq1 A:B, 2aq2 A:B, 2aq3 A:B 13

1jck:B SEC3 TCR Vb 6 1jck A:B, 2aq1 A:B, 2aq2 A:B, 2aq3 A:B 13

1vfb:C HEL D.1.3 6 1vfb C:AB, 1a2y C:AB, 1fdl Y:LH, 1g7h C:AB, 1g7i C:AB, 1kip C:AB 45

3hfm:Y HEL HYHEL 8 3hfm Y:LH, 1ua6 Y:LH, 1j1o Y:LH, 1j1p Y:LH, 1uac Y:LH, 1ic7 Y:LH, 
1c08 C:AB, 1nby C:AB

57

3hhr:A hGH hGHbp 4 3hhr A:B, 1a22 A:B, 1axi A:B, 1hwg A:B 89
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role of the hot spots in the atomic interactions and in
explaining their cooperativity. Moreover, it reveals the
conserved chemical binding organizations, which are
formed by the atomic interactions and can not be detected
at the residue level.fn

We compared the predictive power of MAPPIS with our
previously developed multiple alignment methods. The
first method, MultiProt [57] performs multiple structural
alignment of the protein backbones represented by the Cα
atoms. Here, it was applied to simultaneously align the
overall structures of both proteins in a complex. The spe-
cificity of its hot spots predictions was low (0.29) and due
to the large number of false positive solutions it is less
suitable for this purpose. The second method, MultiBind
[58] is based on recognition of similar physico-chemical
properties of the protein binding sites without any consid-
eration of the binding partners. As most of the conserved
interactions recognized by MAPPIS are created by regions
with similar physico-chemical properties, the predictions
made by MAPPIS are a subset of the predictions of Multi-
Bind. However, as it ignores the binding partners and the
interactions created across the interfaces it has a high false
positive rate, its specificity is 0.44 and its area under the
ROC curve is 0.58 (see table in Additional file 2). In addi-
tion, as MAPPIS utilizes the information of interactions,
its running times are 10-fold faster than those of MultiB-
ind and its average running time on a typical family of 6–

7 PPIs is 3–4 minutes (on a standard PC, 2.60 GHz CPU,
2 GB RAM).

PPIs of ribonucleases with inhibitors

Ribonucleases (RNases), which catalyze RNA degrada-
tion, are lethal to the cell when expressed without their
specific RNase inhibitor (RI). The affinity of RI for RNases
is one of the highest among known protein-protein com-
plexes (e.g. 1 fM for RI-Angiogenin [59]). Below we ana-
lyze the different types of RNase-inhibitor complexes and
present the interactions shared within each family as well
as the interactions conserved between the PPIs formed by
proteins with different overall sequences and folds.

Barnase-Barstar

Barnase is a bacterial protein with a RNase activity and
barstar is its specific inhibitor. We aligned six PPIs of bar-
nase-barstar (PDB:chain1:chain2 – 1brsAD, 1b2sAD,
1b27AD, 1x1uAD, 1x1wAD, 1b2uAD. See figure 1A in
Additional file 1). These PPIs were recognized to share 17
interactions, which are conserved among the average of
25 interface interactions. Thirteen of them are interactions
created by known hot spots in at least one PPI chain and
six of them are created by pairs of interacting hot spots.
These are created by Asp39 of barstar interacting with Arg-
83 and Arg-87 of barnase as well as barstar Glu76 and
Asp36 which interact with barnase Arg59 and His102
respectively. The importance of these interactions was
experimentally validated by the double mutant studies of

Table 2: Prediction of hot spots with MAPPIS, Consurf [27] and Robetta [14,15]. Columns 1–4 are as in Table 1. The ROC curves were 
constructed by varying the MAPPIS threshold of the interaction score and the Consurf conservation grade. The sensitivity and the 
specificity were calculated with a MAPPIS score of 2 and Consurf score of 6, which gave the best performance. As no threshold could 
be varied for Robetta, we could not construct its ROC curves. The calculations were restricted to the PPI regions of the 
representatives as considered by MAPPIS. The last columns presents the number of mutations and hotspots retrieved from the 
AseDB database [10].

PDB: Chain Name Partner MAPPIS Consurf Robetta # Mutations

# PPIs ROC area Spec. Sens. ROC area Spec. Sens. Spec. Sens.

1a4y:A RNase inhibitor Angiogenin 4 0.74 0.78 0.75 0.18 0.78 0 0.75 0.8 14

1brs:A Barnase Barstar 6 0.75 1 0.5 n/a n/a n/a 0.5 0.67 8

1brs:D Barstar Barnase 6 1 1 1 n/a n/a n/a 1 1 6

1cbw I BPTI Trypsin 7 1 0.88 1 0.75 0.62 1 0.75 1 9

1gc1:C CD4 gp120 6 0.74 0.86 0.67 0.58 0.62 0.67 0.81 0.33 49

1bxi:A Im9 E9 DNase 6 0.72 1 0.44 0.72 0.88 0.56 0.88 0.44 28

1dan:L Factor VII Tissue Factor 6 1 0.73 1 0.23 0.64 0 0.73 1 107

1jck:A TCR Vb SEC3 6 0.65 0.88 0.4 0.41 0.75 0 1 0.5 24

1jck:B SEC3 TCR Vb 6 0.75 1 0.5 0.31 0.5 0.12 1 0.62 10

1vfb:C HEL D.1.3 7 0.51 0.62 0.5 0.27 0.62 0.25 1 0 12

3hfm:Y HEL HYHEL 8 0.62 0.6 0.67 0.78 0.7 0.67 0.8 1 13

3hhr:A hGH hGHbp 4 0.74 1 0.52 0.59 0.44 0.68 0.94 0.32 161

Mean MAPPIS Mean Consurf Mean Robetta Total

6 0.77 0.86 0.66 0.48 0.66 0.4 0.85 0.64 440 (116)
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Schreiber and Fersht [20] who have measured that their
coupling energies range from 5–7 kcal/mol.

RNase A-like with leucine-rich repeat inhibitors

Another type of Ribonuclease-inhibitor complex is
formed by RNase A-like ribonucleases [54] with leucine-
rich repeat inhibitors. We applied MAPPIS to compare the
PPIs of four complexes (see figure 1B in Additional file 1):
(1) RI with Angiogenin (1a4yAB); (2) RI with human
eosinopil derived neurotoxin (2bexAC); (3) RI complexed
with RNase I (1z7xZY) and (4) RI with RNase A (1dfjIE);
MAPPIS recognized 7 interactions that are spatially and
physico-chemically conserved in all the complexes (see
table 2 in Additional file 2). The conserved interactions
recognized by MAPPIS are formed by the known hot spots
Tyr-434 and Asp-435 of Angiogenin with ∆∆G of 3.3 and
3.5 kcal/mol respectively. Additional interactions are the π
contacts between the rings of Angiogenin Tyr-437 with
His-114 of RI, which in spite of a ∆∆G of 0.8 kcal/mol are
conserved in all the complexes. Some interactions are
formed between groups of atoms and are independent of
the amino acid identities. For example, the hydrogen
bond between a side-chain of Tyr-434 (donor/acceptor)
and the backbone O atom of Pro-38 (acceptor) in RI-Ang-
iogenin complex (1a4y) is similar to a hydrogen bond
formed in the RI-neurotoxin complex (2bex) by the side-
chain of Tyr-434 with the backbone of Arg-36. Interest-
ingly, the side chains of these RI residues Pro-38 in 1a4y
and Arg-36 in 2bex form similar hydrophobic interactions
with Val-432 in RNases, which although not experimen-
tally tested, is predicted by Robetta [14] to be a hot spot.

Ribonucleases with inhibitors: different folds similar functions

Both of the above examples are RNase-inhibitor families
that perform similar functions, but their sequences and
structures are totally different. MAPPIS enables the recog-
nition of previously overlooked spatial patterns of interac-

tions shared by their PPIs. Specifically, we applied
MAPPIS to compare between the three most distinct com-
plexes (less than 4% sequence identity): (i) Barnase-bar-
star (1brsAD); (ii) RI with Angiogenin (1a4yAB) and (iii)
Barstar with RNase Sa (1ay7AB). Figure 2A as well as Table
3 present the results of the MAPPIS alignment. We have
recognized four interactions that are formed by known
hot spots in all types of complexes [20,59].

Specifically, we recognized two similar hydrogen bonds
formed by the hot spots Asp-39 and Arg-83 of barnase-
barstar and the Trp-438 and Arg-5 of RI-Angiogenin. We
recognized that a hydrogen bond formed by the hot spots
Asp-35 and Arg-59 in the barnase-barstar complex is sim-
ilar to the hydrogen bond formed by the hot spots Asp-
435 and Lys-40 in the RI-Angiogenin complex. Separately,
for each type of complex the importance of these interac-
tions has already been reported [20,59]. However, as they
are created by amino acids with different identities and
backbone locations, their similarity have never been
detected before.

PPIs of colicin DNases with immunity proteins

The E colicin DNases are bacterial toxins that kill target
microbial cells through random degradation of chromo-
somal DNA. Their catalytic activity is neutralized by the
respective immunity proteins (Im) [60]. We applied MAP-
PIS to analyze and classify the 5 types of available com-
plexes: (i) colicin E3 DNase with Im3; (ii) E5-Im5; (iii)
colicin D with Im; (iv) E7-Im7; (v) E9-Im9. While the PPIs
of the first 3 types were recognized to be distinct and to
belong to different classes, the interactions of E7-Im7 and
E9-Im9 were observed to be extremely similar. Specifi-
cally, we have aligned 6 PPIs of E9-Im9 (1bxiAB, 1emvAB,
1fr2AB) and E7-Im7(1mz8AB, 1ujzAB, 1fr2AB) and
observed 7 conserved interactions (see  in Additional file
2). Four shared interactions (two hydrogen bonds and

Table 3: The interactions shared by PPIs of structurally different Ribonucleases with inhibitors. Each pair of rows details the 
interacting pseudocenters of two PPI chains. Each three columns present the details of a specific PPI: (i) chain identifier and residue 
number; (ii) residue type; (iii) pseudocenter type, which can be donor (DON), acceptor (ACC), mixed donor/acceptor (DAC), 
hydrophobic aliphatic (ALI) or aromatic (PI). The last column presents the origin of the feature: backbone(b) or side-chain(s) if it is the 
same for all the matched pseudocenters.

1brs:Barstar(D)-Barnase(A) 1ay7:Barstar(B)-RNase Sa(A) 1a4y:RI(A)-Angiogenin(B)

Chain. R. Num R. Type Psc. Type Chain R. Num R. Type Psc. Type Chain R. Num R. Type Psc. Type Type

D.35 Asp PI:C B.35 Asp PI:C A.435 Asp PI:C b

A.103 Tyr PI: A.86 Tyr PI B.114 His PI s

D.35 Asp ACC B.35 Asp ACC A.435 Asp ACC s

A.59 Arg DON A.40 Arg DON B.40 Lys DON

D.39 Asp ACC B.39 Asp ACC A.438 Trp ACC

A.83 Arg DON A.65 Arg DON B.5 Arg DON s

D.39 Asp ACC B.39 Asp ACC A.438 Trp ACC

A.83 Arg DON A.32 Gln DON B.5 Arg DON s
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two aromatic interactions) are created by the conserved
YY motif (Tyr-54, Tyr-55, 1bxi numbering) [60]. The rest
of the conserved interactions are the hydrogen bonds
formed by Glu-30 and Asp-51 and a hydrophobic
aliphatic interaction formed by Pro-56. The results of
MAPPIS are consistent with alanine scanning, and resi-
dues Asp-51, Tyr-55 and Pro-56 are indeed hotspots with
∆∆G of 5.9, 4.6 and 1.24 kcal/mol respectively. In addition,
the results of MAPPIS are consistent with previous biolog-
ical studies [60], which emphasized the conservation of
the interaction of Tyr-55 (E9) with Phe-86 (Im9). Interest-
ingly, we observed that, due to reduction of the number of
false positives, interactions shared between E9-Im9 and
E7-Im7 provided a better prediction of hot spots than
interactions shared only by the PPIs of E9-Im9. Specifi-
cally, the success rate of the predictions based on the three
PPIs of E9-Im9 is only 0.58 (ROC area 0.47, specificity
0.38 and sensitivity 0.78). Taking into consideration the
additional three complexes of E7-Im7 increases the specif-
icity of the predictions and achieves the success rate of
0.72 (ROC area 0.72, specificity 1.0 and sensitivity 0.44.
As can be seen in Figure 2B MAPPIS maximizes the simi-
larity in the interface area and allows to overcome the
backbone flexibility and the rotation of the overall struc-
tures. These were described by Joachimiak et al. [61], who
have designed a new interface of E7-Im7. Interestingly,
when we added the structure of the redesigned PPI (2erh)
to our alignment, the shared pattern of interactions,
detailed in Figure 2B remained almost unchanged. Most

of the amino acids that create it were not modified and
even those that were mutated preserved the interaction.
For example, one of the interactions conserved in all the
PPIs was created by the backbone O of Gln-528 in E7
(1mz8). Using MAPPIS, we observed that a similar back-
bone interaction was present in the redesigned PPI (2erh),
in which this amino-acid was mutated to Lys-528. This
example shows that MAPPIS can be used to guide protein
design studies. It can recognize the most crucial interac-
tions, which should remain unchanged and can point to
amino acids that are not crucial for interaction or interact
via their backbone atoms and can be replaced.

PPIs of superantigens with T-Cell receptors

Superantigens (SAGs) are a group of toxins that activate T-
cells causing system-wide inflammation and other human
diseases. Sundberg et al. [62] have analyzed complexes of
different SAGs with T cell receptors (TCRs) and observed
a diversity of binding modes backbone conformations.
Intrigued by this phenomenon, we applied MAPPIS to
align 6 complexes of TCRs with SAGs: (1) SEC3 (PDB:
1jckAB, 2aq3AB); (2) SEB (PDB:1sbbAB); (3) SpeA
(PDB:1l0yAB, 1l0xAB) and (4) SpeC (PDB:1ktkEA).
Remarkably, within 1 second, which is the running time
of MAPPIS, we obtained results that are consistent with
the thorough manual analysis of the interactions in each
type of complexes done by Sundberg et al. [62]. Although
the overall backbones of the compared SAGs can not be
rigidly aligned in 3D space (see figure 2 in [62]), the

Alignment examplesFigure 2
Alignment examples. (A) Alignment of 3 RNase-inhibitor PPIs. The Angiogenin is yellow (1a4yB) and the Rnase Sa (1ay7A) 
and barnase (1brsA) are dark and light orange. The Leucine-rich RI (1a4yA) is in magenta while the barstars (1ay7B,1brsD) are 
blue and purple. The rightmost figure shows the conserved interactions with the identities of the amino acids that create them 
in the corresponding complexes (1a4y:1ay7:1brs). The pseudocenters are represented as in Figure 1A, except the aromatic 
properties which are cyan. The RIs are light purple and the RNases are monochrome. (B) Alignment of 6 PPIs of E9-Im9 
(1bxiAB, 1emvAB, 1fr2AB) and E7-Im7(1mz8AB, 1ujzAB, 1fr2AB). The E9 are cyan and the E7 are blue. The Im9 and Im7 are 
yellow and red respectively. The right figure details the 7 conserved interactions labeled by the amino acids of 1bxiAB.
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chemical binding organizations of their complexes are
similar. Specifically, we recognized 4 spatially conserved
interactions (1 aromatic and 3 hydrogen bonds, see Table
4 in Additional file 2). Notably, all of these shared inter-
actions are created by experimentally verified hot spots.
Moreover, two of these interactions are created by pairs of
cooperative hot spots that interact across the interface:
Gly-53 and Thr-55 of TCR that interact with the hot spots
Gln-210 and Asn-23 of SAG respectively (1jck number-
ing). Most of the shared interactions, which are spread
along the TCR regions CDR2/FR3, were detailed by Sund-
berg et al. for each of the complexes with SpeA, SpeC and
SEB (see figure 4 in [62]). Although the compared com-
plexes have different binding conformations, MAPPIS
aligns the loops in the binding regions and overcomes the
backbone flexibility. Moreover, as these spatially con-
served interactions are created by amino acids with differ-
ent identities, the similarities described above can not be
recognized by residue based computational methods.

Conclusion
Here, we have shown that spatially conserved physico-
chemical interactions play a crucial functional role. We
have presented a computational method, MAPPIS, for rec-
ognition of such patterns of conserved interactions
formed between groups of atoms independent of the
identity of the amino acids as well as the overall protein
sequences and folds. Considering multiple complexes of
functionally similar PPIs, MAPPIS allows the identifica-
tion of the smallest set of interactions that may be respon-
sible for binding and function. We have shown that
chemical groups that form spatially conserved interac-
tions correlate with cooperative effects in double mutant
cycles and are useful for predicting hot spots.

Interestingly, we observed that increasing the number of
the compared PPIs, as well as comparing PPIs of proteins
with different overall sequences and folds, improves the
specificity of the hot spot prediction. The main limitation
of our approach is the requirement for the existence of a
sufficient number of high resolution structures of com-
plexes comprised by functionally similar proteins. The
selection of such complexes is not straightforward, espe-
cially as there is no direct correspondence between func-
tional similarity and the similarity of the overall
sequences and structures [32].

With the fast progress of Structural Genomics and the
availability of multiple structures of functionally related
proteins, methods like MAPPIS are expected to become
increasingly useful. MAPPIS complements both computa-
tional and experimental alanine scanning by explaining
the functional role of hot spots in the formation of atomic
interactions. Further, by recognition of conserved spatial
patterns of physico-chemical interactions, it rationalizes

hot spots' cooperativity and elucidates the complex bind-
ing organizations of the protein-protein interfaces. There-
fore, it complements the experimental techniques, such as
the double mutant cycle, which provide the experimental
evidence for the cooperativity effects at the amino acid
level but do not describe the atomic interactions that are
responsible for it. Moreover, analysis of the conserved
interactions with MAPPIS can explain the effect of amino
acids' mutations and can contribute to studies of the bind-
ing affinity and specificity. Furthermore, targeting the con-
served chemical organizations may be a useful strategy in
protein and drug design.

The MAPPIS Method
Given a set of PPIs, MAPPIS solves an optimization prob-
lem of finding a set of transformations that superimpose
the PPIs in 3D space in a way that maximizes the spatial
and chemical similarity of their interactions and pseudo-
centers. As this optimization problem is computationally
NP-hard [58], we provide an efficient approximation
algorithm, the main stages of which are presented in Fig-
ure 3 and below.

The input

The input to MAPPIS consists of K PPIs .

These are represented by their physico-chemical proper-
ties and interactions as presented in Figure 1A (see
Results). For K interfaces we define the similarity with
respect to the pivot PPI, which is selected as the first PPI.
We assume that we are given the correspondence between
the compared protein chains (i.e. Ai corresponds to Bi).

This correspondence can be obtained either from the bio-
logical data (e.g. molecule names) or by running the pair-

{ ( , )}I A Bi i i i
K

= =1

Overview of the MAPPIS methodFigure 3
Overview of the MAPPIS method.



BMC Biology 2007, 5:43 http://www.biomedcentral.com/1741-7007/5/43

Page 9 of 11

(page number not for citation purposes)

wise alignment between (A1, B1) - (Ai, Bi) and (A1, B1) -

(Bi, Ai), for each i ≠ 1.

Generation of pairwise transformations

Given a set of PPIs, we create a set of pairwise transforma-
tions that can superimpose each PPI the pivot. These
transformations are constructed based on the information
of the physico-chemical interactions formed across each
interface. Specifically, each pair of pivot interactions is
stored in a four-dimensional hash table with a key encod-
ing the interactions' lengths and the distances between
pseudocenters as well as their physico-chemical proper-
ties. Each pair of interactions from each PPI except the
pivot is used to access the hash table and retrieve similar
interaction pairs of the pivot. Each pair of matched inter-
actions defines a candidate transformation that can super-
impose the considered PPI upon the pivot. In particular,
we use the least square fitting method and given two inter-

actions from two PPIs,  and , i = 1,

2, we compute a transformation that can best superim-
pose them in 3D space, i.e. a transformation that mini-
mizes the RMSD between the pseudocenters:

. As we con-

struct only the transformations that can superimpose at
least two physico-chemically similar interactions, we
reduce the number of the constructed transformations
and achieve a performance gain over other methods (e.g.
MultiBind, see Table 1 in Additional file 2).

Multiple combination of 3D transformations

At the next stage we construct the multiple alignments
which are based on the combination of all the candidate
pairwise transformations constructed at the previous
stage. The number of possible combinations is exponen-
tial in the number of PPIs. To practically overcome this
limitation we apply an efficient branch-and-bound tech-
nique that effectively filters out a large number of low
scoring solutions [58]. As illustrated in Figure 3, we itera-
tively traverse the created transformations. Each time we
create a multiple alignment of a set of m PPIs and try to

add a transformation  of the PPI, Im+1. However, if

an estimated score of the multiple alignment between
these m + 1 PPIs is lower than the score of the best multi-
ple alignment found so far between all the K input PPIs (K

≤ m), we can ignore this combination of transformations
and there is no need to try to extend it. Essentially, we con-

tinue and try to add another transformation,  of Im+1,

and so on. Although theoretically the number of such
traversals may be exponential, the filtering is very efficient
and leads to low running times.

Furthermore, we achieve an additional speed up by the
observation that we do not need to actually construct a
multiple alignment for each set of m + 1 PPIs, but we can
estimate an upper bound on its score. In particular, we cal-
culate the highest score that can be achieved between the
superimposed pseudocenters, without the requirement
for the exact correspondence which resolves multiple
matches.

Construction of the common pattern

For each potentially high scoring multiple superposition
we compute the exact correspondence between the super-
imposed pseudocenters and interactions and determine
the common pattern. The calculation of such correspond-
ence involves solving a problem of PPI K-partite matching
which is NP-hard even for a pair of PPIs [50]. Here, we
implement the following greedy algorithm. First, we sort
the superimposed interactions and pseudocenters accord-
ing to their physico-chemical score (see Additional file 3).
Each time, we greedily select a highest scoring set of mul-
tiply matched interactions (one from each PPI) and mark
the selected pseudocenters as matched. The next selection
will be made from the still unmatched pseudocenters.
Where the number of interactions in which each pseudo-
center can participate is bounded by the valency of the
atoms. Once we have determined the pattern of interac-
tions we apply a similar greedy procedure to determine
the set of matched non-interacting pseudocenters. All can-
didate patterns are scored by the physico-chemical scoring
functions which is detailed in Additional file 3. In all of
the described examples (see Section Results) we have
referred only to a single solution which received the high-
est score.

Running Time Complexity

The time complexity depends mainly on the stage of the
multiple combination of 3D transformations and it is
bounded by O(n3K'nK log(n)), where n is the number of
pseudocenters in the largest PPI and K' is the depth of
branch-and-bound stage (K' ≤ K) [50]. The practical run-
ning times of MAPPIS are as low as reported in Table 1 in
Additional file 2

Availability and requirements
The MAPPIS software is available for download at: http://
bioinfo3d.cs.tau.ac.il/mappis/. The software package con-
tains the executable and a set of Perl scripts for PPI extrac-
tion. The package is suitable for the Linux platform and its
download is free for non-commercial users.
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