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Abstract

Identifying spatial clusters of different regression coefficients is a useful tool for discerning

the distinctive relationship between a response and covariates in space. Most of the existing

cluster detection methods aim to identify the spatial similarity in responses, and the stan-

dard cluster detection algorithm assumes independent spatial units. However, the response

variables are spatially correlated in many environmental applications. We propose a mixed

effect model for spatial cluster detection that takes spatial correlation into account. Com-

pared to a fixed effect model, the introduced random effect explains extra variability among

the spatial responses beyond the cluster effect, thus reducing the false positive rate. The

developed method exploits a sequential searching scheme and is able to identify multiple

potentially overlapping clusters. We use simulation studies to evaluate the performance of

our proposed method in terms of the true and false positive rates of a known cluster, and the

identification of multiple known clusters. We apply our proposed methodology to particulate

matter (PM2.5) concentration data from the Northeastern U.S. in order to study the weather

effect on PM2.5 and to investigate the association between the simulations from a numerical

model and the satellite-derived aerosol optical depth (AOD) data. We find geographical hot

spots which show distinct features comparing to the background.
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detection; spatial scan statistic; varying coefficient regression.

1. Introduction

Fine particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) is a well-known

harmful air pollutant. For example, many recent studies have shown that high concentra-

tions of PM2.5 are a risk factor for mortality (Samoli et al., 2008), various zcardiopulmonary

diseases (Dominici et al., 2006; Pope and Dockery, 2006), and preterm birth (Chang et al.,

2012). Air quality, such as the PM2.5 concentration, is typically associated with meteorolog-

ical conditions since the complex chemistry and physics in the atmosphere can influence the

fate and transport of pollutants. Regression models are often used to identify the association

between air pollutant concentrations and weather predictors, such as temperature, relative

humidity, and wind speed (Jacob and Winner, 2009; Porter et al., 2015; Russell et al., 2017).

When analyzing spatially varying pollutants and predictors, the regression model may

not have exactly the same coefficients across the entire region of study due to differences

in emission sources, air pollution composition, and missing confounders. A subdomain that

shows distinct patterns in the regression coefficients relative to the rest of the region is called

a spatial cluster or a hot spot, and the rest of the region is referred to as the background.

Kulldorff and Nagarwalla (1995) and Kulldorff (1997) proposed the spatial scan statistic for

identifying spatial clusters that have distinctive risks in the Poisson process or the Bernoulli

process. Later, many variants of the scan statistic (Duczmal and Assunção, 2004; Gangnon

and Clayton, 2004; Tango and Takahashi, 2005; Assunção et al., 2006; Kulldorff et al., 2006,

2009; Jung, 2009; Gangnon, 2010b; Neill, 2012; Shu et al., 2012; Xu and Gangnon, 2016;

Lin et al., 2016) have been proposed. Especially, Kulldorff et al. (2009) proposed a spatial

scan statistic for the Gaussian data and, further, Jung (2009) proposed a covariate-adjusted

spatial scan statistic based on generalized linear models for identifying spatial clusters in

the intercepts only, while assuming the slopes associated with the covariates are identical

for the cluster and the background. Most of these spatial scan statistics are implemented

in the SaTScan™ software (http://www.satscan.org), and covariate-adjusted spatial scan
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statistics are available with the DClusterm package (Gómez-Rubio et al., 2018) which is

implemented in R (R Core Team, 2017). Alternatively, Bayesian models were introduced

for the detection of spatial clusters in disease mapping (Gangnon and Clayton, 2000, 2003;

Knorr-Held and Raßer, 2004; Gangnon and Clayton, 2007; Lawson, 2000; Clark and Lawson,

2002; Yan and Clayton, 2006; Wakefield and Kim, 2013). However, the aforementioned

spatial scan statistics and Bayesian cluster detection approaches are focusing on the cluster

in the response or the intercepts only, but not the association between the response and

covariates.

Example approaches for clustering regression coefficients, fused lasso methods (Tibshirani

et al., 2005; Friedman et al., 2007; Yang et al., 2012; Tang and Song, 2016; Wang et al., 2016)

have been proposed, as well as the other penalized regression models (Shen and Huang, 2010;

Ke et al., 2015; Shin et al., 2016; Tutz and Oelker, 2017). Alternatively, Berger and Tutz

(2018) proposed a tree-structured clustering approach to split regression coefficients into

several groups. However, all of the aforementioned methods are not readily applicable to

spatial data to achieve geographic clusters. Further, these clustering approaches mainly

focus on grouping, but do not aim to identify spatial hot spots.

In the spatial regression analysis, the geographically weighted regression (GWR) (Bruns-

don et al., 1996; Fotheringham et al., 2002) is one of the popular approaches to a spatial

varying coefficient model. GWR provides regression coefficient estimates which are locally

weighted and vary across space. Alternatively, in a Bayesian framework, Lawson et al. (2014)

proposed an approach to a grouped spatial varying coefficient regression when the total num-

ber of groups is known a priori. However, neither method is directly applicable to detection

of hot spot.

Recently, Lee et al. (2017a) proposed detecting an unknown number of spatial clusters

in the spatial regression coefficients, which can be useful for informing subsequent spatially

varying coefficient regression based on the detected spatial hot spots. However, as other

spatial scan statistic approaches, Lee et al. (2017a) assume independent observations, which

are not necessarily applicable to spatial data. Although some approaches to spatial cluster
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detection addressed the issue of spatial correlation by considering a spatial random effect

(Kleinman et al., 2005; Loh and Zhu, 2007; Zhang and Lin, 2009; Lin et al., 2016), they define

the spatial clusters for either the response or the intercepts only, not for the regression slopes.

Alternatively, Kim et al. (2005) adopted k-means (MacQueen, 1967) and Reich and Bondell

(2010) considered Dirichlet process mixture for clustering with air mass data and population

genetic data, respectively. But, they use spatial information to classify individual observation

or air mass back-trajectories, not to detect spatial subdomains or hot spots.

In this paper, we propose a method of detecting spatial clusters of regression coefficients

using a mixed effect model. It can be viewed as an extension of the method proposed by

Lee et al. (2017a), who used a fixed effect model and assumed the spatial observations to

be independent. Here, we address the issue of spatial correlation when identifying spatial

clusters in regression slopes. This is crucial because when the spatial correlation is ignored,

any significant differences observed in the slope may simply be due to an inflated simi-

larity among the covariate effects caused by the residual spatial correlation, rather than a

true spatial cluster. Therefore, to take the spatial dependence into account, we introduce

a spatial blockwise random effect, which leads to the mixed effect model. Our proposed

approach enables not only the detection of spatial hot spots, which show distinct features

in the coefficients comparing to the background, but also addressing the potential spatial

dependency.

The remainder of the paper is organized as follows. In Section 2, we describe the motivat-

ing data which includes PM2.5 concentration estimates, weather drivers, and satellite-derived

aerosol optical depth (AOD) from the Northeastern U.S. In Section 3, we define our mixed

effect model with a spatial blockwise random effect and develop corresponding hypothesis

tests for the spatial cluster effects. For multiple clusters, we develop a sequential detection

scheme. In Section 4, we perform simulations to evaluate our proposed method in terms of

false positive or power, and identification of true clusters by comparing its results to those

of the fixed effect model approach (Lee et al., 2017a). We provide a detailed analysis of the

mixed effect model’s application to the real data in Section 5. Section 6 contains a discussion
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and final conclusions.

2. Data description

Our study domain, which is defined by the National Climatic Data Center (Karl and

Koss, 1984), covers the Northeastern U.S. (Connecticut, Delaware, Maine, Maryland, Mas-

sachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont,

and District of Columbia).

The Environmental Protection Agency (EPA) provides the PM2.5 values, which are gen-

erated via the Community Multiscale Air Quality Modeling System (CMAQ); both the raw

and fused CMAQ data are available at https://www.epa.gov/cmaq. The fused CMAQ PM2.5

is bias-corrected by combining the raw CMAQ data with the monitoring data (Berrocal et al.,

2010a,b, 2011).

For the weather variables, we obtain the meteorological drivers of PM2.5 from the North

American Regional Reanalysis (NARR, https://www.esrl.noaa.gov/psd). We select three

covariates based on information from previous similar researches (Jacob and Winner, 2009;

Porter et al., 2015; Russell et al., 2017), as shown in Table 1.

[Table 1 about here.]

Another proxy measurement of particle air pollution data is the AOD obtained from

satellites. Previous studies on predicting PM2.5 concentration from AOD were reviewed by

Chu et al. (2016). And, those regression based models showed that PM2.5 concentrations

have positive relationships with AOD (Liu et al., 2005; Paciorek et al., 2008; Kloog et al.,

2011; Lee et al., 2011; Kloog et al., 2012; Chang et al., 2013; Ma et al., 2016; Yu et al.,

2017; Grantham et al., 2018) because AOD measures light extinction due to particles (e.g.,

dust, smoke, pollution) in the atmospheric column. We also obtain satellite-measured AOD

data for the Northeastern U.S. from the Moderate Resolution Imaging Spectroradiometer

(MODIS) in order to investigate its relationship to the PM2.5 concentrations in the fused

CMAQ data via our mixed effect model with a spatial blockwise random effect.
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While the CMAQ is available at the 12 × 12 km2 grid, the NARR data is available on

a 32 × 32 km2 grid. Thus, a 32 × 32 km2 grid is the common resolution available when

we consider a regression modelling with the data from these different sources (CMAQ and

NARR). We organize the monthly mean data for June, July, and August 2012, on a 32× 32

km2 grid by averaging each variable (raw CMAQ PM2.5, fused CMAQ PM2.5, TMP, RH,

WS, and AOD) up to match the NARR grid cell.

3. Spatial cluster detection

We let D denote a spatial domain of interest in R
2 and be partitioned into g subregions,

D1, . . . , Dg. We let ni denote the number of cells that partition subregion Di with geo-

graphical centroids sij = (s1ij, s2ij)
T for i = 1, . . . , g, j = 1, . . . , ni. For cell (i, j), y(sij),

the response variable at sij, is denoted by yij for simplicity. Then, we model the response

variable with the mean response and the random error as yij = µij + εij for i = 1, . . . , g,

j = 1, . . . , ni. Further, we decompose the random error εij as εij = bi + eij, where bi’s and

eij’s are iid N (0, σ2
b ) and iid N (0, σ2

e) with variance components σ2
b > 0 and σ2

e > 0, respec-

tively, and bi’s and eij’s are independent. As we can see, this is a mixed effect model with

a spatial blockwise random effect bi that is associated with the subregion Di and a purely

random error eij. Thus, the correlation between two observations is

corr(yi1j1 , yi2j2) =







σ2

b

σ2

b
+σ2

e
, i1 = i2, j1 6= j2 (within subregion),

0, i1 6= i2 (across subregions).

The spatial correlations could be defined further across subregions similarly to Bai et al.

(2014); however, we do not pursue this direction in this paper. Our proposed model simply

introduces the spatial dependence through a blockwise random effect bi. WithN observations

and p covariates, the mixed effect model requires the computational complexity of O(Npm),

where m is the rank of the covariance matrix for the random effect (Darnell et al., 2017;

Tan et al., 2018). Thus, our mixed effect model has the computational complexity O(Npg)

whereas a Gaussian process regression typically needs the higher computational cost as

O(N3). Further, in our model, subregions are given, and there is no longer any spatially
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correlated structure across bi’s so that we can easily fit our model like a linear mixed model

to non-spatial data. We use these subregions to approximate the spatial dependence; this

will be examined further in terms of a continuous spatial process in Section 4.

We define the subregions Di by grouping the coordinates sij. For example, in the simula-

tion studies performed on a square grid in Section 4, we divide the study region into smaller

squares and define these as the subregions. In practice, we may define the subregions by clus-

tering x-coordinates and y-coordinates (or longitudes and latitudes). For example, k-means

clustering with xy-coordinates could be an option to define the subregions as in Section 5.

Further, we do not assume that the covariates and random effects are spatially correlated.

Therefore, we do not consider the potential issue of spatial confounding, where multicollinear-

ity between the spatially random effects and covariates changes the regression coefficients

estimates in a mixed effect model (Paciorek, 2010; Hodges and Reich, 2010; Hughes and Ha-

ran, 2013). In practice, however, if the spatial confounding is suspected, then the restricted

spatial regression model can be applied (Hodges and Reich, 2010).

Similar to Lee et al. (2017a), for a spatial cluster C, we define a circular window with a

center c and radius r such that

C =
{

(i, j) | d(sij, c) 6 r
}

, (1)

where d(·, ·) is the distance between two locations. That is, those cells which geographical

centroids sij are within r distance of c form the circular cluster C. Although numerous

studies have reviewed and compared the performance of various window shapes (Huang

et al., 2008; Goujon-Bellec et al., 2011; Grubesic et al., 2014), we consider the circular

window because it can be simply defined even in the irregular grid data (e.g., county level

data). However, in practice, it can be substituted by other shapes, such as ellipses and

squares (Tango and Takahashi, 2005; Assunção et al., 2006; Kulldorff et al., 2006; Murray

et al., 2014; Yin and Mu, 2018).

We let C = {C1, C2, . . .} denote the set of all the candidate clusters of the form (1). Then,

with a spatial cluster C ∈ C, the mean response µij follows a varying coefficient model:

µij = xT
ij

(

β + θ · I{(i, j) ∈ C}
)

, (2)
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where xij denotes the corresponding covariates, β is the regression coefficient vector for the

background (i.e., the non-cluster), θ is the cluster effect associated with C, and I(·) is the

indicator function.

Furthermore, within a subregion Di, for i = 1, . . . , g, we can represent the response

variable in a vector form as yi = µi+εi, where yi = (yi1, . . . , yini
)T , µi = (µi1, . . . , µini

)T , and

εi = (εi1, . . . , εini
)T ∼ Nni

(0ni
,Λi) is multivariate normally distributed. The ni × ni within-

subregion covariance matrixΛi is represented byΛi = V ar(εi) = V ar(bi)+V ar(ei) = σ2·Σi,

where σ2 = σ2
b +σ2

e , Σi = (1−ρ)Ini
+ρJni

is the ni×ni within-subregion correlation matrix,

ρ = σ2
b/σ

2, Ini
is an ni × ni identity matrix, and Jni

is an ni × ni matrix of ones.

By combining all the subregions Di and their corresponding cells, our model is y = µ+ε,

where y = (yT
1 , . . . ,y

T
g )

T , µ = (µT
1 , . . . ,µ

T
g )

T , ε = (εT1 , . . . , ε
T
g )

T ∼ NN(0,Λ), and N =
∑g

i=1 ni. The covariance matrix Λ is an N ×N block-diagonal matrix of the form

Λ = diag{Λ1, . . . ,Λg} = σ2 · diag{Σ1, . . . ,Σg} = σ2 ·Σ, (3)

where Σ is the block-diagonal correlation matrix. The off-block-diagonal entries in both Λ

and Σ are all zero because we assume independent subregions.

Since we include both spatially clustered intercept and a spatial blockwise random effect

in the model, there will be an identifiability issue between these two when the cluster C

equals to one of subregions. However, this identifiability problem can be solved by redefining

the set of the candidate clusters C∗ by avoiding those subregions, if any, from C as C∗ =

C \ {D1, . . . , Dg}.

3.1. Single cluster detection

We begin with a cluster-specific local hypothesis test for the kth candidate cluster Ck ∈ C,

k = 1, 2, . . .:

H0k : θk = 0 versus HAk
: θk 6= 0,

λ(Ck) =
L(ζ̂Ak

)

L(ζ̂0k)
,

8



where θk is the cluster effect associated with Ck, L(ζ) is the likelihood evaluated at ζ =

(βT ,θT , σ2, ρ)T , and λ(Ck) is the likelihood ratio test (LRT) statistic. In the implementation,

we used the lmer function in the lme4 package (Bates et al., 2015) for R to achieve ζ̂0k and

ζ̂Ak
which are the estimates of ζ under H0k and HAk

, respectively.

Now, we consider a global hypothesis test to locate an unknown generic cluster C among

all the candidate clusters in C:

H0 : θ = 0 for all C ∈ C versus HA : θ 6= 0 for some C ∈ C, (4)

ν = max
C∈C

{λ(C)}, Ĉ = argmax
C∈C

{λ(C)}, (5)

where ν is the test statistic for (4) defined as the largest value of the LRT statistics for all

the cluster-specific local hypothesis tests, and Ĉ is the cluster estimate corresponding to the

test statistic ν. Since the null distribution of ν in (5) does not exit in a closed form, we

adopt a Monte Carlo method to compute a p-value (Lee et al., 2017a,b). First, we estimate

ζ = (βT ,θT , σ2, ρ)T under H0 in (4) to be ζ̂0. Second, we generate S Monte Carlo samples

with ζ̂0 under H0. Third, we compute the test statistic ν in (5) for each of the Monte Carlo

samples, which are denoted by ν1, . . . , νS in descending order so that ν1 has rank 1. Finally,

the observed test statistics are denoted by νobs, and R is the rank of νobs. We define the

p-value as R/(S + 1).

3.2. Multiple cluster detection

There may be more than one cluster in the area of interest. To find those unknown

numbers of spatial clusters, we adopt the sequential detection approach (Zhang et al., 2010;

Lee et al., 2017a), detailed below:

(i) Predefine C with N cells on the spatial lattice, and the minimum and maximum radii,

rmin and rmax, respectively.

(ii) Obtain the cluster Ĉ = argmax
C∈C

{λ(C)}, its p-value, and the residuals êij = yij−µ̂ij− b̂i,

where µ̂ij = xT
ij(β̂ + θ̂ · I{(i, j) ∈ Ĉ}).
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(iii) Update the responses as the residuals, i.e., replace yij with êij.

(iv) Repeat steps (ii)–(iii) until the p-value > α. That is, stop only if the p-value in step

(ii) is greater than the significance level α.

Here, we allow multiple overlapping clusters. However, this approach also can handle the

detection of multiple non-overlapping clusters by updating C with C \ {C | C ∩ Ĉ 6= ∅} in

step (iii), where Ĉ is the cluster estimate from step (ii) and ∅ is the empty set.

3.3. Two–stage multiple cluster detection

The approach proposed in Sections 3.1–3.2 uses hypothesis testing on the cluster effects

to determine the spatial cluster estimates in both the intercepts and the slopes. Therefore,

when the slope is of primary interest, it is unclear whether the cluster effects stem from the

intercepts or the slopes. To solve this problem, we adopt the two–stage approach of Lee et al.

(2017a), which enables us to detect multiple spatial clusters in the slopes and the intercepts

separately.

Again, we begin with two cluster-specific local hypothesis tests on the slopes and the

intercepts for the kth candidate cluster Ck ∈ C, k = 1, 2, . . .:

Hslp
0k

: θk,−0 = 0 versus Hslp
Ak

: θk,−0 6= 0, (6)

H int
0k

: θk,−0 = 0, θk,0 = 0 versus H int
Ak

: θk,−0 = 0, θk,0 6= 0, (7)

where θk = (θk,0, θk,1, . . . , θk,(p−1))
T ∈ R

p is the cluster effect associated with Ck, and θk,−0 =

(θk,1, . . . , θk,(p−1))
T ∈ R

p−1. The LRT statistics for (6) and (7) are λslp(Ck) = L(ζ̂slp
Ak
)/L(ζ̂slp

0k
)

and λint(Ck) = L(ζ̂ int
Ak
)/L(ζ̂ int

0k
), respectively. The estimates under Hslp

0k
, Hslp

Ak
, H int

0k
, and H int

Ak

are ζ̂
slp
0k
, ζ̂slp

Ak
, ζ̂ int

0k
, and ζ̂ int

Ak
, respectively.

Then, in the global hypothesis test, we define the test statistic and the cluster estimate

for an unknown generic cluster C ∈ C in the slopes as

Hslp
0 : θ−0 = 0 for all C ∈ C

versus Hslp
A : θ−0 6= 0 for some C ∈ C,

νslp = max
C∈C

{λslp(C)}, Ĉ = argmax
C∈C

{λslp(C)}. (8)
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Similarly, we define the global hypothesis testing for an unknown generic cluster C ∈ C in

the intercepts as:

H int
0 : θ−0 = 0, θ0 = 0 for all C ∈ C

versus H int
A : θ−0 = 0, θ0 6= 0 for some C ∈ C,

ν int = max
C∈C

{λint(C)}, Ĉ = argmax
C∈C

{λint(C)}, (9)

Similar to Section 3.1, the p-values of νslp in (8) and of ν int in (9) can be computed via the

Monte Carlo method.

For multiple potential clusters, we adopt the sequential detection scheme again. This

time, however, the first stage is reserved for the slopes, and the second for the intercepts.

Further, we adjust the p-value with the Bonferroni correction since this detection method

consists of dual tests for the first and second stages (Dunn, 1961). That is, we

(i) Predefine C with N cells on the spatial lattice, and the minimum and maximum radii,

rmin and rmax, respectively.

— First stage —

(ii) Obtain the cluster Ĉ = argmax
C∈C

{λslp(C)}, its p-value, and the residuals.

(iii) Update the responses as the residuals.

(iv) Repeat steps (ii)–(iii) until the p-value > α/2. That is, stop and go to step (v) only if

the p-value in step (ii) is greater than α/2.

— Second stage —

(v) Obtain the cluster Ĉ = argmax
C∈C

{λint(C)}, its p-value, and the residuals.

(vi) Update the responses as the residuals.

(vii) Repeat steps (v)–(vi) until the p-value > α/2. That is, stop only if the p-value in step

(v) is greater than the significance level α/2.
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4. Simulation studies

In this section, we conduct two simulation studies to evaluate our proposed method. The

first one is for the false positive and power computation, and the second study is to evaluate

how the proposed approach identifies the true clusters well enough. In each simulation study,

we compare our mixed effect model approach to the fixed effect model approach (Lee et al.,

2017a). Both the mixed effect and fixed effect approaches are implemented in R, and the

lme4 package is used to fit the mixed effect model.

Figure 1: Top row: Sixteen subregions in a 12× 12 square grid; each subregion is defined as a 3× 3 square

grid. Bottom row: A single cluster setting for the false positive and power computation, and three multiple

clusters settings for the true clusters identification.

The setting for our simulation study on a 12 × 12 square grid is illustrated in Figure

1. For the blockwise random effect, we consider a total of sixteen subregions defined as

3 × 3 square grids. That is, ni = 9 for i = 1, . . . , g where g = 16, and N =
∑g

i=1 ni = 144.

Further, we consider a single cluster setting for the false positive and power computation and

three settings for the multiple cluster identification. We generate two covariates, xij1 and

xij2, for cell (i, j) from the standard normal distribution N (0, 1). The regression coefficients

for the background β and the variance component for the pure random error eij are set to

β = (0, 0, 0)T and σ2
e = 1, respectively.

We also consider model misspecification. Instead of simulating the observations from the

12



mixed effect model, we simulate N = 144 observations from a Gaussian process (GP):

yGP = µ+ εGP , εGP ∼ GP
(

0, K(·)
)

, K(d;φ) = σ2
GP · e

− d2

φ2 ,

where σ2
GP · e−d2/φ2

is a Gaussian covariance function, and d is the distance between two

observations in units of grid spacing. We set σ2
GP equal to 1 and vary the range parameter

φ to induce different strengths of spatial correlation. Thus, we show that our mixed effect

approach provides satisfactory results even when the data are simulated from a GP. We also

evaluate the impact of the block size for the subregions.

4.1. False positive and power evaluation

We conduct a simulation study using the single cluster setting shown in Figure 1 for the

power evaluation. The cluster effect θ is set to θ = (θ, θ, θ)T , where θ ∈ {0.0, 0.1, 0.2, . . . , 2.5},

and the variance component for the spatial blockwise random effect bi is set to σ2
b ∈

{0.1, 0.5, 0.7, 1.0, 2.0}, i.e., σ2
b/σ

2
e is 0.1, 0.5, 0.7, 1.0, or 2.0. For the GP error εGP , φ is

set to 1, 2, or 3.

The power is defined as the proportion of the simulations in which the global null hypoth-

esis (4) is rejected at the significance level α = 0.05 (Gangnon and Clayton, 2004; Waller

et al., 2006; Gangnon, 2010a, 2012; Lee et al., 2017a). We simulate 1,000 datasets from each

setting.

[Table 2 about here.]
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Table 2 shows the empirical false positive, which is the power computation when the

cluster effect does not exist, θ = (0, 0, 0)T . Our mixed effect approach provides false positive

rates close to the nominal α = 0.05. However, the false positive in the fixed effect model

becomes inflated as σ2
b , the variation of the random effect, increases. The empirical powers

are illustrated in Figure 2. The mixed effect model provides an S-shaped power curve,

whereas the power curve of the fixed effect approach is inflated everywhere. Since the power

is defined with such an event where the global null hypothesis, H0 : θ = 0 for all C ∈ C, is

rejected, a higher power does not mean that the cluster estimate is closer to the true cluster.

Identification of the true clusters will be discussed in Section 4.2.

[Table 3 about here.]
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Figure 3: Power curve: yGP = µ+ εGP , where εGP ∼ GP
(

0,K(·)
)

and K(d;φ) = σ2

GP · e
− d2

φ2 .

Table 3 and Figure 3 show the results from the simulation performed with GP errors.

When we apply our mixed effect model approach to the GP data, we consider two different

block sizes for the subregions: sixteen 3×3 square grids (B = 3×3), which is the same as in

Figure 1, and four 6× 6 square grids (B = 6× 6). Similar to the results from the simulation

with the blockwise random effect, the fixed effect model shows a high false positive rate

(shown in Table 3) and inflated power (shown in Figure 3), which are caused by the spatial

autocorrelation increasing as φ gets larger. With respect to the false positive, we also consider

another Gaussian process with an exponential covariance function, K(d;φ) = σ2
GP · e−d/φ,

where d is the distance between two observations in units of grid spacing and φ is set to

be 0.7, 1.0 or 1.4 (shown in Table 3). With 1,000 simulation, the standard errors of the
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estimated false positive rates are approximately
√

(0.05)(0.95) ≈ 0.0069. Thus, all of the

estimated false positives in the mixed effect model are within, or lie slightly more than, one

standard error away from the nominal α = 0.05. Further, they are all within two standard

errors away from α = 0.05. That is, the block size for the random effect does not affect

the false positive. However, it is apparent that the block size affects the power for detecting

a cluster. The smaller block size (B = 3 × 3) provides a higher power in the mixed effect

model (Figure 3). But, we are very careful to choose the block size as small as possible since

the smaller block size with the stronger spatial correlation may result in the inflated power.

Indeed, in the smaller block size (B = 3× 3), the data with φ = 3 provides the higher power

for all the cluster effect size θ ∈ {0.0, 0.1, 0.2, . . . , 2.5} than the data with φ = 1.
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Figure 4: Variogram: yGP = µ+ εGP , where εGP ∼ GP
(

0,K(·)
)

, K(d;φ) = σ2

GP · e−d2/φ2

for the Gaussian

covariance function (top row) and K(d;φ) = σ2

GP · e−d/φ for the exponenetial covariance function (bottom

row).

Hence, in practice, the strength of spatial correlation would be taken into account when

choosing an appropriate number of subregions, or the block size for the random effect.

However, we do not know about the true spatial dependent structure in the real data. Thus,
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here, we provide a rule of thumb to choose the block size based on the spatial dependence

range. Based on the exploratory analysis, we suggest to choose the block size B ≈ ℓ× ℓ for

some ℓ ∈ (R
2
,R), where R the spatial dependence range. In this simulation study, variogram

suggests R = 3, 5 and 7 for the Gaussian covariance with φ = 1, 2 and 3, and for the

exponential covariance φ = 0.7, 1.0 and 1.4, respectively (shown in Figure 4). We leave the

theoretical details about the block size for future research.

4.2. True cluster identification

To evaluate how well the proposed method identifies the true spatial clusters, we conduct

a simulation study with the multiple clusters (settings shown in Figure 1). For the spatial

blockwise random effect model, σ2
b is set to 1 (i.e., ρ = σ2

b/(σ
2
b +σ2

e) = 0.5). For the GP error

model with a Gaussian covariance function, φ is also set to 1. We generate 100 datasets for

each combination of the three multiple cluster settings and two random effect settings (i.e.,

blockwise random effect and GP error).

For each simulated dataset, we detect multiple clusters at the significance level α = 0.05.

During the detection, which is based on our mixed effect model and the sequential process

presented in Sections 3.2–3.3, we consider a grid of sixteen 3 × 3 squares as displayed in

Figure 1. For each simulated dataset, we estimate the regression coefficients with detected

spatial clusters. Then we map the mean coefficient estimates for each multiple cluster setting

as illustrated in Figure 5. The maps of the mean squared error (MSE) corresponding to each

subfigure in Figure 5 are provided in Figure 6.

Each subfigure in Figures 5–6 contains nine maps. In each subfigure, row 1 is the map of

the true coefficients, and rows 2 and 3 are from the fixed effect model and the mixed effect

model, respectively. Column 1 contains the map for the intercept estimates β̂0, and columns

2 and 3 are for the slope estimates β̂1 and β̂2, respectively.

The dual overlapping-cluster setting, where both clusters have their effects in the inter-

cepts as well as in the slopes, is shown in Figures 5a and 6a. For the data simulated from this

setting, we apply the multiple cluster detection proposed in Section 3.2. From Figure 5a,

we see that both the fixed effect and the mixed effect method identify the true clusters well
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Figure 5: Mean coefficient estimates: σ2

b = σ2

e = 1 (ρ = σ2

b/(σ
2

b + σ2

e) = 0.5).
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Figure 6: Mean squared error (MSE): σ2

b = σ2

e = 1 (ρ = σ2

b/(σ
2

b + σ2

e) = 0.5).

enough. However, Figure 6a tells us that the mixed effect approach provides more consistent

estimates, especially for the intercept with a small MSE, than the fixed effect model.

The settings of two or three non-overlapping clusters are shown in Figures 5b–5c and

6b–6c. Only one cluster has its effects in the intercepts as well as in the slopes whereas the

other clusters exist in the intercepts only. We apply the two–stage multiple cluster detection

proposed in Section 3.3 to the data simulated from these settings. In Figures 5b–5c, we see

that the mixed effect model identifies the true clusters more clearly than the fixed effect

method when there are cluster effects in the slopes. On the other hand, for those clusters

in the intercepts only, the fixed effect model provides a better performance. This can be
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attributed to the random effect added to the intercept of the mixed effect model, which

affects the identification of the intercept clusters. Nevertheless, we see in Figures 6b–6c that

the fixed effect model has a higher MSE not only for the clusters in the slopes, but also for

the intercept overall.
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Figure 7: Top row: Mean coefficient estimates. Bottom row: Mean squared error (MSE). φ = 2, σ2

GP = 1.

The results from the GP errors are illustrated in Figure 7. We omit the detailed discussion

since these results are similar to those shown in Figures 5–6. Our proposed mixed effect model

provides more consistent estimates for both the clusters in the slopes and the corresponding

regression coefficients.

5. Data application

We apply our mixed effect model to the air quality data described in Section 2. For the

raw CMAQ data, we take the logarithm of PM2.5 because the exploratory analysis suggests

that logPM2.5 shows stronger linear associations with the chosen covariates. Further, the
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variogram of the residuals from the linear regression fit of logPM2.5 with the covariates

provides the spatial dependence range R = 500 km (shown in Figure 8). To choose the

appropriate subregion size, we perform an additional exploratory analysis with k-means

clustering on the 448 grid cells from the raw CMAQ data. We apply k-means clustering to

coordinates from the contiguous Albers equal-area conic projection to preserve the distance

between two locations where k = 7, 8, . . . , 12. The result shows that eight, nine or ten

subregions can be considered based on the rule of thumb we suggested in the end of Section

4.1. Thus, we assign nine subregions of about 50 observations each (illustrated in Figure 8)

via k-means clustering with coordinates. In each subregion, the maximum distance between

two cells is around 300 km. Thus, the size of each subregion is proportional to 300×300 km2

and this satisfies the rule of thumb for choosing the block size. Maps of the logPM2.5 (raw

CMAQ) and PM2.5 (fused CMAQ) data are also shown in Figure 8. Maps of the covariates

are provided in Figure 9.
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Figure 8: Log of monthly mean PM2.5 (raw CMAQ) and monthly mean PM2.5 (fused CMAQ) during the

summer 2012, nine subregions from k-means clustering (k = 9), and the variogram of the residuals of the

regression fit.

5.1. logPM2.5 and meteorological drivers

We apply the multiple cluster detection from Section 3.2 to the model, with logPM2.5 as

the response variable and three meteorological drivers (TMP, RH, and WS) as the covariates.

The set of candidate clusters C is predefined with a maximum radius rmax = 300 km. A total
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Figure 9: Monthly means of air temperature (TMP), relative humidity (RH), wind speed (WS) and aerosol

optical depth (AOD) during the summer 2012.

of four clusters are detected at the significance level α = 0.05. When we ignore the random

effect for the subregions, the fixed effect model approach (Lee et al., 2017a) provides a total

of ten clusters at α = 0.05, suggesting that there might be some false positives.

Figure 10: Top row: Maps of the slope estimates of each meteorological covariate. Bottom row: Scatter

plots between each meteorological covariate and logPM2.5. The colors in each scatter plot match the colors

in the corresponding map.

Maps of the slope estimates for each meteorological covariate showing the spatial clusters

detected via our mixed effect model approach are illustrated in Figure 10. The scatter plots

between each covariate and the response variable logPM2.5 are provided below the slope
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estimate maps. For each covariate, the colors in the map and the scatter plot match each

other. The positive association between temperature and PM2.5 is likely caused by the

production of major components (e.g., sulfate) (Tai et al., 2010). Precipitation explains the

negative relationship between relative humidity and PM2.5. The wind speed slopes for PM2.5

are also negative, though more weakly so due to the better atmospheric mixing that lead to

more dispersion of pollutions.

We find two geographical regions that show distinctive patterns relative to the overall

trend. The Chesapeake Bay area, indicated by blue dotted lines in Figure 10, has high

temperature, low relative humidity, low wind speed, and a negative association between TMP

and PM2.5 compared to the rest of the region. One possible explanation is that these weather

conditions are associated with a different wind direction. We found a positive correlation

of 0.43 between temperature and wind blowing from east to west. That is, a high TMP in

this region is associated with wind from the ocean moving inland, which reduces the PM2.5

concentrations. Another possibility is that high temperatures in this region are associated

with a higher boundary-layer height. Specifically, near bodies of water, high temperatures

can break through an inversion, leading to lower PM2.5 levels. Also, this area is known to

have a complex meteorology in terms of air quality because of bay breezes, etc (Stauffer and

Thompson, 2015).

The region around Maine, indicated by red dotted lines in Figure 10, has high relative

humidity and shows a positive correlation between RH and PM2.5. This is perhaps due

to wind direction, similar to the Chesapeake Bay area. The majority of pollution and

its precursors should come from the Ohio River Valley. In this area, there is a negative

correlation between RH and wind speed of −0.32, and the correlation between RH and wind

blowing from east to west is 0.44. Therefore, we see that the wind becomes too weak to push

the pollutants from the Ohio River Valley out of the region around Maine.

Even when we apply our mixed effect model with eight or ten subregions, the results are

qualitatively the same in the locations of two geographical hot spots, the Chesapeake Bay

area and the region around Maine.
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5.2. PM2.5 and AOD

In this analysis, we consider a model where the fused CMAQ PM2.5 is the response

variable and AOD is a single covariate. The fused product is used here to better reflect

observed PM2.5 concentration. Both PM2.5 and AOD are centered and scaled based on the

data for the whole U.S. to have zero means and standard deviations of one. We interpret the

slopes as indicating the strength of the linear predictor (AOD) and the different intercepts

as the biases or offsets. Thus, we apply the two–stage multiple cluster detection outlined in

Section 3.3 to this single covariate model. The set of candidate clusters C is predefined with

minimum and maximum radii of rmin = 100 km and rmax = 300 km, respectively. A total of

four clusters are detected in the first stage, and six clusters are detected in the second stage,

both at the significance level α = 0.05.
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Figure 11: Maps of the intercept estimates and the slope estimates, and a scatter plot between AOD and

PM2.5. The colors in the scatter plot match to the colors in the slope estimate maps.

The maps of the coefficient estimates and a scatter plot between AOD and PM2.5 (Figure

11) show the spatial clusters detected via our mixed effect model approach. The colors in

the scatter plot match to the colors in the slope estimate maps. From this AOD analysis,

we find that the overall slope is positive, as expected. Moreover, the slope estimate maps

show potential heterogeneity in the relationship between PM2.5 and AOD, even within this

small geographic region (Kloog et al., 2014).

22



6. Conclusion and discussion

We have developed a new approach to the detection of spatial clusters of regression

coefficients within the framework of a mixed effect model. The novelty of this paper is the

introduction of a spatial blockwise random effect within the subregions in the regression

model, allowing our model to account for necessary spatial dependences in the data. Thus

in the case of finding spatial hot spots, which aims to identify distinct features comparing to

the background, our proposed method would be more easily applicable than other clustering

or grouping methods that aim at splitting the space into several subregions. Further, by

using a sequential searching scheme, our method is able to identify an unknown number of

multiple clusters, including overlapping clusters.

Simulation studies evaluating the false positives, power, and identification of true clusters

support that the proposed mixed effect model provides better results than the fixed effect

model (Lee et al., 2017a). Even though we do not consider correlations across subregions,

our approach performs satisfactorily, even when the data are from a GP model. When the

true model is a GP model with different covariance functions or other spatial models, such as

the CAR model (Besag, 1974), our model can be viewed as an approximation of the spatial

dependency. Therefore, we need to choose the appropriate subregion size according to the

effective spatial range, and a rule of thumb for the subregion size selection have provided in

this paper. In practice, alternatively, if there is a reference variable which attribute could

better explain the spatial dependency, then the exploratory spatial data analysis (ESDA)

(Murray, 1999) could be considered to achieve subregions for our mixed effect model.

When we applied our cluster detection approach to real data from the Northeastern U.S.,

June–August, 2012, we found some geographical regions where the associations between the

PM2.5 concentrations and the weather covariates (temperature, relative humidity, and wind

speed) were distinct from the overall trend. In practice, more complicated weather conditions

may require additional meteorological drivers into the model as covariates. Our analysis for

the PM2.5 and AOD data tested here shows geographical heterogeneity in the AOD–PM2.5

relationship, which might be helpful in the development of statistical models with spatially
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varying AOD effects when estimating PM2.5.
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Table 1: Meteorological drivers

Name Description
TMP Air temperature at 2m (K)
RH Relative humidity at 2m (%)
WS Wind speed at 1000 mb (m/s)
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Table 2: False positive: y = µ+ ε, where ε ∼ NN (0, σ2
Σ) and σ2 = σ2

b + σ2

e .

σb/σe 0.1 0.5 0.7 1.0 2.0
Fixed effect model 0.048 0.306 0.556 0.842 0.996
Mixed effect model 0.052 0.047 0.034 0.030 0.044
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Table 3: False positive: yGP = µ+ εGP , where εGP ∼ GP
(

0,K(·)
)

.

Gaussian covariance exponential covariance
φ 1 2 3 0.7 1.0 1.4

Fixed effect model 0.479 0.988 1.000 0.363 0.653 0.872
Mixed (B = 3× 3) 0.042 0.057 0.057 0.048 0.056 0.045
Mixed (B = 6× 6) 0.057 0.049 0.046 0.061 0.058 0.049
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