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ABSTRACT 

The state-of-the-art image retrieval approaches represent images 

with a high dimensional vector of visual words by quantizing 

local features, such as SIFT, in the descriptor space. The 

geometric clues among visual words in an image is usually 

ignored or exploited for full geometric verification, which is 

computationally expensive. In this paper, we focus on partial-

duplicate web image retrieval, and propose a novel scheme, 

spatial coding, to encode the spatial relationships among local 

features in an image. Our spatial coding is both efficient and 

effective to discover false matches of local features between 

images, and can greatly improve retrieval performance. 

Experiments in partial-duplicate web image search, using a 

database of one million images, reveal that our approach achieves 

a 53% improvement in mean average precision and 46% 

reduction in time cost over the baseline bag-of-words approach. 

Categories and Subject Descriptors 

I.2.10 [Vision and Scene Understanding]: VISION 

General Terms 

Algorithms, Experimentation, Verification. 

Keywords 

Image retrieval, partial-duplicate, large scale, orientation 

quantization, spatial coding. 

1. INTRODUCTION 
Given a query image, our target is to find its partial-duplicate 

versions in a large web image database. There are many 

applications of such a system, for instance, finding out where an 

image is derived from and getting more information about it, 

tracking the appearance of an image online, detecting image 

copyright violation, discovering modified or edited versions of an 

image, and so on. 

         

   

    

Figure 1. Examples of partially duplicated web images. 
 

In image-based object retrieval, the main challenge is image 

variation due to 3D view-point change, illumination change, or 

object-class variability [8]. Partial-duplicate web image retrieval 

differs in that the target images are usually obtained by editing the 

original image with changes in color, scale, partial occlusion, etc. 

Some instances of partial-duplicate web images are shown in Fig. 

1. In partial-duplicate web images, different parts are often 

cropped from the original image and pasted in the target image 

with modifications. The result is a partial-duplicate version of the 

original image with different appearance but still sharing some 

duplicated patches. 

In large scale image retrieval systems, the state-of-the-art 

approaches [2, 3, 4, 5, 6, 7, 8, 9] leverage scalable textual 

retrieval techniques for image search. Similar to text words in 

information retrieval, local SIFT descriptors [1] are quantized to 

visual words. Inverted file indexing is then applied to index 

images via the contained visual words [2]. However, the 

discriminative power of visual words is far less than that of text 

words due to quantization. And with the increasing size of image 

database (e.g. greater than one million images) to be indexed, the 

discriminative power of visual words decreases sharply. Visual 

words usually suffer from the dilemma of discrimination and 

ambiguity. On one hand, if the size of visual word codebook is 

large enough, the ambiguity of features is mitigated and different 
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features can be easily distinguished from each other. However, 

similar descriptors polluted by noise may be quantized to different 

visual words. On the other hand, the variation of similar 

descriptors is diluted when using a small visual codebook. 

Therefore, different descriptors may be quantized to the same 

visual word and cannot be discriminated from each other. 

Unlike text words in information retrieval [18], the geometric 

relationship among visual words plays a very important role in 

identifying images. Geometric verification [1, 4, 6, 8, 10] has 

become very popular recently as an important post-processing 

step to improve the retrieval precision. However, due to the 

expensive computational cost of full geometric verification, it is 

usually only applied to some top-ranked candidate images. In web 

image retrieval, however, the number of potential candidates may 

be very large. Therefore, it may be insufficient to apply full 

geometric verification to the top-ranked images for sound recall. 

Above all, based on the Bag-of-Visual-Words model, image 

retrieval mainly relies on improving the discrimination of visual 

words by reducing feature quantization loss and embedding 

geometric consistency. The expectation of real-time performance 

on large scale image databases forces researchers to trade off 

feature quantization and geometric constraints. Quantization of 

local features in previous work mainly relies on SIFT descriptor, 

resulting in limited efficiency while geometric verification is too 

complex to ensure real-time response. 

In this paper, we propose to address partial-duplicate image 

search by using more efficient feature vector quantization and 

spatial coding strategies. We define two images as partial-

duplicate when they share some identical image patches with the 

same or very similar spatial layout. Our approach is based on the 

Bag-of-Visual-Words model. To improve the discrimination of 

visual words, we quantize local features, SIFT, in both 128-D 

descriptor space and 1-D orientation space. To verify the matched 

local figures of two images, we propose a novel spatial coding 

scheme to encode the relative spatial positions of local features in 

images. Then through spatial verification based on spatial coding, 

the false matches of local features can be removed effectively and 

efficiently, resulting in good precision.  

2. RELATED WORK 
In the past few years, large scale image retrieval [2, 3, 4, 5, 6, 7, 8, 

9] has been significantly boosted by two significant works. The 

first one is the introduction of local invariant SIFT features [1] for 

image representation. The second one is the scalable image 

indexing and query based on the Bag-of-Visual-Words model [2]. 

With visual words for local features, image representation will be 

more compact. Moreover, by inverted-file index, the number of 

candidate images is greatly reduced, since only those images 

sharing common visual words with the query image need to be 

checked, achieving efficient response.  

Scalability of image retrieval system can be achieved by 

quantizing local features to visual words. However, quantization 

also reduces the discriminative power of local descriptors since 

different descriptors quantized to the same visual word are 

considered to match to each other. Such quantization error will 

decrease precision and recall in image retrieval. 

To reduce the quantization error, soft-quantization [7, 10] 

quantizes a SIFT descriptor to multiple visual words. Query 

expansion [5] reissues the highly ranked images from the original 

query as new queries to boost recall. However, it may fail on 

queries with poor initial recall. To improve precision, Hamming 

Embedding [4] enriches the visual word with compact 

information from its original local descriptor with Hamming 

codes [4], and feature scale and orientation values are used to 

filter false matches.  

The above methods focus on improving the discriminative power 

of visual words. Geometric relationship among local features is 

ignored. In fact, geometric information of local features plays a 

key role in image identification. Although exploiting geometric 

relationships with full geometric verification (RANSAC) [1, 4, 6, 

14] can greatly improve retrieval precision, full geometric 

verification is computationally expensive. In [2, 16], local spatial 

consistency from some spatial nearest neighbors is used to filter 

false visual-word matches. However, the spatial nearest neighbors 

of local features may be sensitive to the image noise incurred by 

editing. In [8], Bundled-feature groups features in local MSER 

[12] regions into a local group to increase the discriminative 

power of local features. The matching score of bundled feature 

sets are used to weight the visual word vote for image similarity. 

Since false feature matches between bundles still exist, the bundle 

weight will be degraded by such false matches. 

In [9] [13], min-Hash is proposed for fast indexing via locality 

sensitive hashing in the context of near-duplicate image 

detection. Min-Hash represents an image as a visual-word set and 

defines the image similarity as a set overlap (ratio intersection 

over union) of their set representation. It works well for duplicate 

images with high similarity, or, in other words, sharing a large 

percentage of visual words. But in the partial-duplicate web 

images, the overlapped visual words may be only a very small 

portion of image’s whole visual word set, resulting in low image-

similarity and making it difficult for min-Hash to detect. 

3. OUR APPROACH 
In our approach, we adopt SIFT features [1] for image 

representation. Generally, the SIFT feature is characterized with 

several property values: a 128-D descriptor, a 1-D orientation 

value (ranging for  to  ), a 1-D scale value and the (x, y) 

coordinates of the key point. In Section 3.1, we will apply the 

SIFT descriptor and orientation value for SIFT quantization. The 

locations of SIFT key points will be exploited for generation of 

spatial maps, as discussed in Section 3.2. 

3.1 Vector Quantization of SIFT Feature 
To build a large scale image indexing and retrieval system, we 

need to quantize local descriptors into visual words. Our 

quantization contains two parts [17]: descriptor quantization and 

orientation quantization. Assuming that the duplicated patch 

enjoys similar spatial layout in both the target and query images, a 

pair of true matched features should share similar descriptor 

vector and similar orientation value. Therefore, the features 

should be quantized in both descriptor space and orientation space. 

Since the descriptor and orientation value of SIFT feature are 

independent to each other, the quantization can be performed in 

sequential order. Intuitively, we can quantize a SIFT feature first 

in the descriptor space and then in the orientation space, or in 

reverse order. Since the orientation value is one-dimensional and 

it is easy to perform soft quantization, we first quantize SIFT 



feature in the descriptor space in a hard manner and then in the 

orientation space in a soft mode. 

3.1.1  Descriptor quantization  
For descriptor quantization, the bag-of-words approach [2] is 

adopted. A descriptor quantizer is defined to map a descriptor to 

an integer index. The quantizer is often obtained by performing k-

means clustering on a sampling SIFT descriptor set and the 

resulting descriptor cluster centroids are defined as descriptor 

visual words. In descriptor quantization, the quantizer assigns the 

index of the closest centroid to the descriptor. To perform the 

quantization more efficiently, a hierarchical vocabulary tree [3] is 

adopted and the resulting leaf nodes are considered as descriptor 

visual-words.  

3.1.2 Orientation quantization  
For each descriptor visual word, quantization is further performed 

in the orientation space. To mitigate the quantization error, a soft 

quantization strategy is applied. Assuming that the quantization 

number of orientation space is t , when a query SIFT feature is 

given, we first find the corresponding descriptor visual word 

using the descriptor quantizer, as discussed in Section 3.1.1. Then, 

any SIFT feature assigned to the same leaf node will be 

considered as a valid match when its orientation difference with 

the query feature is less than t . With orientation space 

quantization, many false positive matches will be removed.  

Orientation quantization of SIFT features is based on the 

assumption that the duplicated patches in both query and target 

images share the same or similar spatial layout. In fact, such 

orientation constraint can be relaxed by rotating the query image 

by some pre-defined angles to generate new queries for query 

expansion, as discussed in detail in section 5.1. The retrieval 

results of all rotated queries can be aggregated to obtain the final 

results. 

In [4], SIFT orientation value is used to filter potential false 

matches via checking the histogram of orientation difference of 

the matched feature pairs. But in the case that false matches are 

dominant, the orientation difference histogram may fail to 

discover genuine matches.  

3.2 Spatial Coding 
The spatial relationships among visual words in an image are critical 

in identifying special duplicate image patches. After SIFT 

quantization, matching pairs of local features between two images 

can be obtained. However, the matching results are usually polluted 

by some false matches. Generally, geometric verification [1, 6] can 

be adopted to refine the matching results by discovering the 

transformation and filtering false positives. Since full geometric 

verification with RANSAC [14] is computationally expensive, it is 

usually only adopted as a post-processing stage.  Some more 

efficient schemes to encode the spatial relationships of visual words 

are desired. Motivated by this problem, we propose the spatial 

coding scheme. 

Spatial coding encodes the relative positions between each pair of 

features in an image.  Two binary spatial maps, called X-map and Y-

map, are generated. The X-map and Y-map describes the relative 

spatial positions between each feature pair along the horizontal (X-

axis) and vertical (Y-axis) directions, respectively. For instance, 

given an image I with K  features ),,2,1(  },{ Kivi  , its X-

map and Y-map are both KK  binary matrix defined as follows, 
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where ),( ii yx  and ),( jj yx are the coordinates of feature iv  and 

jv , respectively.   

                    
(a)                                         (b) 

Figure 2. An illustration of spatial coding for image features. 

(a) shows an image with four features; (b) shows the image 

plane division with feature 2 as the origin point. 

Fig. 2 shows an illustration of spatial coding on an image with 

four features. The resulting X-map  and Y-map are: 
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In X-map and Y-map, row i records the feature iv ’s spatial 

relationships with other features in the image.  For example, 

0)2,1( Xmap  and 1)2,1( Ymap  means feature 1v is on the 

left side of feature 2v and above it. We also can understand the 

map as follows. In row i, feature iv  is selected as the origin, and 

the image plane is divided into four quadrants along horizontal 

and vertical directions. X-map and Y-map then show which 

quadrant other features are located in (Fig.2 (b)). Therefore, one 

bit either 0 or 1 can encode the relative spatial position of one 

feature to another in one coordinate. In total, we use 

2)4log(  bits, one bit for the X-map and one bit for the Y-map. 

In fact, X-map and Y-map impose loose geometric constraints 

among local features. Further, we advance our spatial coding to 

more general formulations, so as to impose stricter geometric 

constraints. The image plane can be evenly divided into r4  

parts, with each quadrant uniformly divided into r  parts. 

Correspondingly, two relative spatial maps GX and GY are 

desired to encode the relative spatial positions of feature pairs. 

Intuitively, it will take at least  )4log( r bits to encode relative 

spatial position of feature iv  to feature jv  (   denotes the least 

integer), by exactly determining which fan region iv is located in.  

Instead, we propose to use a more efficient approach to generate 

the spatial maps. 



For an image plane divided uniformly into r4 fan regions with 

one feature as the reference origin point as discussed above, we 

decompose the division into r independent sub-divisions, each 

uniformly dividing the image plane into four parts. Each sub-

division is then encoded independently and their combination 

leads to the final spatial coding maps. Fig. 3 illustrates the 

decomposition of image plane division with 2r and feature 2v  

as the reference origin. As shown in Fig. 3(a), the image plane is 

divided into 8 fan regions. We decompose it into two sub-

divisions: Fig. 3(b) and Fig. 3(c). The spatial maps of Fig. 3(b) 

can be generated by Eq. (1) and Eq. (2). The sub-division in Fig. 

3(c) can be encoded in a similar way. It just needs to rotate all the 

feature coordinates and the division lines counterclockwise, until 

the two division lines become horizontal and vertical, respectively, 

as shown in Fig. 3(d).  After that, the spatial maps can be easily 

generated by Eq. (1) and Eq. (2). 

                 
(a)                                        (b) 

             
(c)                                         (d) 

Figure 3. An illustration of spatial coding with r = 2 for image 

features. (a) shows the image plane division with feature 2 as 

the origin point; (a) can be decomposed into (b) and (c); (c) 

rotates 4/  counterclockwise yields (d).  

Consequently, the general spatial maps GX and GY are both 3-D 

matrix and can be generated as follows. Specially, the 

location ),( ii yx of feature iv is rotated counterclockwise by 
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Then GX and GY are defined as, 
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With the generalized spatial maps GX and GY, the relative spatial 

positions between each pair of features can be more strictly 

defined.  

From the discussion above, it can be seen that, spatial coding can 

be very efficiently performed. But the whole spatial maps of all 

features in an image will cost considerable memory. Fortunately, 

there is no need to store these maps. Instead, we only need to save 

the sorting orders of x- and y-coordinate of each feature, 

respectively. When checking the feature matching of two images, 

we only need the sorting orders of the coordinates of these 

matched features, which will be used to generate the spatial maps 

for spatial verification in real time. The details are discussed in 

the next subsection. 

3.3 Spatial Verification 
Spatial coding plays an important role in spatial verification. 

Since the problem that we focus on is partial-duplicate image 

retrieval, there is an underlying requirement that the target image 

must share some duplicated patches, or in other words, share the 

same or very similar spatial configuration of matched feature 

points. Due to the unavoidable quantization error, false feature 

matches are usually incurred. To more accurately define the 

similarity between images, it is desired to remove such false 

matches. Our spatial verification with spatial coding can perform 

this task. 

Denote that a query image qI  and a matched image mI  are found 

to share N  pairs of matched features through SIFT quantization. 

Then the corresponding sub-spatial-maps of these matched 

features for both qI  and mI can be generated and denoted as 

),( qq GYGX  and ),( mm GYGX .  For efficient comparison, we 

perform logical Exclusive-OR (XOR) operation on qGX and 

mGX , qGY and mGY , respectively, as follows, 

),,(),,(),,( kjiGXkjiGXkjiV mqx                 (6) 

),,(),,(),,( kjiGYkjiGYkjiV mqy                  (7) 

Ideally, if all N matched pairs are true, xV and yV will be zero 

for all their entries. If some false matches exist, the entries of 

these false matches on qGX and mGX may be inconsistent, and 

so is that on qGY and mGY . Those inconsistencies will cause the 

corresponding exclusive-OR result of xV and yV to be 1. Denote  
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Consequently, by checking value of xS and yS , the false matches 

can be identified and removed. The corresponding entry values of 

the remained true matches in xV and yV will be all zeros. 

From the discussion above, it can be found that the spatial coding 

factor r controls the strictness of spatial constraints and will 

impact verification performance. We will study it in Section 4.1.3. 

Fig. 4 shows two instances of the spatial verification with spatial 

coding on a relevant image pair and an irrelevant image pair. Both 

image pairs have many matches of local features after 

quantization. For the left “Mona Lisa” instance, after spatial 

verification via spatial coding, those false matches are discovered 



   

(a)                                 (b) 

   

(c)                                              (d) 

   

(e)                                              (f) 

Figure 4.  An illustration of  spatial verification with spatial 

coding on a relevant pair (left column) and an irrelevant pair 

(right column). (a) (b)Initial matched feature pair after 

quantization;  (c) (d) False matches detected by spatial 

verification; (e) (f) True matches that pass the spatial 

verification. 

and removed, while true matches are satisfactorily kept. For the 

right instance, although they are irrelevant in content, 12 matched 

feature pairs are still found after quantization. However, by doing 

spatial verification, most of the mismatching pairs are removed 

and only 3 pairs of matches are kept.  Moreover, it can be 

observed that those 3 pairs of features do share high geometric 

similarity. 

The detailed algorithm for spatial verification with spatial coding 

is shown in Fig. 5. In spatial verification, the main computation 

operations are logical Exclusive-OR and addition. Therefore, 

unlike full geometric verification with RANSAC [1, 6, 14], the 

computational cost is very low. 

3.4 Indexing and retrieval 
An inverted-file index structure is used for large-scale indexing 

and retrieval, as illustrated in Fig. 6. Each visual word has an 

entry in the index that contains the list of images in which the 

visual word appears. As discussed in Section 3.2 and 3.3, we do 

not need to know the accurate location of local SIFT features. 

Instead, we only need to record the relative spatial positions of 

local features. Therefore, it suffices to store the sorting order of 

the x-coordinate and y-coordinate of each feature, which will be 

used to generate the spatial coding maps during query time. 

Consequently, for each indexed feature, we store its image ID, 

SIFT orientation value and the corresponding sorting order for its 

x- and y- coordinate. 

We formulate the image retrieval as a voting problem. Each visual 

 
Figure 5. The general steps of spatial coding verification   

 
Figure 6.  Inverted file structure. 

word in the query image votes on its matched images. Intuitively, 

the tf-idf weight [2] can be used to distinguish different matched 

features. However, from our experiments, we find that simply 

counting the number of matched features yields similar or better 

results. Further, to distinguish images with the same number of 

true positive matches but different false positive matches or 

different feature number, a penalty term from spatial verification 

is also defined. Suppose a query image q and a matched image p 

share a pairs of visual words from both descriptor and orientation 

quantization, and only b pairs pass the spatial verification, we 

define the similarity between the two images as: 

max

)(1
),(

N

pN

a

ba
bpqS 


                            (9) 

where )( pN  denotes the feature number in the matched image p 

and maxN denotes the maximum number of SIFT features in an 

image. 

4. EXPERIMENTS 
We build our basic dataset by crawling one million images that 

are most frequently clicked on a commercial image-search engine. 

Since there is no public dataset for evaluation of partial-duplicate 

image retrieval, following the Tineye search demo results 

(http://www.tineye.com/cool_searches), we collected and 

manually labeled 1100 partially duplicated web images of 23 

groups from both Tineye [11] and Google Image search. The images 

in each group are partial duplicates of each other and there are very 

near-exact duplicates in these images. Some typical examples are 

shown in both Fig. 1 and Fig. 16. 

Spatial Verification with Spatial Coding 

1) Find those matching pairs )},{( ii mqP  , (i = 1~N)}, 

where iq  and im  are feature points in the query image 

and matched image, respectively, N is the total number 

of matching pairs. Let Q = { iq } and M = { im }; 

2) Generate the spatial maps GX_q and GY_q for Q,  

GX_m and GY_m for M, by Eq.(4) and Eq. (5). 

3) Compute the inconsistency matrix xV and yV , according 

to Eq. (6) and Eq. (7). 

4) Compute the inconsistency sum xS and yS , by Eq. (8). 

5) By check value of xS and yS , identify and remove the 

false matches. 

http://www.tineye.com/cool_searches


Since the basic 1M dataset also contains additional partial duplicates 

of our ground truth data, for evaluation purpose we identify and 

remove these partially duplicated images from the basic dataset by 

querying the database with every image from our ground-truth 

dataset.  We then add these ground truth images into the basic 

dataset to construct an evaluation dataset. 

To evaluate the performance with respect to the size of dataset, three 

smaller datasets (50K, 200K, and 500K) are built by sampling the 

basic dataset. In our evaluation, 100 representative query images are 

selected from the ground truth dataset. Mean average precision 

(mAP) [6] is adopted as our evaluation metric. 

4.1 Impact of parameters 
The performance of our approach is related with three parameters: 

orientation quantization size, SIFT descriptor codebook size and 

spatial coding map factor r . In the following, we will study their 

impacts respectively and select the optimal values.  

4.1.1 Orientation quantization size 
To study the impact of the orientation quantization, we experiment 

with different quantization sizes on the 1M image dataset. The 

performance of mAP for different orientation quantization sizes 

with 1r  is shown in Fig. 7. Orientation quantization size with 

value equal to 1 means that no orientation quantization is performed. 

For each dataset, when the quantization size increases, the 

performance first increases and then keeps stable with a little drop, 

while the time cost first decreases sharply and then stays stable. The 

maximal mAP value is obtained with orientation size as 11 and the 

corresponding time cost is 0.48s per query. Hence, in the following 

experiments, we select the orientation quantization size as 11. 

4.1.2 SIFT descriptor codebook size  
The size of SIFT descriptor codebook size describes the extent of 

the descriptor space division. Since our spatial coding can 

effectively discover and remove false matches, a comparatively 

smaller codebook can be adopted, with the SIFT descriptor space 

coarsely divided.  

We test four different sizes of visual codebooks on the 1M image 

database. From Fig. 8(a), it can be observed that when the size of 

descriptor visual codebook increases from 12K to 500K, the mAP 

decreases gradually. As can be seen in Fig. 8(b), the time cost when 

using the small codebook is very high, but reduces sharply and then 

keeps stable when the codebook size increases to 130K and larger. 

Codebook with 130K descriptor visual words gives the best tradeoff 

between mAP and time cost. In our later experiments, we use the 

visual codebook with 130K- SIFT descriptor. 

4.1.3 Impact of r  
The r value of the spatial coding factor determines the division 

extent of image plane to check the relative spatial positions of 

features. We test the performance of our spatial coding using 

different r value on the 1M dataset, with orientation quantization 

size equal to 11. The performance and time cost are shown in Fig. 9. 

Intuitively, higher r value defines stricter relative spatial 

relationships and better performance is expected. However, due to 

the minor SIFT drifting error as discussed in section 5.2, higher 

r value will not necessarily obtain better performance. As 

illustrated in Fig. 9, r = 3 gives the best results and is used in our 

report results. 
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Figure 7. (a)Mean average precision and (b)average query 

time cost  with different orientation quantization sizes and a 

visual vocabulary tree of 130K descriptor visual words. The 

size of testing image database is 1 million. The maximal mAP 

is obtained with orientation quantization size as 11. 
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Figure 8. (a) Mean average precision and (b) time cost per 

query  on different sizes of SIFT-descriptor visual codebook.  
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Figure 9. (a) Mean average precision and (b) average query 

time cost on different values of spatial coding factor r.  

4.2 Evaluation 
We use a Bag-of-Visual-Words approach with vocabulary tree [3] 

as the “baseline” approach. A visual vocabulary of 1M visual 

words is adopted. In fact, we have experimented with different 

visual codebook sizes, and have found the 1M vocabulary yields 

the best overall performance for the baseline.  

Two approaches are adopted to enhance the baseline method for 

comparison. The first one is Hamming Embedding [4] by adding 

a hamming code to filter out matched features that have the same 

number of quantized visual words but have a large hamming 

distance from the query feature. We denote this method as “HE.”  

The second one is re-ranking via geometric verification, which is 

based on the estimation of an affine transformation with our 

implementation of [6]. As post-processing, the re-ranking is 

performed on only the top 300 initial results of the baseline. We 

call this method “reranking”. 

From Fig. 10, it can be observed that our approach outperforms 

all the other three methods. On the 1M dataset, The mAP of the 

baseline is 0.486. Our approach increases it to 0.744, a 53% 

improvement. Since re-ranking based on full geometric 

verification is only applied on the top-300 initial returned results, 

its performance is highly determined by the recall of initial top-

300 results. As can be seen, the performance of reranking the 

results of baseline is 0.61,  lower than our approach.  

Fig. 11 illustrates the mAP performance of the baseline and our 

approach on all the 100 testing query images. It can be observed  
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Figure 10. Performance comparison of different methods with 

different database sizes.  
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Figure 11. The mAP performance of the baseline and our 

approach on all query images 

 
Figure 12. Comparison of average query time cost for 

different methods on the 1M database.  

that, except for comparative performance on some queries, our 

approach outperforms over the baseline on most of the queries. 

We perform the experiments on a server with 2.0 GHz CPU and 

16 GB memory. Fig. 12 shows the average time cost of all four 

approaches. The time for SIFT feature extraction is not included.  

Compared with the baseline, our approach is much less time-

consuming. It takes the baseline 0.90 second to perform one 

image query on average, while for our approach the average 

query time cost is 0.49 second, 54% of the baseline cost. 

Hamming Embedding is also very efficient, but still with 18%  
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Figure 13. Sample results comparing our approach with the 

baseline approach. (a) Query image and a comparison of the 

precision-recall curves.  (b) The top images returned by the 

baseline approach. (c) The top images returned by our 

approach. The false positives are shown with red dashed 

bounding boxes.  

more time cost than our approach. Full geometric re-ranking is the 

most time-consuming, introducing an additional 4.6 seconds over 

the baseline on the top 300 candidate images. 

4.3 Sample results 
In Fig. 13, we give examples of our results on the 1M dataset on 

the “sailor kiss” query image. For this query, compared with the 

baseline approach, our approach improves the mAP from 0.40 

to0.97, with 142% improvement. Fig. 13 (b) and (c) show the top 

images returned by the baseline approach and our approach, 

respectively. Since the top 5 images of both approaches are all 

correct, we show results starting from the 6th returned image. The 

false positives are marked by red dashed bounding boxes. Due to 

the additions of text in the query image, the top-returned results 

are greatly polluted by irrelevant images, which contain similar 

visual words related with text patch. As for our approach, such 

false positives are effectively removed. 

 

(a) 

   

(b)                                         (c) 

Figure 14. (a): Top-ranked images returned from an “Abbey 

Road” image query. The query image is shown on top left and 

false positives with red dashed bounding boxes. (b) (c): The 

feature matching between the query image and two false 

positives. The red lines across two images denote the true 

matches, while the blue lines denote the matches that fail to 

pass the spatial coding verification. 

Fig. 14 shows the results for a query image “Abbey Road”. We 

select those true positives before the first three false positives. 

The first three positives are highlighted by red dashed bounding 

boxes. Fig. 14 (b) and (c) illustrate the SIFT matching results 

between the query image and the first and third false positive. The 

first false positive shares duplicate regions with the query image 

on the bottom containing text addition “Freakingnews.com”. It 

should be noted that there is a true matched feature pair (blue line) 

that fails to pass the spatial coding verification. This is due to the 

SIFT drifting error, as discussed in section 5.2. The second false 

positive in the middle of the third row in Fig. 14(a) is also due to 

the same reason as the first false positive. As for the third false 

positive, although no duplicate patches are shared, the remained 

four pairs of matched features do share almost the same geometric 

configuration. To remove such mismatching pairs, some other 

information, need to be incorporated. 

Fig. 16 shows more example results using our spatial coding 

approach. It can be observed that, the retrieved images are not 

only diverse but also contain large changes in contrast, scale, or 

significant editing. 



5. DISCUSSION 

5.1 Orientation Rotation 
Our orientation quantization is based on the assumption that the 

duplicated patches in query image and matched image share the 

same or very similar spatial layout. This is reasonable in most 

application cases. In fact, this orientation constraint can be easily 

relaxed to adapt to our framework. In other words, we can rotate 

the query image by a few pre-defined angles so that all possible 

orientation changes from the original image will be covered. Each 

rotated version is used as query and the aggregation results are 

merged as the final retrieval results.  In fact, the query image does 

not need to be rotated, since the SIFT features of each rotated 

query share the same descriptors as the original query but only 

differ in orientation value. Therefore, we just need to change the 

features’ orientation value and compute the new spatial location 

for each query feature. The remaining processing is the same as 

the case of no orientation rotation. It should be noted that the 

quantization in descriptor space needs to be performed only once.  

5.2 Error Analysis for Spatial Maps 
Our spatial coding is based on an assumption that the key point 

location of the SIFT features in the object of interest is invariant 

to general 2D editing. However, due to the unavoidable digital 

error in the detection of key points, some SIFT features exhibit 

some small drifting, less than one pixel. On such drifting, the 

comparable location of features with the same x- or y-coordinate 

will be inverse, causing some true matches to fail our spatial 

coding verification. Such phenomenon is prevalent in the case 

when two duplicate images share many matched feature pairs in a 

cluster. Small affine transformation of images will exacerbate 

such error. Moreover, the error will also be worsened by too large 

spatial coding factor r , as demonstrated in Section 4.1.3. As 

illustrated in Fig. 15, although the duplicate image pair shares 12 

true matches, 5 of them are discovered as false matches that fail to 

pass the spatial coding verification. Since still many true matches 

are remained, the matched images will be assigned a 

comparatively high similarity score and consequently the effect of 

those false negatives on the retrieval performance is small. 

5.3 Query Expansion 
The spatial coding verification result is very suitable for query 

expansion. Unlike previous works that define the similarity of a 

query image to the matched image by the L1, L2 or cosine 

distance, our approach formulates the image similarity just by the 

number of matched feature pairs. Image pairs with highly 

duplicated patches usually share many (>10) matched feature 

pairs, while unrelated images only have few (<5) matched 

features pairs, as shown in Fig. 4. Therefore, the number of 

matched feature pairs naturally lends itself as a criterion to select 

top-ranked images as seeds for query expansion.  

6. CONCLUSION 
In this paper, we propose a novel scheme of spatial coding for 

large scale partial-duplicate image search. The spatial coding 

efficiently encodes the relative spatial locations among features in 

an image and effectively discovers false feature matches between 

images. As for partial-duplicate image retrieval, spatial coding 

achieves even better performance than geometric verification on 

the baseline and consumes much less computational time. 

 

Figure 15. An instance of matching error due to SIFT drifting. 

Each line across two images denotes a match of two local 

features. The red lines denote the true matches that pass the 

spatial coding verification, while the blue lines denote those 

that fail to. 

In our approach, we adopt SIFT feature for image representation. 

It should be noted that our method is not constrained to SIFT. 

Some other local features, such as SURF [15], can also be 

substituted for SIFT.   

Our spatial coding aims to identify images sharing some 

duplicated patches. As demonstrated in the experiments, our 

approach is very effective and efficient for large scale partial-

duplicate image retrieval. However, it may not work as well on 

general object retrieval, such as searching for different style cars. 

In the future, we will experiment on orientation rotation and query 

expansion, as discussed in Section 5.2 and 5.3, respectively. 

Besides, we will also focus on better quantization strategy to 

generate more discriminative visual words and test other local 

affine-invariant features. 
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Figure 16. Example results. Queries are shown on first left column of each row, and highly-ranked images (selected from those 

before the first false positive) from the query results are shown on the right. 


