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We present a theoretical analysis of spatial correlations in a one-dimensional driven-dissipative nonequilibrium

condensate. Starting from a stochastic generalized Gross-Pitaevskii equation, we derive a noisy Kuramoto-

Sivashinsky equation for the phase dynamics. For sufficiently strong interactions, the coherence decays

exponentially in close analogy to the equilibrium Bose gas. When interactions are small on a scale set by

the nonequilibrium condition, we find through numerical simulations a crossover between a Gaussian and

exponential decay with peculiar scaling of the coherence length on the fluid density and noise strength.

DOI: 10.1103/PhysRevA.90.023615 PACS number(s): 67.85.Hj, 71.36.+c

I. INTRODUCTION

The spatial coherence is one of the key observables of

quantum degenerate Bose gases. While for Bose gases in

thermal equilibrium, its behavior is thoroughly understood

[1], the case of nonequilibrium Bose gases has received much

less attention. The nonequilibrium condition is typically of

importance for photonic systems, where due to the limited

reflectivity of any real mirrors, the photon lifetime is usually

too short to achieve true thermal equilibrium. A steady state

arises instead, thanks to the balancing of external pumping

and losses. Also in the nonequilibrium situation, the spatial

coherence remains a central observable that is experimentally

accessible for photons [2]. Despite the existence of spatially

extended lasers for many decades [3], the interest in the

fundamental properties of nonequilibrium quantum fluids has

come quite recently, with the advent of microcavity polariton

quantum fluids [4]. Polaritons are the quasiparticles that arise

from the strong coupling between a photon mode and an

excitonic excitation in a quantum well. They inherit the

good coherence properties from the photon together with

substantial interactions from the exciton. Experimentally,

spatial coherence measurements have been performed for

two-dimensional polariton quantum fluids by many groups

[2,5–8].

In most experiments with microcavity polaritons, the

nonequilibrium condition is essential to understand their

properties. It gives for instance rise to a flow in the steady state

[8–10], which can assume the form of quantized vortices [11]

or feature more complicated patterns [12]. From the theoretical

point of view, these nonequilibrium flows can be understood

on a mean-field level, from a generalized Gross-Pitaevskii

equation (gGPE) [13,14], that is of the same type as the

complex Ginzburg-Landau equation. In this paper, we will

consider an equation in the form [4]

i�
∂

∂t
ψ =

[

−
�

2∇2

2m
+ g|ψ |2 +

i

2

(

P

1 + |ψ |2/ns

− γ

)]

ψ.

(1)

Here m is the effective mass and interactions are described

by a contact interaction with strength g. The imaginary term

in the square brackets on the right-hand side describes the

saturable pumping (with strength P and saturation density

ns) that compensates for the losses (γ ). The physical origin

of the pumping term for exciton-polariton condensates is an

excitonic reservoir that is excited by a nonresonant laser. For

the case of ordinary lasing in the weak-coupling regime, it

describes emission of photons from the inverted electronic

transition. In laser physics, a wide variety of spatial optical

patterns, described by gGP-like equations, has been observed

[3].

In this work, we investigate the first-order coherence

function at long distances. For the description of the spatial

coherence, fluctuations have to be added to the gGPE. We will

consider the simplest case of spatially uncorrelated and spec-

trally white additive noise. We thus supplement the right-hand

side of the gGPE with a stochastic term
√

DdW/dt , where the

complex stochastic increments have the correlation function

〈dW ∗(x,t)dW (x ′,t ′)〉 = 2δ(x − x ′)δt,t ′dt . The coefficient D

describes the strength of the fluctuations. The contributions

from quantum fluctuations can for example be derived within

a truncated Wigner approximation, leading to D ∼ γ [15].

In Sec. II, we will derive a nonlinear equation for the

stochastic evolution of the phase that is of the form of a

noisy Kuramoto-Sivashinsky equation (KSE). The asymptotic

behavior of the first-order coherence is investigated in Sec. III.

Especially the case of vanishing elastic interaction constant g

turns out to be strongly affected by the nonlinearity in the KSE.

It is studied by means of numerical simulations. Conclusions

are drawn in Sec. IV.

II. THE PHASE EQUATION

In homogeneous systems, a simple uniform steady state

solution of Eq. (1) exists. When the pumping exceeds the losses

(P > γ ), it reads ψ0 = √
n0e

−iμt/�, where n0 = ns(P/γ − 1)

and the oscillation frequency is determined by the interaction

energy μ = gn0.

As usual for the calculation of the coherence of a low-

dimensional system, we perform the Madelung transformation

ψ =
√

neiθ to describe the complex field in terms of its

density and phase. This is most convenient, because the

long-range part of the spatial coherence is dominated by

phase fluctuations. In the regime of weak noise, the density

fluctuations are small and we can expand the interaction

and gain saturation terms up to linear order in δn = n − n0.

Because the low-momentum density fluctuations relax much
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faster than the long-wavelength phase fluctuations, they can

be adiabatically eliminated to derive an equation of the phase

dynamics only.

Inserting ψ =
√

n0 + δneiθ−iμt/� with |δn| ≪ n0 into

Eq. (1), supplemented with a stochastic term
√

DdW/dt , and

neglecting terms of second order in (δn/n0), one obtains

�

2

∂

∂t

δn

n0

= −
�

2

2m

[

∇
δn

n0

∇θ +
(

1 +
δn

n0

)

∇2θ

]

−
1

2η

δn

n0

+

√

D

n0

dWn

dt
, (2)

�
∂

∂t
θ =

�
2

2m

[

1

2
∇2 δn

n0

−
(

∇θ

)2]

− μ
δn

n0

+

√

D

n0

dWθ

dt
, (3)

where the real stochastic variables dWn and dWθ have

correlators 〈dWn(x,t)dWn(x ′,t ′)〉 = 〈dWθ (x,t)dWθ (x ′,t ′)〉 =
δ(x − x ′)δt,t ′dt . Assuming that the characteristic time η =
(1 + ns/n0)γ −1, which determines relaxation of density fluc-

tuations, is sufficiently short, the quantity δn/n0 can be

estimated from Eq. (2) as

δn

n0

≈ −
�

2η

m
∇2θ + 2η

√

D

n0

dWn

dt
. (4)

When inserting δn/n0 given by Eq. (4) into Eq. (3),

we take into account that at small η values under con-

sideration (i) the inequality η|μ| ≪ 1 is satisfied for a

moderate interaction strength and (ii) the contribution

�
2η(2m)−1

√
D/n0∇2(dWn/dt) to the noise term can be

neglected (except for the shortest length scale, which we are

not interested in). Then one obtains for the phase equation the

expression

�
∂

∂t
θ =

�
2

2m

[

−
�

2η

2m
∇4θ − (∇θ )2 + 2ημ∇2θ

]

+

√

D

n0

dWθ

dt
. (5)

In Appendix A, we corroborate the equivalence of the phase

equation (5) and the full Gross-Pitaevskii equation (1) with

numerical simulations. In the case of stronger interactions,

when the inequality η|μ| ≪ 1 is violated, one should simply

replace the noise strength D in Eq. (5) [as well as in Eqs. (3)

to (6)] with D(1 + 2ημ)2.

For the analysis, it is useful to write the phase equation in

dimensionless form, by the rescalings x = l∗x̃, t = t∗ t̃ , and

θ = θ∗θ̃ , where the length scale equals

l∗ =
(

�
2

2m

)4/7

η3/7

(

D

�n0

)−1/7

. (6)

Note its very weak dependence on the physical parameters n0

and D. The time and phase scales read

t∗ = �

(

�
2

2m

)2/7

η5/7

(

D

�n0

)−4/7

, (7)

θ∗ =
(

�
2

2m

)−1/7

η1/7

(

D

�n0

)2/7

. (8)

They depend on the density relaxation time η, which decreases

in our saturable gain model (1) for increasing density n0. The

interaction energy, rescaled as μ̃ = μ/μ∗ where

μ∗ =
1

2

(

�
2

2m

)−1/7

η−6/7

(

D

�n0

)2/7

, (9)

remains as the only control parameter in the dimensionless

phase equation

dθ̃ =
[

μ̃∇2
x̃ θ̃ − ∇4

x̃ θ̃ − (∇x̃ θ̃ )2
]

dt̃ + dW̃ . (10)

Here, the increment dW̃ in Eq. (10) is a real stochastic vari-

able with correlation function 〈dW̃ (x̃,t̃)dW̃ (x̃ ′,t̃ ′)〉 = δ(x̃ −
x̃ ′)δt̃ ,t̃ ′dt .

Note that in the absence of gain saturation η → ∞
(obtained in the limit γ → 0), the time scale t∗ diverges. The

physical reason is that gain saturation is the only damping

mechanism in our model. We have verified that a small energy

relaxation term [16] does not have a qualitative impact on the

results presented below.

The phase equation (10) is of the form of the noisy

Kuramoto-Sivashinsky equation (KSE) [17]. The KSE equa-

tion has a wide range applications, covering, e.g., flame fronts

[18] and reaction-diffusion systems [19], as well as transverse

pattern formation in lasers [20,21].

The noisy KSE (10) has been studied in the context of

kinetic surface roughening [22]. It has been shown [23] that

it belongs to the universality class of the celebrated Kardar-

Parisi-Zhang (KPZ) equation [24] (Eq. (10) without the fourth-

order derivative; for a review, see [25]). To the best of our

knowledge, the spatial correlations of the noisy KSE have

however not been systematically analyzed as a function of the

control parameter μ̃.

III. LONG-RANGE SPATIAL COHERENCE

A. Repulsive interactions

Let us start with the case of repulsive interactions μ̃ >

0. In equilibrium, this is the only meaningful case because

attractive interactions lead to a collapse. The linearized version

of Eq. (10) is then a good starting point to understand the

momentum distribution. It reads

〈|θ̃k̃|2〉 =
1

2(μ̃k̃2 + k̃4)
, (11)

where k̃ = kl∗ is the rescaled momentum. The denominator

represents the square of the Bogoliubov excitation spectrum

ω̃2
B(k) = μ̃k̃2 + k̃4.

The quadratic term dominates for wave vectors k̃ <
√

μ̃. In

this region, the phase dynamics reduces to the KPZ equation,

which was used for polaritons by Altman et al. [26]. Its

relevance in the context of equilibrium quantum fluids was

also pointed out in recent works on the dynamical structure

factor of 1D bosons, both in the weakly [27] and the strongly

[28] interacting limits.

So far, the discussion is valid for arbitrary dimensionality,

but now we will restrict ourselves to a one-dimensional system,
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where the nonlinear term in the KPZ equation leaves the

solution of the linearized equation invariant. The momentum

distribution of the phase field is then given by Eq. (11).

This corresponds to the quadratically decaying momentum

distribution at long wavelengths as in 1D finite temperature

equilibrium condensates. Equation (11) implies with the

Fourier relation

δθ2(x) =
1

L

∑

k

〈|θk|2 〉[cos(kx) − 1] (12)

that the phase-phase correlator decreases for long distances

linearly with the distance

δθ̃2(x) ≡ 〈θ̃ (x)θ̃(0)〉 − 〈θ̃2(0)〉 = −x̃/(4μ̃). (13)

For the evaluation of the characteristic function that deter-

mines the shape of the spatial coherence function g(1)(x) =
〈ψ†(x)ψ(0)〉, the second cumulant approximation is exact

thanks to the Gaussian nature of the phase field in the solution

of the KPZ equation [25]. For the correlation length in the

exponential decay

g(1)(x) ≈ n0〈exp{i[θ (x) − θ (0)]}〉 (14)

= n0 exp

[

−
xDm

4�2nημ

]

, (15)

we then recover the expression for the coherence length

ℓc = 4�
2nημ/(Dm), which was derived in Ref. [29]. An

appealing correspondence with the equilibrium case [ℓ
eq.
c =

2n�
2/(kBT m)] can be made by identifying the temperature

T with the noise strength and the mass with the “effective

mass” mη/μ that quantifies the curvature of the imaginary

part of the dispersion. It should be understood however that this

formal analogy between the equilibrium and nonequilibrium

cases is not sufficient to identify the noise strength D with

an effective temperature. For the identification of a proper

temperature at long length scales for the driven-dissipative

Bose gases, we refer to the renormalization-group study in

Ref. [30].

B. Zero interaction strength

A salient feature of coherence length is that it tends to zero

in the absence of interactions. The linearized theory thus leads

to the prediction that a repulsive nonlinearity is essential for the

spatial coherence of a nonequilibrium condensate or a laser.

The problem for vanishing interactions can be immediately

seen from Eqs. (11) and (12), because the sum over momenta

features an infrared divergence, due to the k−4 divergence of

the momentum distribution.

In this case however, the nonlinear term in Eq. (10) does

not keep the momentum distribution (11) obtained in the

linearized approximation invariant. We can expect on the

basis of a previous analysis [23] of the noisy KSE that

the nonlinear term actually keeps the system in the KPZ

universality class, featuring a k−2 behavior of the momentum

distribution. In order to investigate the spatial coherence for

smaller interaction energy, we have performed numerical

simulations.

|
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FIG. 1. (Color online) Numerically calculated momentum distri-

bution of the phase field, 〈|θ̃k̃|2〉, as a function of k̃ for μ̃ = −1.5

(circles), 0 (squares), 0.5 (triangles), and 1.5 (stars). The dashed,

short-dashed, dash-dotted, and dash-dot-dotted curves represent the

momentum distribution given by Eq. (11) for μ̃ = −1.5, 0, 0.5,

and 1.5, respectively. The function k̃−2 (solid line) approximates

the calculated low-momentum behavior of 〈|θ̃k̃|2〉 in the absence of

interactions. The dotted vertical line corresponds to the crossover

between this behavior and a faster (∝ k̃−4) decay at higher momenta.

Figure 1 presents the momentum distribution of the phase

field for various values of the interaction energy. Our numerics

confirms the validity of the linearized approximation (11)

for sufficiently strong repulsive interactions by the excellent

agreement between the stars and the dash-dot-dotted line

for μ̃ = 1.5. This corresponds to the KPZ regime dis-

cussed above, where the nonlinearity of Eq. (10) does not

affect the static correlation function. For the intermediate

interaction strength on the other hand, pronounced differ-

ences between the linearized approximation (dash-dotted)

and the numerical simulations (triangles) become apparent at

low k.

For zero interaction strength, the discrepancy between

the squares and the dashed line is dramatic: instead of the

k−4 behavior predicted by the linearized approximation, the

momentum distribution exhibits the same k−2 divergence as

in the KPZ interacting regime. The prefactor in the low-

momentum region turns out to be 1 within our numerical

accuracy of a few percent. As can be seen from Fig. 1,

for μ̃ = 0 the piecewise approximation to the momentum

distribution

〈|θ̃k̃|2〉 =

⎧

⎨

⎩

k̃−2 for k̃ < 1/
√

2

1
2
k̃−4 for k̃ > 1/

√
2

(16)

is excellent for almost all k̃, thanks to the sharp crossover

between the k̃−4 and k̃−2 regions. This should be contrasted

with the much smoother crossover—described by the analytic

function (11)—for strong repulsive interactions (pink stars).

The scaled phase-phase correlator in real space is shown

in Fig. 2. The large-distance (x̃ ≫ 1) decay is dominated

by the k̃−2 region in the Fourier expansion (12) and reads
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FIG. 2. (Color online) Phase-phase correlator in real space for

μ̃ = 0, L = 25.6l∗ as given by the numerical simulations (full

squares) and by the analytical formula resulting from the piece-

wise approximation (16) (dashed curve). The finite-size correction

described by this formula has been used to extrapolate the numerical

data to the case L → ∞ (open squares). Inset: Ratio ρ(x) =
ln〈exp{i[θ (x) − θ (0)]}〉/δθ2(x) calculated numerically for μ̃ = 0,

θ∗ = 1, L = 25.6l∗.

in the continuum limit δθ̃2(x̃) = −x̃/2. The short-range

phase fluctuations are obtained by expanding the cosine in

Eq. (12) up to second order. It turns out that the low and

high momentum regions contribute equally. The piecewise

momentum distribution (16) leads to δθ̃2(x̃) = −x̃2/
√

2π2,

valid for x̃ ≪ 1. Within the second cumulant approximation,

this leads to successive Gaussian and exponential decays for

the first-order spatial coherence function g(1)(x). The border

between both regimes is determined by the length scale l∗.

In the exponential regime, we find for the correlation length

le = 2l∗θ
−2
∗ , featuring the peculiar scalings as a function of

the physical quantities le ∝ n
5/7

0 D−5/7m−6/7η1/7. Note the

different scalings as a function of the physical parameters as

compared to the regime of strong interactions. The Gaussian

correlation length is lG = (2π2)1/4l∗θ
−1
∗ η2/7 and scales as

lG ∝ n
3/7

0 D−3/7m−5/7. When the initial Gaussian decay is by

many orders of magnitude, the long-distance exponential tail

becomes irrelevant. It is then meaningful to distinguish two

regimes. The decay is dominantly Gaussian when the “phase

scale” θ∗ is much larger than one, where it is dominantly

exponential in the opposite limit. In terms of the physical

parameters of the nonequilibrium Bose fluid, the decay is

dominantly Gaussian for large noise and low density: D >

�
2n0/

√
2ηm.

Thanks to the sharp crossover of the momentum dis-

tribution between its two limiting behaviors, the piecewise

approximation (16) actually leads to an accurate expression

for the phase correlator at all distances. Its explicit form

is given in Appendix B. In Fig. 2, it is displayed with

a dotted line, showing almost perfect agreement with the

numerical results. Furthermore, the analytic formula allows us

to do a straightforward extrapolation to infinite systems (open

squares in Fig. 2). The good agreement between extrapolations

starting from simulations with different sizes (not shown here)

confirms good convergence of our results as a function of

system size.

The above analysis was based on the assumption of

the validity of the second cumulant approximation for the

characteristic function 〈exp{i[θ (x) − θ (0)]}〉. It is obviously

applicable for small phase variations, when this correlator is

well approximated by an expansion of the exponentials up

to the second order in θ . For Gaussian phase fluctuations,

it is also guaranteed to hold, thanks to Wick’s theorem.

For the short-wavelength fluctuations, the nonlinear term

can be neglected, so that the phase increments are a linear

combination of the input noise, and therefore guaranteed to be

Gaussian by the central limit theorem. For the long-wavelength

components, which are crucially affected by the nonlinearity,

the situation is more complicated and the corresponding

results of our numerical calculations are somewhat less

conclusive. For large distances x the calculated values of

the characteristic function 〈exp{i[θ (x) − θ (0)]}〉 appear to

be slightly lower than those given by the second-cumulant

expression exp{δθ2(x)}. In the inset to Fig. 2, we plot the ratio

ρ(x) = ln〈exp{i[θ (x) − θ (0)]}〉/δθ2(x) obtained for θ∗ = 1.

Starting from ρ = 1 at x ≪ l∗, this ratio slightly increases

at x �
√

2l∗ and apparently tends to saturate at even larger

x. It is worth mentioning that the statistical convergence

of the calculation of the correlator 〈exp{i[θ (x) − θ (0)]}〉,
especially for relatively large x, is much slower as compared

to the calculation of the phase fluctuations δθ2. However,

we find systematic and consistent deviations from Gaussian

statistics both in the correlator 〈exp{i[θ (x) − θ (0)]}〉 and in

the fourth cumulant of the phase fluctuations. As can be seen

from the inset in Fig. 2, for the chosen value θ∗ = 1, which

corresponds to a rather strong noise, the difference is only

ρ(x) − 1 ≈ 0.06.

C. Attractive interactions

Finally, we briefly discuss the case of attractive interactions.

The equilibrium Bose gas is unstable with respect to the

collapse of the gas because of the negative compressibility.

The nonequilibrium counterpart is reflected in the linear

instability of Eq. (10) for μ̃ < 0. In the nonequilibrium case

however, the nonlinear term has a stabilizing effect, leading

merely to a modulation of the phase (and correspondingly

of the density) instead of a collapse. It is well known that

for μ̃ < 0, the KSE without noise shows chaotic behavior,

leading to effective stochastic dynamics at large scales,

where the stochastic driving force stems from the linear

instability [25]. The deterministic KSE with μ̃ < 0 and the

stochastic KPZ equation belong to the same universality class

[31]. Adding a stochastic term preserves this correspondence

[23]. The dots in Fig. 1 show a momentum distribution

for moderately attractive interactions (μ̃ = −1.5). The bump

around k̃ = 1 also appears in the absence of the noise [32]

and corresponds in real space to a modulation of the phase. At

small momenta, the momentum distribution shows the same

k−2 behavior as in the case of repulsive or zero interactions,

leading again to an exponential decay at the longest distance

scales.
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IV. CONCLUSIONS

In conclusion, we have shown that the coherence of a

nonequilibrium Bose gas is governed by the noisy Kuramoto-

Sivashinsky equation and we have analyzed the effect of

interactions. In contrast to linearized Bogoliubov theory, our

study has shown that the coherence length does not vanish

when interactions tend to zero, even though it is shorter

than in the case of repulsive interactions. Our approach is

also applicable to the case of attractive interactions, where

phase fluctuations are enhanced by the modulational instability

of the condensate. For very strong repulsive interactions on

the other hand, where the system approaches the Tonks-

Girardeau regime, our mean-field approximation breaks down

and more sophisticated techniques should be used [33]. Our

predictions could be verified experimentally in semiconductor

microcavities, where the repulsive interaction strength can be

varied by changing the exciton-photon detuning [34].
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APPENDIX A: IMPACT OF PHASE CORRELATIONS ON

THE FIELD-FIELD CORRELATOR

In Fig. 3 we compare the functions exp[δθ2(x)], obtained

by rescaling the phase correlator δθ̃2(x̃) (see the paper), to the

the first-order spatial coherence function g(1)(x)/n0, calculated

directly from Eq. (1), for the case of g = 0, n0 = ns , and three

different values of the noise strength D. While at weak noise

(up to D/D0 ∼ 10−3) the behavior of the field-field correlator

g(1)(x) is perfectly described by the phase factor exp[δθ2(x)],
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FIG. 3. (Color online) First-order spatial coherence function

g(1)(x) calculated numerically from Eq. (1) (open symbols) and

the function exp[δθ2(x)] (lines) for three different values of the

noise strength D. The system size is L = 1024x0 in the case of

D/D0 = 0.0001 and L = 256x0 for the other two values of D/D0.

Here x0 =
√

�ns/(mγn0), D0 = �
3n0/(4mx0).
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FIG. 4. (Color online) Momentum distribution functions calcu-

lated from the filed-field correlator g(1)(x) (open symbols) and from

the functions exp[δθ2(x)] (lines) for three different values of the

noise strength D. The system size is L = 1024x0 in the case of

D/D0 = 0.0001 and L = 256x0 for the other two values of D/D0.

Here x0 =
√

�ns/(mγn0), D0 = �
3n0/(4mx0).

at higher noise strength an additional suppression of g(1)(x)/n0

by density fluctuations becomes nonnegligible. Nevertheless,

even in the case of D/D0 = 10−2 where the magnitude of den-

sity fluctuations is comparable to n0, the decay of g(1)(x)/n0 at

large distances is seen to be dominated by the effect of phase

fluctuations.

In Fig. 4 we plot the momentum distribution functions,

which correspond to g(1)(x) (open symbols) and exp[δθ2(x)]

(lines). In line with the discussion above, the long-wavelength

behavior of the momentum distribution obtained by solving

the “full” field equation (1) is completely determined by phase

fluctuations. The effect of (short-range) density fluctuations is

manifested only for relatively large momenta at sufficiently

high noise strength.

APPENDIX B: FITTING FORMULA FOR THE

PHASE-PHASE CORRELATOR

We use the piecewise approximation of Eq. (10) for the

momentum distribution 〈|θ̃k̃|2〉 in the absence of interactions.

Then for a finite system of (dimensionless) size L̃ the

scaled phase-phase correlator in real space can be represented

as

δθ̃2(x̃) ≈
L̃

2π2

[ ∞
∑

κ=1

cos(2πκx̃/L̃) − 1

κ2

−
∞

∑

κ=L̃/(2
√

2π)

cos(2πκx̃/L̃) − 1

κ2

]

+
L̃3

(2π )4

∞
∑

κ=L̃/(2
√

2π)

cos(2πκx̃/L̃) − 1

κ4
. (B1)
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Assuming that the system size is sufficiently large,

L̃/(2
√

2π ) ≫ 1, the last two sums in Eq. (B1) can be

approximated by the corresponding integrals:

δθ̃2(x̃) ≈
L̃

2π2

∞
∑

κ=1

cos(2πκx̃/L̃) − 1

κ2

−
x̃

π

∫ ∞

x̃/
√

2

dy
cos(y) − 1

y2

+
x̃3

2π

∫ ∞

x̃/
√

2

dy
cos(y) − 1

y4
. (B2)

These integrals as well as the infinite series in Eq. (B2) can be

easily evaluated [35] giving finally

δθ̃2(x̃) = −
x̃

2

[

1 +
2

π
si

(

x̃
√

2

)(

1 +
x̃2

12

)]

−
2
√

2

3π

[

1 − cos

(

x̃
√

2

)(

1 +
x̃2

8

)

+
x̃

4
√

2
sin

(

x̃
√

2

)]

+
x̃2

2L̃
, (B3)

where si(x) is the sine integral [36]. The last term in Eq. (B3)

accounts for the finite size of the system.
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