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We study the phenomenon of spatial coherence resonance (SCR) on Hodgkin–Huxley
(HH) neuronal networks that are characterized with information transmission delay. In
particular, we examine the ability of additive Gaussian noise to optimally extract a
particular spatial frequency of excitatory waves in diffusive and small-world networks
on which information transmission amongst directly connected neurons is not instanta-
neous. On diffusively coupled HH networks, we find that for short delay lengths, there
always exists an intermediate noise level by which the noise-induced spatial dynamics
is maximally ordered, hence implying the possibility of SCR in the system. Importantly
thereby, the noise level warranting optimally ordered excitatory waves increases linearly
with the increasing delay time, suggesting that extremely long delays might neverthe-
less preclude the observation of SCR on diffusive networks. Moreover, we find that the
small-world topology introduces another obstacle for the emergence of ordered spatial
dynamics out of noise because the magnitude of SCR fades progressively as the frac-
tion of rewired links increases, hence evidencing decoherence of noise-induced spatial
dynamics on delayed small-world HH networks. Presented results thus provide insights
that could facilitate the understanding of the joint impact of noise and information
transmission delay on realistic neuronal networks.
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1. Introduction

Effects of noise on nonlinear dynamical systems are seldom trivial and often coun-

terintuitive as well as surprising.1 Although several interesting phenomena have
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already been discovered, this field of research continues to grow at an astonishing

rate, especially via fruitful interrelations with other topics of science. Perhaps the

most prominent of all phenomena is stochastic resonance (SR),2–15 which implies

that fine-tuned random fluctuations may enhance the response of a nonlinear sys-

tem to weak periodic driving. Also intriguing is the SR without an external periodic

force, whereby noise alone extracts a hidden intrinsic time scale of the dynamics

in a resonant manner. The most commonly used term for the latter phenomenon

is coherence resonance or autonomous SR.16–19 Aside from these two rather main-

stream phenomena, there exist several related reports on noise-induced order either

from chaotic states,20,21 by means of variations in system size22 and diversity,23

or via an enhancement of synchronization in coupled systems.24–26 Furthermore,

order out of noise has been studied extensively also in nonidentical ensembles gov-

erned by nonlinear dynamics, such as neurons,27 as well as in small-world neuronal

networks28 and bistable overdamped oscillators.29

Recently, the impact of noise on two-dimensional spatially extended systems has

also attracted considerable attention, and several studies were devoted to the explo-

ration of possible effects that have been comprehensively reviewed in Ref. 30, and

previously also in Ref. 31. In particular, spatiotemporal SR has been reported in

Ref. 32, while spatial coherence resonance (SCR) has been introduced first near pat-

tern forming instabilities33 and subsequently also in excitable media.34,35 Notewor-

thy, some characteristics of noise-induced patterns have also been investigated on a

regular Hodgkin–Huxley (HH) neuronal network,36 and it was found that the order

of the firing rate function could be enhanced as the connections amongst neurons be-

came stronger. Moreover, resonance-enhanced signal detection and transduction,37

the impact of correlated noise on signal processing and neuronal firing,38,39 as well

as the propagation of firing rate in a feed-forward neuronal network,40 and signal-

to-noise ratio (SNR) gain,41 have been studied closely related to the subject of this

work. Aside from these examples related to the study of neuronal systems, the body

of recent literature devoted to the study of noise and other stochastic influences on

the dynamics of spatially extended systems is huge, so that we found it impossible

to select or review here all relevant contributions. The interested reader is pointed

towards Ref. 30, while some exemplary studies are also given in Refs. 42–50.

At present, we would like to extend the subject by building on the fact that infor-

mation transmission delays are inherent in intra and inter neuronal communication

because of both finite propagation velocities by the conduction of signals along neu-

rites as well as delays in the synaptic transmission along chemical synapses.51 It is

thus important to understand the dynamics of coupled neuronal ensembles, either

in terms of synchronization or noise-induced phenomena, when such temporal de-

lays are not negligible. For related comprehensive studies we refer to Refs. 52 and

53. Notably, it has been suggested that time delays can facilitate neural synchro-

nization and lead to many interesting and even unexpected phenomena.54 Rossoni

et al. showed that two diffusively coupled HH neurons can exhibit different synchro-

nization behavior, including in-phase and anti-phase synchronies, due to the effect
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of different time delays.55 To the best of our knowledge, however, the possibility of

SCR in neuronal networks with information transmission delay has not yet been

investigated. To fill the gap, we study the phenomenon of SCR on HH56 neuronal

networks that are characterized with information transmission delay. More precisely,

we examine the ability of additive temporally and spatially uncorrelated Gaussian

noise to extract a particular spatial frequency of excitatory waves in diffusive and

small-world networks of HH neurons amongst which the information transmission

is not instantaneous. We find that for short delay lengths and diffusive coupling,

there always exists an intermediate noise level by which the spatial dynamics is

characterized by nicely ordered circular excitatory waves with a well-defined spa-

tial frequency. By employing the average spatial structure function31 we provide

conclusive evidences for the existence of SCR in delayed diffusively coupled HH

neuronal networks. However, we also show that as the transmission delay lengthens

the optimal level of noise, warranting the most ordered spatial dynamics of excita-

tory waves, increases in a robust linear fashion as well. This suggests that extremely

long delays might ultimately preclude the observation of SCR in diffusive neuronal

networks due to the ever-increasing stochastic component. Similarly, as long infor-

mation transmission delays, we find that the small-world topology57 also hinders

coherent pattern formation out of noise because the magnitude of SCR fades fast

as the fraction of rewired links increases. We thus show that delayed HH neuronal

networks are not immune to the small-world induced decoherence of noise-induced

spatial dynamics. Presented results hence provide insights into the joint impact of

noise and information transmission delay on realistic neuronal ensembles, supple-

menting nicely the existing body of literature devoted to the study of deterministic

and stochastic neuronal dynamics on complex networks.58–66

The paper is organized as follows. Section 2 is devoted to the description of the

HH mathematical model and network topologies presently in use, whereas Sec. 3

presents the main results. In Sec. 4 we summarize the results and outline possible

biological implications of our findings.

2. Mathematical Model and Setup

The spatiotemporal dynamics of studied HH neuronal networks is governed by the

following differential equations56:

C
dVi,j

dt
= −gNam

3
i,jhi,j(Vi,j − VNa)− gL(Vi,j − VL)

− gKn4
i,j(Vi,j − VK) + I

+D
∑

k,l

εi,j,k,l[Vk,l(t− τ) − Vij ] + σξi,j(t) , (1)

dmi,j

dt
= αmi,j

(1−mi,j)− βmi,j
mi,j , (2)
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dhi,j

dt
= αhi,j

(1− hi,j)− βhi,j
hi,j , (3)

dni,j

dt
= αni,j

(1− ni,j)− βni,j
ni,j . (4)

The sum in Eq. (1) runs over all lattice sites whereby εi,j,k,l = 1 if the site (k, l)

is coupled to (i, j) and εi,j,k,l = 0 otherwise. When εi,j,k,l = 1 only if (k, l) is one

of the four nearest neighbors of the focal site (i, j) we obtain a diffusively cou-

pled network of HH neurons each having degree z = 4, as depicted in Fig. 1(a).

The latter will be used first in Sec. 3. However, if a certain fraction 0 < q ≪ 1

of links constituting the diffusively coupled network is randomly rewired, as ex-

emplified in Fig. 1(b), the resulting network is of small-world type.57 Presently

we employ the rewiring procedure described in Ref. 67 to preserve the degree of

each neuron (z = 4), which enables us to focus explicitly on the effect of net-

work topology rather than possible effects originating from different numbers of

inputs per neuron. Small-world networks will be used towards the end of Sec. 3.

Importantly, we generated each small-world network at the beginning of a partic-

ular simulation with the precise number of rewired links as constituted by q, and

kept the network fixed the whole time. Moreover, for small q, below results were

averaged over 30 different realizations of the interaction network. Quantities σ and

τ in Eq. (1) are the main control parameters to be varied in this study, denoting

the intensity of additive uncorrelated Gaussian noise ξi,j that satisfies 〈ξi,j(t)〉 = 0

and 〈ξi,j(t), ξm,n(t
′)〉 = δ(t − t′)δi,mδj,n, and the information transmission delay,

respectively. Furthermore, D = 0.35 is the presently employed coupling strength,

i, j = 1, . . . , N = 128 is the system size in each direction of the two-dimensional grid

with periodic boundary conditions, whilst all other parameter values used through-

out the paper are listed in Table 1. Finally, the experimentally determined voltage

(a) (b)

Fig. 1. Examples of considered network topologies. For clarity, only a 6 × 6 large part of the
whole network is presented in each panel. (a) Diffusively coupled network characterized by q = 0.
Each vertex is directly connected only to its four nearest neighbors, hence having connectivity
z = 4. (b) Realization of small-world topology via random rewiring of a certain fraction q of
links, constrained only by the requirement that the initial connectivity z = 4 of each unit must
be preserved.
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Table 1. Employed parameter values.

Membrane capacitance (µF/cm2)

C = 1

Conductance constants (mS/cm2)

gNa = 120
gK = 36
gL = 0.3

Reversal potentials (mV)

VNa = 50
VK = −77
VL = −54.4

transition rates are given explicitly by the following expressions:

αmi,j
=

0.1(Vi,j + 10)

1− exp

[

−
(Vi,j + 40)

10

] , (5)

βmi,j
= 4 exp

[

−
(Vi,j + 65)

18

]

, (6)

αhi,j
= 0.07 exp

[

−
(Vi,j + 65)

20

]

, (7)

βhi,j
=

{

1 + exp

[

−
(Vi,j + 35)

10

]}

−1

, (8)

αni,j
=

0.01(Vi,j + 55)

1− exp

[

−
(Vi,j + 55)

10

] (9)

βni,j
= 0.125 exp

[

−
(Vi,j + 65)

80

]

. (10)

For a single HH neuron in the absence of noise (σ = 0), a subcritical Hopf

bifurcation occurs at the external current I1 = 9.8 µA/cm
2
. Between I = I2 =

6.2 µA/cm
2
and I1, stable oscillatory solutions coexist with stable steady states,

whereas for I < I2 excitable steady states are the only stable solutions. As I is

increased further and is larger than I = 155 µA/cm2, the stable limit cycle vanishes

via the supercritical Hopf bifurcation. A more detailed bifurcation analysis of the

HH neuron was performed in Refs. 68–71. Here we are interested in the parameter

region I < I2, where neurons are unable to fire spontaneously. In order to study

explicitly the impact of noise and delay on the spatial dynamics of the system, we

set I = 6.1 µA/cm
2
so that each neuron stays at the excitable steady state, and
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we employ the finite-difference forward-step Heun numerical simulation scheme31

with a fixed integration step dt = 0.01. Noteworthy, the dynamics of deterministic

coupled HH neurons has already been studied in Refs. 72–74.

3. Results

We first present results obtained on diffusively coupled HH neuronal networks with

delay, starting by showing snapshots of Vi,j by different σ in Fig. 2. The visual

examination of the three snapshots reveals rather clearly that there exists an in-

termediate value of σ, at which nicely ordered circular excitatory waves propagate

through the spatial domain [Fig. 1(b)]. Smaller or larger values of σ clearly fail

to have the same effect, evoking either only small-amplitude deviations from the

steady state [Fig. 1(a)] or mostly uncorrelated excitations throughout the spatial

grid [Fig. 1(c)], respectively. Noteworthy, all three snapshots feature the spatial dy-

namics at a given time t and were obtained with the same information transmission

delay equaling τ = 0.08. Hence, already with the naked eye, a typical coherence

resonance scenario for the spatial dynamics on the studied HH neuronal network

can be inferred.

In order to establish and quantify the phenomenon of SCR more rigorously, the

spatial structure function of Vi,j is introduced as follows:

P (kx, ky) = 〈H2(kx, ky)〉 , (11)

where H(kx, ky) is the two-dimensional Fourier transform of the spatial grid at

a particular time t and 〈· · ·〉 is the ensemble average over noise realizations. The

numerical results of P (kx, ky) for the three σ used already for the snapshots in

Fig. 2 are presented in Fig. 3. Indeed, the results in Fig. 3 fully support our visual

assessments, as it can be observed clearly that for small and large noise levels the

 

 

 

 (c)(b)(a)

 

 

Fig. 2. Spatial pattern formation out of noise on the diffusively coupled HH neuronal network.
All panels depict values of Vi,j on a 128× 128 square grid at a given time t. The noise level σ is:
(a) 1.2, (b) 1.5, and (c) 2.1, whereas the employed delay is the same in all three panels, equaling
τ = 0.08. Grey scale coloring in all panels is linear, white depicting minimal and black, maximal
values of Vi,j .
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Fig. 3. Spatial structure functions of Vi,j obtained for τ = 0.08, whereas the noise level σ is:
(a) 1.2, (b) 1.5, and (c) 2.1. For the intermediate value of σ the well-expressed circularly symmetric
outlay of P (kx, ky) is evident, indicating the existence of a preferred spatial frequency of noise-
induced excitatory events in the diffusive HH neuronal network. Note that in all panels only a
part of the whole P (kx, ky) plane is shown for better clarity.

presented spectra show no particularly expressed spatial frequency. Only for inter-

mediate σ, the spatial structure function develops several well-expressed circularly

symmetric rings, indicating the existence of a preferred spatial frequency induced

by additive Gaussian noise. Such waterfall-like structures cannot be observed for

smaller and larger σ, either because the noisy perturbations are too weak to induce

large-amplitude excitations, or because they start to dominate the spatial dynam-

ics, whereby either the characteristic outlay of P (kx, ky) vanishes and no preferred

spatial frequency can be extracted.

Next, we exploit the circularly symmetric outlay of P (kx, ky) as proposed by

Carrillo et al.
33 to obtain an estimate for the SNR of the spatial dynamics of

excitatory events induced by different σ. In particular, we calculate the circular

average of the structure function according to the equation

p(k) =

∫

Ωk

P (k)dΩk , (12)

where k = (kx, ky), and Ωk is a circular shell of radius k = |k|. Variations of p(k)

are shown in Fig. 4(a) for the three different σ corresponding to the values used

already in panels of Figs. 2 and 3. Line plots of p(k) show more concisely what could

be inferred already from P (kx, ky). In particular, we can establish conclusively that

there exists a particular spatial frequency, marked with the vertical dashed line

at k = kmax, which is resonantly enhanced for some intermediate level (σ = 1.5)

of additive Gaussian noise. Moreover, smaller and larger σ fail to yield qualita-

tively identical results as their circularly averaged spatial structure functions are

essentially flat, i.e., lacking any noticeable or preferred spatial frequency.

To quantify the ability of each σ to extract the characteristic spatial frequency

of the diffusively coupled HH neuronal network more precisely, we calculate the

SNR as the peak height at kmax normalized with the background fluctuations in
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Fig. 4. Evidences for SCR in diffusively coupled HH neuronal networks with delay. (a) Circular
averages p(k) of structure functions P (kx, ky) presented in Fig. 3. The vertical dashed line at
k = kmax marks the spatial frequency of excitatory waves that is resonantly enhanced by an
intermediate level of additive Gaussian noise. (b) Characteristic bell-shaped dependence of SNR
on σ, clearly evidencing SCR in the examined system. Results in both panels were obtained for
τ = 0.08.

the system,

SNR = p(kmax)/p̃ , (13)

where p̃ = [p(kmax − ∆ka) + p(kmax + ∆kb)]/2 is an approximation for the level

of background noise whereby ∆ka and ∆kb mark the estimated width of the peak

around kmax at the optimal σ. Equation (13) simply gives the spatial counterpart

of the measure frequently used for quantifying constructive effects of noise in the

temporal domain of dynamical systems. Employing it on the examined system set-

up yields results presented in Fig. 4(b), showing that the SNR exhibits a typical

bell-shaped form in dependence on σ, thus clearly evidencing SCR in the diffusively

coupled HH neuronal network with delay. In particular, there exists an optimal

level of additive temporally and spatially uncorrelated Gaussian noise, for τ =

0.08 equaling σ = 1.5, by which the spatial dynamics of noise-induced waves is

most coherent and supported by the optimal (minimal) level of stochasticity still

warranting their propagation across the spatial grid.

Having conclusively established the possibility of SCR on diffusively coupled

HH neuronal networks with delay, it remains of interest to examine the impacts of

different delay lengths τ on the above-reported phenomenon. Note that all so far

presented results were obtained by using τ = 0.08. First, we examine how different

τ affect the characteristic bell-shaped dependence of SNR on σ. As can be inferred

from Fig. 5(a), the resonant outlay remains preserved over a broad span of τ , albeit

the peak value of SNR moves to even larger σ as τ increases. Normally, such a trend

would dictate a steady decrease in the maximally attainable peak values of SNR

as τ increases as well, simply because the level of background fluctuations needed
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Fig. 5. Effects of different information transmission delays τ on SCR in diffusively coupled HH
neuronal networks. (a) SNR in dependence on σ for different τ . (b) Dependence of the optimal
noise level σopt, warranting the peak value of SNR in panel (a), on τ .

to sustain coherent pattern formation increases. However, since the increase of the

optimal noise level σopt increases only linearly with τ , as depicted in Fig. 5(b), we

found it impossible to extract a clear trend of peak SNR values in dependence on

τ [note that peak values of SNR in Fig. 5(a) fluctuate heavily and irregularly in

dependence on τ ]. Arguably, a larger span of τ values would need to be covered

to numerically extract this information, yet computer resources readily available

to us preclude analyses for even longer transmission delays. Nevertheless, due to

the robust linear increase of σopt in dependence on τ depicted in Fig. 5(b), we

conclude that the eventual complete collapse of ordered spatial dynamics out of

noise in diffusively coupled HH neuronal networks is inevitable if the information

transmission delay is long enough. This directly implies that the SCR cannot be

observed if τ exceeds a critical length. Moreover, the linear increase of σopt in

dependence on τ indicates that the phase transition towards complete disorder

may be smooth, albeit additional studied on large-scale computer networks will be

necessary to clarify this assertion conclusively.

Finally, it remains of interest to examine the impact of small-world topology on

the phenomenon of SCR reported so far only for diffusively coupled HH neuronal

networks with delay. For this purpose we set q > 0 and follow the same procedures as

exemplified above. Figure 6(a) features SNR curves in dependence on σ by different

q and a fixed value of τ . First of all, it is clear that the introduction of shortcuts

amongst distant neurons hinders coherent pattern formation out of noise as the

maximally attainable peak values of SNR decrease fast as q increases. However,

the optimal σ warranting peak SNR values seems not to be affected, remaining

constant at σopt = 1.7 irrespective of q, as noted with the dashed vertical line.

This suggests that the decoherence of noise-induced spatial dynamics is exclusively

due to the introduction of interaction randomness. Indeed, since we consider regular
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Fig. 6. Decoherence of noise-induced spatial dynamics on small-world HH neuronal networks
characterized with information transmission delay equaling τ = 0.4. (a) SNR in dependence on σ

for different q. Evidently, the maximally attainable peak value of SNR decreases fast as q increases,
while σopt remains unchanged (marked with the vertical dashed line). (b) Peak values of SNR,

occurring at σopt = 1.7 in panel (a), in dependence on q.

small-world networks warranting an equal number of inputs (z = 4) to each coupled

neuron, the fact that σopt does not depend on q can be elegantly justified. Turning

back to the decoherence of spatial dynamics, results in Fig. 6(a) evidence clearly

that the phenomenon of SCR fades continuously as q increases, disappearing almost

completely already by q = 0.0008. We exploit this fact further in Fig. 6(b), where

SNRs obtained by σopt are plotted in dependence on q. Clearly, the peak values

of SNR decrease continuously as q increases, thus evidencing the decoherence of

noise-induced spatial dynamics due to the introduction of small-world topology in

HH neuronal networks with delay. Remarkably, in contrast with the rather subtle

impact of different information transmission delays on the peak values of SNR

[see Fig. 5(a)], a near-exponential decrease can be observed in dependence on q.

Noteworthy, we have made the same investigations also for other delay lengths,

and qualitatively identical results have been obtained. We thus show that delayed

HH neuronal networks are not immune to the small-world induced decoherence of

noise-induced spatial dynamics, and that indeed random long-range connections

amongst distant neurons are extremely effective in disrupting ordered excitatory

waves out of noise.

4. Summary

In sum, we show that additive temporally and spatially uncorrelated Gaussian

noise is able to resonantly extract a characteristic spatial frequency of excitatory

waves on HH neuronal networks even if short delays of information transmission

are introduced, hence providing conclusive evidence for SCR in the examined sys-

tem. However, long delays as well as random shortcuts amongst distant neurons,

constituting the small-world interaction topology, hinder coherent pattern forma-
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tion out of noise, thus weakening or even completely hindering the observation of

SCR. While increasing delay lengths act only linearly (i.e., slowly) on the distortion

of noise-induced patterns, the decoherence is much more rapid in dependence on

the fraction of shortcut links where a near-exponential decrease of the maximally

attainable SNR can be observed as q increases. The linear dependence in the former

case currently precludes the accumulation of numerical evidences that would sup-

port complete delay-induced decoherence of noise-induced spatial dynamics within

computer resources readily available to us. Nevertheless, the robust linear increase

of the optimal noise level needed to evoke ordered excitatory waves strongly implies

the eventual complete collapse of ordered spatial dynamics out of noise due to the

increasing stochastic component.

It has recently been suggested that long-range connections among neurons might

yield a faster recall of stored memories due to the distinctive property of small-world

environments to link seemingly unrelated events only by a few intermediate steps.75

On the other hand, diffusively coupled areas might be the actual memory holders in

the brain, enabling efficient data encoding through coherent spatial patterns. Thus,

while small-world connectivity facilitating temporally ordered behavior appears to

be important for information retrieval as well as short term memory,76,77 diffu-

sively coupled areas enabling coherent spatial patterns might be the actual data

storage facilities of the brain. Our current work provides interesting insights in this

respect in that, although ordered spatial patterns out of noise seem impossible in

the presence of small-world topology and long information transmission delays, the

importance of such physiological properties may lay elsewhere, and indeed, addi-

tional detailed studies regarding function-follow-form78–82 are necessary to clarify

the importance of different structural attributes of neural networks and their con-

stitutive units. Thus, especially in the field of neuroscience where excitability, noise,

and complex topologies appear to be universally present, the need for additional

theoretical as well as experimental studies is substantial, and it is our sincere hope

that the present work will be an inspiration for the future.
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