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Abstract. We define a new image feature called thecolor correlogramand use it for image indexing and com-
parison. This feature distills the spatial correlation of colors and when computed efficiently, turns out to be both
effective and inexpensive for content-based image retrieval. The correlogram is robust in tolerating large changes
in appearance and shape caused by changes in viewing position, camera zoom, etc. Experimental evidence shows
that this new feature outperforms not only the traditional color histogram method but also the recently proposed
histogram refinement methods for image indexing/retrieval. We also provide a technique to cut down the storage
requirement of the correlogram so that it is the same as that of histograms, with only negligible performance penalty
compared to the original correlogram.

We also suggest the use of color correlogram as a generic indexing tool to tackle various problems arising from
image retrieval and video browsing. We adapt the correlogram to handle the problems of image subregion querying,
object localization, object tracking, and cut detection. Experimental results again suggest that the color correlogram
is more effective than the histogram for these applications, with insignificant additional storage or processing
cost.

Keywords: image indexing, image features, content-based image retrieval, model-based object recognition,
spatial correlation

1. Introduction

In recent times, the availability of image and video re-
sources on the World-Wide Web has increased tremen-
dously. This has created a demand for effective and
flexible techniques for automatic image retrieval and
video browsing (Cox et al., 1996; Flickner et al., 1995;
Forsyth et al., 1996; Hampapur et al., 1994; Ogle and
Stonebraker, 1995; Pass and Zabih, 1996; Pentland
et al., 1996; Smith and Chang, 1996). Users need high-
quality image retrieval (IR) systems in order to find
useful images from the masses of digital image data
available electronically. In a typical IR system, a user
poses a query by providing an existing image (or cre-
ating one by drawing), and the system retrieves other

“similar” images from the image database. Content-
based video browsing tools also provide users with
similar capabilities—a user provides an interesting
frame as a query, and the system retrieves other similar
frames from a video sequence.

Besides the basic image retrieval and video process-
ing tasks, several related problems also need to be ad-
dressed. While most IR systems retrieve images based
on overall image comparison, users are typically in-
terested in finding objects (Fleck et al., 1996; Forsyth,
1996; Enser, 1993). In this case, the user specifies
an “interesting” subregion (usually an interesting ob-
ject) of an image as a query. The system should then
retrieve images containing this subregion (according
to human perception) or object from a database. This
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task, calledimage subregion querying, is made chal-
lenging by the wide variety of effects (such as dif-
ferent viewing positions, camera noise and variation,
object occlusion, etc.) that cause the same object
to have drastically different appearances in different
images.

The system should also be able to solve thelocali-
zationproblem (also called therecognitionproblem),
i.e., it should find the location of the object in an image.
The lack of an effective and efficient image segmenta-
tion process for large, heterogeneous image databases
implies that objects have to be located in unseg-
mented images, making the localization problem more
difficult.

Similar demands arise in the context of content-
based video browsing. A primary task in video process-
ing is cut detection, which segments a video into
different camera shots and helps to extract key frames
for video parsing and querying. A flexible tool for
browsing video databases should also provide users
with the capability to pose object-level queries that
have semantic content, such as “track this person in
a sequence of video”. To handle such queries, the sys-
tem has to find which frames contain the specified ob-
ject or person, and has to locate the object in those
frames.

The various tasks described above—image retrieval,
image subregion querying, object localization and cut
detection—become especially challenging when the
image database is gigantic. For example, the collection
of images available on the Internet is huge and unorga-
nized. The image data is arbitrary, unstructured, and
unconstrained; and the processing has to be done in
real-time for retrieval purposes. For these reasons, tra-
ditional (and often slow) computer vision techniques
like object recognition and image segmentation may
not be directly applicable to these tasks and new ap-
proaches to these problems are required.

Consider first the basic problem of content-based
image retrieval. This problem has been widely studied
and several IR systems have been built (Flickner, 1995;
Ogle and Stonebraker, 1995; Pentland et al., 1996; Cox
et al., 1996; Pass and Zabih, 1996). Most of these
IR systems adopt the following two-step approach to
search image databases (Stricker and Swain, 1994):
(i) (indexing) for each image in a database, a feature
vector capturing certain essential properties of the im-
age is computed and stored in a featurebase, and (ii)
(searching) given a query image, its feature vector is
computed, compared to the feature vectors in the fea-

turebase, and images most similar to the query image
are returned to the user. An overview of such systems
can be found in (1995).

For a retrieval system to be successful, the feature
vector f (I ) for an imageI should have the following
qualities: (i) | f (I ) − f (I ′)| should be large if and
only if I and I ′ are not “similar”, (ii) f (·) should
be fast to compute, and (iii)f (I ) should be small in
size.

Color histograms are commonly used as feature vec-
tors for images (Swain and Ballard, 1991; Flickner
et al., 1995; Ogle and Stonebraker, 1995; Pentland
et al., 1996). It has been shown that the color histogram
is a general and flexible tool that can be used for the
various tasks outlined above.

1.1. Our Results

In this paper, we propose a new color feature for im-
age indexing/retrieval called thecolor correlogramand
show that it can be effectively used in the various
image and video processing tasks described above.
The highlights of this feature are: (i) it includes the
spatial correlation of pairs of colors, (ii) it describes
the global distribution of local spatial correlations of
colors, (iii) it is easy to compute, and (iv) the size
of the feature is fairly small. Experimental evidence
shows that this new feature (i) outperforms both the
traditional histogram method and the recently pro-
posed histogram refinement method for image index-
ing/retrieval, and (ii) outperforms the histogram-based
approaches for the other video browsing tasks listed
above.

Informally, a correlogram is a table indexed by color
pairs, where thekth entry for〈i, j 〉 specifies the proba-
bility of finding a pixel of color j at a distancek from a
pixel of color i . Such an image feature turns out to be
robust in tolerating large changes in appearance of the
same scene caused by changes in viewing positions,
changes in the background scene, partial occlusions,
camera zoom that causes radical changes in shape, etc.
(see Fig. 1). We provide efficient algorithms to com-
pute the correlogram.

We also investigate a different distance metric to
compare feature vectors. TheL1 distance metric, used
commonly to compare vectors, considers the abso-
lute component-wise differences between vectors. The
relative distance metricwe use calculates relative dif-
ferences instead and in most cases performs better than
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the absolute metric (the improvement is significant es-
pecially for histogram-based methods).

We investigate the applicability of correlograms to
image retrieval as well as other tasks like image sub-
region querying, object localization, and cut detec-
tion. We propose thecorrelogram intersectionmethod
for the image subregion querying problem and show
that this approach yields significantly better results
than the histogram intersection method traditionally
used in content-based image retrieval. The histogram-
backprojection approach used for the localization prob-
lem in (Swain and Ballard, 1991) has serious draw-

Figure 1. Sample queries and answers with ranks for various methods. (Lower ranks are better.)
(continued on next page)

backs. We discuss these disadvantages and introduce
the idea ofcorrelogram correction. We show that it
is possible to locate objects in images more accurately
by using local color spatial information in addition to
histogram backprojection. We then use correlograms
to compare video frames and detect cuts by looking for
adjacent frames that are very different. Once again, we
show that using the correlogram as the feature vector
yields superior results compared to using histograms.

Our preliminary results thus indicate that the correlo-
gram method is a more accurate and effective approach
to these tasks compared to the color histogram method.
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Figure 1. (continued.)

What is more, the computational cost of the correlo-
gram method is about the same as that of other simpler
approaches, such as the histogram method.

1.2. Organization

Section 2 gives a brief summary of related work. In
Section 3, we define the color correlogram and show
how to compute it efficiently. Section 4 deals with
the content-based image retrieval problem and the use
of the correlogram for this problem. Section 5 dis-
cusses the use of the correlogram for image subregion

querying. Applications of the correlogram to video
browsing problems are described in Section 6. Finally,
Section 7 concludes with some remarks and scope for
further work.

2. Related Work

Color histograms are commonly used as image feature
vectors (Swain and Ballard, 1991; Flickner et al., 1995;
Ogle and Stonebraker, 1995; Pentland et al., 1996) and
have proved to be a useful and efficient general tool
for various applications, such as content-based image
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Figure 2. Two “similar” images with different histograms.

retrieval (Flickner et al., 1995; Ogle and Stonebraker,
1995; Pentland et al., 1996), object indexing and local-
ization (Swain and Ballard, 1991; Matas et al., 1995),
and cut detection for video segmentation (Boresczky
and Rowe, 1996). A color histogram describes the
global color distribution in an image. It is easy to com-
pute and is insensitive to small changes in viewing po-
sitions and partial occlusion. As a feature vector for
image retrieval, it is susceptible to false positives, how-
ever, since it does not include any spatial information.
This problem is especially acute for large databases,
where false positives are more likely to occur. More-
over, the histogram is not robust to large appearance
changes. For instance, the pair of images shown in
Fig. 2 (photographs of the same scene taken from dif-
ferent viewpoints) are likely to have quite different
histograms.1

Color histograms are also used for image subregion
querying and object localization (Swain and Ballard,
1991). These two problems are closely related to ob-
ject recognition, which has been studied for a long time
in computer vision (Roberts, 1965). Since conventional
object recognition techniques cannot recognize general
objects in general contexts (as in the natural imagery
and real videos), some work has been done for find-
ing objects from image databases (Fleck et al., 1996;
Forsyth, 1996). These techniques, however, are trained
for some specific tasks, such as finding naked peo-
ple, grouping trees, etc. Color histograms are also
widely used in video processing. Though there are
several sophisticated techniques for video cut detec-
tion, Boreczky and Rowe (1996) report that the simple
color histogram yields consistently good results com-
pared to five different techniques.

We now briefly discuss some other related work in
the areas of content-based image retrieval, image sub-
region querying, object localization, and cut detection.

2.1. Content-Based Image Retrieval

Several recently proposed schemes incorporate spatial
information about colors to improve upon the histo-

gram method (Hsu et al., 1995; Smith and Chang, 1996;
Stricker and Dimai, 1996; Rickman and Stonham,
1996; Yihong et al., 1994; Pass et al., 1996; Pass and
Zabih, 1996). One common approach is to divide im-
ages into subregions and impose positional constraints
on the image comparison. Another approach is to aug-
ment the histogram with some spatial information.

Hsu et al. (1995) select two representative colors sig-
nifying the “background” and the principal “object” in
an image. The maximum entropy algorithm is then used
to partition an image into rectangular regions. Only
one selected color dominates a region. The similarity
between two images is the degree of overlap between
regions of the same color. The method is tested on a
small image database. Unfortunately, this method uses
coarse color segmentation and is susceptible to false
positives.

Smith and Chang (1996) also partition an image,
but select all colors that are “sufficiently” present in
a region. The colors for a region are represented by
a binary color set that is computed using histogram
back-projection (Swain and Ballard, 1991). The binary
color sets and their location information constitute the
feature. The absolute spatial position allows the system
to deal with “region” queries.

Stricker and Dimai (1996) divide an image into five
fixed overlapping regions and extract the first three
color moments of each region to form a feature vec-
tor for the image. The storage requirements for this
method are low. The use of overlapping regions makes
the feature vectors relatively insensitive to small rota-
tions or translations.

Pass et al. (1996a, 1996b) partition histogram bins
by the spatial coherence of pixels. A pixel is coherent
if it is a part of some “sizable” similar-colored region,
and incoherent otherwise. A color coherence vector
(CCV) represents this classification for each color in
the image. CCVs are fast to compute and perform
much better than histograms. A detailed comparisons
of CCV’s with the other methods mentioned above is
given in (Pass and Zabih, 1996).

The notion of CCV was further extended in (Pass
and Zabih, 1999) where additional feature(s) are used
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to further refine the CCV-refined histogram. One such
extension uses the center of the image (the centermost
75% of the pixels are defined as the “center”) as the
additional feature. The enhanced CCV is called CCV
with successive refinement(CCV(s)) and performs
better than CCV’s.

Since the image partitioning approach depends on
pixel position, it is unlikely to tolerate large image
appearance changes. The same problem occurs in the
histogram refinement method, which depends on local
properties to further refine color buckets in histograms.
The correlogram method, however, takes into account
the local spatial correlation between colors as well as
the global distribution of this spatial correlation and
this makes the correlogram robust to large appearance
changes (see Fig. 1). Moreover, this information is not
a local pixel property that histogram refinement ap-
proaches can capture.

2.2. Other Image/Video Problems

The image subregion querying problem is closely re-
lated to the object recognition problem, which has
been studied for a long time by the computer vision
community (Roberts, 1965). Some of the early work
in object recognition and detection was pioneered by
Marr (1978), who suggest that geometric cues such
as edge, surface and depth information be identified
before object recognition is attempted. Most of such
object recognition systems compare the geometric fea-
tures of the model with those of an image using vari-
ous forms of search, some of which are computation-
ally quite intensive (Huttenlocher and Ullman, 1986;
Grimson and Lozano-P´erez, 1987).

Such geometric information is hard to extract from
an image, however, because geometric and photometric
properties are relatively uncorrelated (Rao and Ballard,
1995), and the central tasks involved in this approach—
edge detection and region segmentation—are difficult
for unconstrained data in the context of image retrieval
and video browsing.

An alternative approach to model-based recognition
is appearance matching. First, a database of object
images under different view positions and lighting
conditions is constructed. Then,principal component
analysisis used to analyze only the photometric prop-
erties and ignore geometric properties (Murase and
Nayar, 1995; Huttenlocher et al., 1996; Rao and
Ballard, 1995). This model-based method is effective
only when the principal components capture the

characteristics of the whole database. For instance,
it yields good results on the Columbia object database
in which all images have a uniform known background.
If there is a large variation in the images in a database,
however, a small set of principal components is unlikely
to do well on the image subregion querying task. In ad-
dition, the learning process requires homogeneous data
and deals poorly with outliers. Therefore, this approach
seems suitable only for domain-specific applications,
but not for image subregion querying from a large het-
erogeneous image database such as the one used in
(Pass and Zabih, 1996; Huang et al., 1997).

Since the color information (e.g. histogram) is very
easy to extract from an image, it has been successfully
used for object indexing, detection, and localization
(Swain and Ballard, 1991; Flickner et al., 1995; Ogle
and Stonebraker, 1995; Matas et al., 1995; Slater and
Healey, 1995; Brock-Gunn and Ellis, 1992; Syeda-
Mahmood, 1997; Forsyth, 1996). We briefly review
some of these approaches below.

Swain and Ballard (1991) proposehistogram inter-
sectionfor object identification andhistogram backpro-
jection for object localization. The technique is com-
putationally easy, does not require image segmentation
or even foreground/background separation, and is in-
sensitive to small changes in viewing positions, partial
occlusion, and object deformation. Histogram back-
projection is a very efficient process for locating an
object in an image. It has been shown that this algo-
rithm is not only able to locate an object but also to
track a moving object. The advantages and disadvan-
tages inherent to histograms in general are discussed
in detail in Section 5.

One disadvantage of color histograms is that they
are sensitive to illumination changes. Slater and Healey
(1995) propose an algorithm that computes invariants
of local color distribution and uses these invariants for
3-D object recognition. Illumination correction and
spatial structure comparison are then used to verify the
potential matches.

Matas et al. (1995) propose the color adjacency
graph (CAG) as a representation for multiple-colored
objects. Each node of a CAG represents a single color
component of the image. Edges of the CAG include in-
formation about adjacency of color components. CAGs
improve over histograms by incorporating coarse color
segmentation into histograms. The set of visible colors
and their adjacency relationship remain stable under
changes of viewpoint and non-rigid transformations.
The recognition and localization problems are solved
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by subgraph matching. Their approach yields excellent
results, but the computational cost of subgraph match-
ing is fairly high.

Forsyth et al. (1996) offer different object models
in order to achieve object recognition under general
contexts. Their focus is on classification rather than
identification. The central process is based on grouping
(i.e., segmentation) and learning. They fuse different
visual cues such as color and texture for segmentation;
texture and geometric properties for trees; color, texture
and specialized geometric properties for human bodies.

Cut detection, as a first step to video segmentation
and video querying, has been given much attention
(Boresczky and Rowe, 1996). The simple histogram
approach gives reasonably good results on this prob-
lem. Histograms, however, are not robust to local
changes in images. Dividing an image into several
subregions may not overcome the problem (Hampapur
et al., 1994) either.

3. The Correlogram

A color correlogram (henceforth correlogram) ex-
presses how the spatial correlation of color changes
with distance. A color histogram (henceforth his-
togram) captures only the color distribution in an image
and does not include any spatial correlation informa-
tion. Thus, the correlogram is one kind of spatial ex-
tension of the histogram.2

3.1. Notation

Let I be ann× n image. (For simplicity, we assume
that the image is square.) The colors inI are quantized
into m colorsc1, . . . , cm. (In practice,m is deemed to
be a constant and hence we drop it from our running
time analysis.)

For a pixel p = (x, y) ∈ I , let I (p) denote its
color. Thus, the notationp ∈ I c is synonymous with
p ∈ I , I (p) = c. For convenience, we use theL∞-
norm to measure the distance between pixels, i.e., for

Figure 3. Sample images: image 1, image 2.

pixels p1 = (x1, y1), p2 = (x2, y2), we define|p1 −
p2| 1= max{|x1 − x2|, |y1 − y2|}. We denote the set
{1, 2, . . . ,n} by [n].

3.2. Definitions

Thehistogram hof I is defined fori ∈ [m] by

hci (I )
1= n2 · Pr

p∈I
[
p ∈ I ci

]
. (1)

For any pixel in the image,hci (I )/n2 gives the prob-
ability that the color of the pixel isci . The histogram
can be computed inO(n2) time, which is linear in the
image size.

Let a distanced ∈ [n] be fixed a priori. Then, the
correlogramof I is defined fori, j ∈ [m], k ∈ [d] as

γ (k)ci ,cj
(I ) 1= Pr

p1 ∈ I ci
p2 ∈ I

[
p2 ∈ I cj

∣∣|p1− p2| = k
]
. (2)

Given any pixel of colorci in the image,γ (k)ci ,cj
gives

the probability that a pixel at distancek away from
the given pixel is of colorcj . Note that the size of
the correlogram isO(m2d). Theautocorrelogramof
I captures spatial correlation between identical colors
only and is defined by

α(k)c (I ) 1= γ (k)c,c (I ). (3)

This information is a subset of the correlogram and
requires onlyO(md) space.

While choosingd to define the correlogram, we need
to address the following. A larged would result in
expensive computation and large storage requirements.
A smalld might compromise the quality of the feature.
We consider this issue in Section 4.1.

Example 1. Consider the simple case whenm = 2
andn = 8. Two sample images are shown in Fig. 3.
The autocorrelograms corresponding to these two im-
ages are shown in Fig. 4. The change of autocorrelation
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Figure 4. Autocorrelograms for images in Fig. 3.

of the foreground color with distance is perceptibly dif-
ferent for these images.3

3.3. Distance Metrics

The L1 and L2 norms are commonly used distance
metrics when comparing two feature vectors. In prac-
tice, theL1 norm performs better than theL2 norm be-
cause the former is more robust to outliers (Rousseeuw
and Leroy, 1987). Hafner et al. (1995) suggest using
a more sophisticated quadratic form of distance
metric, which tries to capture the perceptual similar-
ity between any two colors. To avoid intensive com-
putation of quadratic functions, they propose to use
low-dimensional color features as filters before using
the quadratic form for the distance metric.

We will use theL1 norm for comparing histograms
and correlograms because it is simple and robust. The
following formulae are used to compute the distance
between imagesI andI ′:

|I − I ′|h,L1

1=
∑
i∈[m]

∣∣hci (I )− hci (I ′)
∣∣ (4)

|I − I ′|γ,L1

1=
∑

i, j ∈ [m]
k∈ [d]

∣∣γ (k)ci ,cj
(I )− γ (k)ci ,cj

(I ′)
∣∣ (5)

From these equations, it is clear that the contribu-
tions of different colors to the dissimilarity are equally
weighted. Intuitively, however, this contribution
should be weighted to take into account some addi-
tional factors.

Example 2. Consider two pairs of images〈I 1, I 2〉
and〈I ′1, I ′2〉. Let hci (I 1) = 1000,hci (I 2) = 1050,

hci (I ′1) = 100, andhci (I ′2) = 150. Even though the
absolute difference in the pixel count for color bucket
i is 50 in both cases, clearly the difference is more
significant for the second pair of images.

Thus, the difference|hci (I ) − hci (I ′)| in Eq. (4)
should be given more importance if|hci (I )+ hci (I ′)|
is small and vice versa. We could therefore consider
replacing the expression|hci (I ) − hci (I ′)| in Eq. (4)
by ∣∣hci (I )− hci (I ′)

∣∣
1+ hci (I )+ hci (I ′)

(6)

(the 1 in the denominator is added to prevent division
by zero).

This intuition has theoretical justification in
(Haussler, 1992) which suggests that it is sometimes
better to use a “relative” measure of distancedµ. For
µ > 0, r, s ≥ 0, dµ is defined by

dµ(r, s) = |r − s|
µ+ r + s

. (7)

It is straightforward to verify that (i)dµ is a metric, (ii)
for r, s ≥ 0, dµ(r, s) ∈ [0, 1), and (iii) for 0 ≤ r ≤
s ≤ t , dµ(r, s) ≤ dµ(r, t), dµ(s, t) ≤ dµ(r, t).

dµ can be applied to feature vectors also. We have
setµ = 1. So thed1 distance metric for histograms
and correlograms is:

|I − I ′|h,d1

1=
∑
i∈[m]

∣∣hci (I )− hci (I ′)
∣∣

1+ hci (I )+ hci (I ′)
(8)

|I − I ′|γ,d1

1=
∑

i, j ∈ [m]
k∈ [d]

∣∣γ (k)ci ,cj
(I )− γ (k)ci ,cj

(I ′)
∣∣

1+ γ (k)ci ,cj (I )+ γ (k)ci ,cj (I ′)
(9)

3.4. An Algorithm

In this section, we look at an efficient algorithm to
compute the correlogram. Our algorithm is amenable
to easy parallelization. Thus, the computation of the
correlogram could be enormously speeded up.

First, to compute the correlogram, it suffices to com-
pute the following count (similar to thecooccurrence
matrix defined in (Haralick, 1979) for texture analysis
of gray images)

0(k)ci ,cj
(I ) 1= ∣∣{p1∈ I ci , p2∈ I cj

∣∣ |p1− p2| = k
}∣∣
(10)
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because,

γ (k)ci ,cj
(I ) =

0(k)ci ,cj
(I )

8khci (I )
. (11)

The denominator is the total number of pixels at dis-
tancek from any pixel of colorci . (The factor 8k is
due to the properties ofL∞-norm.) The naive algo-
rithm would be to consider eachp1 ∈ I of the colorci

and for eachk ∈ [d], count all p2 ∈ I of colorcj with
|p1− p2| = k. Unfortunately, this takesO(n2d2) time.
To obviate this expensive computation, we define the
quantities

λ
c,h
(x,y)(k)

1= |{(x + i, y) ∈ I c | 0≤ i ≤ k}| (12)

λ
c,v
(x,y)(k)

1= |{(x, y+ j ) ∈ I c | 0≤ j ≤ k}| (13)

which count the number of pixels of a given color
within a given distance from a fixed pixel in the positive
horizontal/vertical directions.

Our algorithm works by first computingλ
cj ,v
p and

λ
cj ,h
p . We now give an algorithm with a running time

of O(n2d) based on dynamic programming.
The following equation is easy to check

λ
c,h
(x,y)(k) = λc,h

(x,y)(k− 1)+ λc,h
(x+k,y)(0) (14)

with the initial condition

λc,h
p (0) = 1 if p ∈ I c and 0 otherwise. (15)

Now, λc,h
p (k) is computed for allp ∈ I and for each

k = 1, . . . ,d using Eq. (14). The correctness of this
algorithm is obvious. Since we doO(n2)work for each
k, the total time taken isO(n2d).

In a similar manner,λc,v
p can also be computed effi-

ciently. Now, ignoring boundaries, we have

0(k)ci ,cj
(I )

=
∑

(x,y)∈I ci

(
λ

cj ,v

(x−k,y−k+1)(2k− 2)+ λcj ,h
(x−k,y−k)(2k)

+ λcj ,h
(x−k,y+k)(2k)+ λcj ,v

(x+k,y−k+1)(2k− 2)
)

This computation takes justO(n2) time.
The hidden constants in the overall running time of

O(n2d) are very small and hence this algorithm is ex-
tremely efficient in practice for smalld.

3.5. Some Extensions

In this section, we will look at some extensions to color
correlograms. The general theme behind the exten-
sions are: (1) improve the storage efficiency of the
correlogram while not compromising its image dis-
crimination capability, and (2) use additional infor-
mation (such as intensity edges) to further refine the
correlogram, boosting its image retrieval performance.
These extensions can not only be used for the image
retrieval problem, but also in other applications like
cut-detection (see Section 6.2).

3.5.1. Banded Correlogram. In Section 3.4, we saw
that the correlogram (resp. autocorrelogram) takesm2d
(resp.md) space. Though we will see that small values
of d actually suffices, it will be more advantageous if
the storage requirements were trimmed further. This
leads to the definition ofbanded correlogramfor a
given b. (For simplicity, assumeb divides d.) For
1≤ k ≤ b,

γ̄ (k)ci ,cj
(I ) 1=

(k+1)b−1∑
k′=kb

γ (k
′)

ci ,cj
(I ). (16)

In a similar manner, the banded autocorrelogram
ᾱ(k)ci

(I ) can also be defined. The space requirements
for the banded correlogram (resp. banded autocorrelo-
gram) ism2d/b (resp.md/b). (Note that whenb = d,
γ̄ measures thedensityof a colorcj near the colorci ,
thus suggesting the local structure of colors.) The dis-
tance metric defined in Eq. (5) is easily extended to this
case.

Note that banded correlograms are seemingly more
susceptible to false matches since

|I − I ′|γ̄ ,L1 ≤ |I − I ′|γ,L1, (17)

which follows by the triangle inequality. Although the
banded correlograms have less detailed information as
correlograms, our results show that the approximation
of γ by γ̄ has only negligible effect on the quality of
the image retrieval problem and other applications.

3.5.2. Edge Correlogram. The idea of exploiting spa-
tial correlation between pairs of colors can also be ex-
tended to other image features such as edges. In the
following, we augment the color correlogram with edge
information. This new feature, called theedge correlo-
gram, is likely to have increased discriminative power.
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SupposeE : I → {0, 1} is the edge information of
imageI , i.e., E(p) = 1 if p is on an edge and 0
otherwise. (Such information can be obtained using
various edge-detection algorithms.) Now, the ques-
tion is if this useful information can be combined with
(auto)correlograms so as to improve the retrieval qual-
ity even further. We outline one scheme to do this. In
this scheme, each of them color bins is refined to get
I ′ with 2m bins.

I ′(p) =
{

c+ if I (p) = c andE(p) = 1

c− if I (p) = c andE(p) = 0
(18)

It is easy to see that the definition of both correlograms
and autocorrelograms directly extend to this case. The
storage requirements become 4m2d (resp. 2md) for
correlograms (resp. autocorrelograms). Note however
that the number ofp such thatE(p) = 1 is usually very
small. Since we mostly deal with autocorrelograms,
the statistical importance ofα(k)c+ becomes insignificant,
thus rendering the whole operation meaningless. A so-
lution to this problem is to define anedge autocorrel-
ogramin which cross correlations betweenc+ andc−
are also included. The size an edge autocorrelogram is
thus only 4md. We can further trim the storage by the
banding technique in Section 3.5.1.

4. Image Retrieval Using Correlograms

The image retrieval problem is the following: letS be
an image database andQ be the query image. Obtain a
permutation of the images inS based onQ, i.e., assign
rank(I ) ∈ [|S|] for eachI ∈ S, using some notion
of similarity toQ. This problem is usually solved by
sorting the imagesI ∈ S according to| f (I )− f (Q)|,
where f (·) is a function computing feature vectors of
images and| · | f is some distance metric defined on
feature vectors.

Performance Measure.Let {Q1, . . . ,Qq} be the set
of query images. For a queryQi , let I i be the unique
correct answer. The following are two obvious perfor-
mance measures:

1. r -measureof a method which sums up over all
queries, the rank of the correct answer, i.e.,∑q

i=1 rank(I i ). We also use the averager -measure
which is ther -measure divided by the number of
queriesq.

2. p1-measure of a method which is given by∑q
i=1 1/ rank(I i ), i.e., the sum (over all queries)

of the precision at recall equal to 1. The average
p1-measure is thep1-measure divided byq.

Images ranked at the top contribute more to thep1-
measure. Note that a method is good if it has a low
r -measure and a highp1-measure.

3. Recall vs. Scope: Let Q be a query and letQ′1,
. . . ,Q′a be multiple “answers” to the query (Q is
called acategory query). Now, therecall r is de-
fined for ascope s> 0 as|{Q′i | rank(Q′i ) ≤ s}|/a.
Since it is very hard to identify all relevant images
in a huge database like ours, using this measure
is much simpler than using the traditionalrecall vs.
precision. Note however that this measure still eval-
uates the effectiveness of the retrieval (Hsu et al.,
1995; Smith and Chang, 1996).

Organization. Section 4.1 lists some efficiency con-
siderations we take into account while using correl-
ograms for image retrieval. Section 4.2 describes our
experimental setup and Section 4.3 provides the results
of the experiments.

4.1. Efficiency Considerations

As image databases grow in size, retrieval systems need
to address efficiency issues in addition to the issue
of retrieval effectiveness. We investigate several gen-
eral methods to improve the efficiency of indexing and
searching, without compromising effectiveness.

Parallelization. The construction of a featurebase for
an image database is readily parallelizable. We can
divide the database into several parts, construct fea-
turebases for these parts simultaneously on different
processors, and finally combine them into a single fea-
turebase for the entire database.

Partial Correlograms. In order to reduce space and
time requirements, we choose a small value ofd. This
does not impair the quality of correlograms or autocor-
relograms very much because in an image, local corre-
lations between colors are more significant than global
correlations. Sometimes, it is also preferable to work
with distance sets,where a distance setD is a subset
of [d]. We can thus cut down storage requirements,
while still using a larged. Note that our algorithm can
be modified to handle the case whenD ⊂ [d].

Though in theory the size of a correlogram is
O(m2d) (and the size of an autocorrelogram is



Spatial Color Indexing and Applications 255

O(md)), we observe that the feature vector is not al-
ways dense. This sparsity could be exploited to cut
down storage and speed up computations.

Filtering. There is typically a tradeoff between the ef-
ficiency and effectiveness of search algorithms: more
sophisticated methods which are computationally more
expensive tend to yield better retrieval results. Good
results can be obtained without sacrificing too much
in terms of efficiency by adopting a two-pass approach
(Hafner et al., 1995). In the first pass, we retrieve a
set of N images in response to a query image by us-
ing an inexpensive (and possibly crude) search algo-
rithm. Even though the ranking of these images could
be unsatisfactory, we just need to guarantee that use-
ful images are contained in this set. We can then use a
more sophisticated matching technique to compare the
query image to theseN images only (instead of the
entire database), and the best images are likely to be
highly ranked in the resulting ranked list. It is impor-
tant to choose an appropriateN in this approach4 —the
initially retrieved set should be good enough to contain
the useful images and should be small enough so that
the total retrieval time is reduced.

4.2. Experimental Setup

The image database consists of 14,554 color JPEG im-
ages of size 232× 168. This includes 11,667 images
used in Chabot (Ogle and Stonebraker, 1995), 1,440
images used in QBIC (Flickner et al., 1995), and 1,005
images from Corel. It also includes a few groups of im-
ages in PhotoCD format and a number of MPEG video
frames from the web (Pass and Zabih, 1996). Our het-
erogeneous image database is thus very realistic and
helps us evaluate various methods. It consists of im-
ages of animals, humans, landscapes, various objects
like tanks, flags, etc.

We consider the RGB colorspace with quantiza-
tion into 64 colors. To improve performance, we first
smooth the images by a small amount. We use the dis-
tance setD = {1, 3, 5, 7} (so,d = 4) for computing
the autocorrelograms. We useb = 4 for the banded
autocorrelogram. This results in a feature vector that
is as small as a histogram.

Our query set consists of 77 queries. Each of these
queries was manually picked and checked to have a
unique answer. Therefore they serve as ground truth
for us to compare different methods in a fair manner.
In addition, the queries are chosen to represent various

situations like different views of the same scene, large
changes in appearance, small lighting changes, spatial
translations, etc. We also run 4 category queries, each
with a > 1 answers−Query 1 (a = 22 owl images),
Query 2 (a = 17 fox images), Query 3 (a = 6 movie
scenes), and Query 4 (a = 6 moving car images). The
correct answers to the unique answer queries are ob-
tained by an exhaustive manual search of the whole
image database.

We use theL1 norm for comparing feature vectors.
The feature vectors we use are histograms (hist), color
coherent vectors with successive refinement (ccv(s))
(Pass and Zabih, 1996), autocorrelograms (auto),
banded autocorrelograms (b-auto), edge autocorrelo-
grams (e-auto), and banded edge autocorrelograms (be-
auto). Examples of some queries and answers (and the
rankings according to various methods) are shown in
Fig. 1. The query response time for autocorrelograms
is under 2 sec on a Sparc-20 workstation (just by ex-
haustive linear search).

4.3. Results

4.3.1. Unique Answer Queries.Observe that all the
correlogram-related methods are on par in terms of
performance and significantly better than histogram
and CCV(s). On average, in the autocorrelogram-based
method, the correct answer shows up second while
for histograms and CCV-based methods, the correct
answer shows up at about 80th and 40th places. The
banded autocorrelograms perform only slightly worse
than the original ones. With the same data size as his-
tograms, the banded autocorrelograms retrieve the cor-
rect answers more than 79 ranks lower than histograms.
Since the autocorrelograms achieve strong retrieval re-
sults, the edge correlograms do not generate too much
improvement.

Also note that the banded edge autocorrelograms
have higherp1-measure than the edge autocorrelo-
grams. This is because most of the ranks go higher
while only a few go lower. Though ther -measure be-
comes worse, thep1-measure becomes better. It is re-
markable that banded autocorrelogram has the same
amount of information as the histogram, but seems lot
more effective than the latter.

For 73 out of 77 queries, autocorrelograms per-
form as well as or better than histograms. In the cases
where autocorrelograms perform better than color his-
tograms, the average improvement in rank is 104 posi-
tions. In the four cases where color histograms perform
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Table 1. Comparison of various image retrieval methods.

Method Hist CCV(s) Auto b-auto e-auto be-auto

r -Measure 6301 3272 172 196 144 157

Avg. r -measure 81.8 42.5 2.2 2.5 1.9 2.0

p1-Measure 21.25 31.60 58.06 55.77 60.26 60.88

Avg. p1-measure 0.28 0.41 0.75 0.72 0.78 0.79

better, the average improvement is just two positions.
Autocorrelograms, however, still rank the correct an-
swers within top six in these cases.

Statistical Significance Analysis.We adopt the ap-
proach used in (Pass and Zabih, 1996) to analyze the
statistical significance of the improvements. We for-
mulate the null hypothesisH0 which states that the
autocorrelogram method is as likely to cause a nega-
tive change in rank as a non-negative one. UnderH0,
the expected number of negative changes isM = 38.5,
with a standard deviationσ = √77/2 ≈ 4.39. The
actual number of negative changes is 4, which is less
than M − 7σ . We can rejectH0 at more than 99.9%
standard significance level.

For 67 out of 77 queries, autocorrelograms perform
as well as or better than CCV(s). In the cases where
autocorrelograms perform better than CCV(s), the av-
erage improvement in rank is 66 positions. In the ten
cases where CCV(s) perform better, the average im-
provement is two positions. Autocorrelograms, how-
ever, still rank the correct answers within the top 12 in
these cases. Again, statistical analysis suggets that
autocorrelograms are better than CCV(s).

From a usability point of view, we make the follow-
ing observation. Given a query, the user is guaranteed
to locate the correct answer by just checking the top
two search results (on average) in the case of autocor-
relogram. On the other hand, the user needs to check
at least the top 80 search results (on average) to locate
the correct answer in the case of histogram (or top 40
search results for the CCV(s)). In practice, this im-
plies that the former is a more “usable” image retrieval
scheme than the latter two.

4.3.2. Recall Comparison. Table 2 shows the perfor-
mance of three features on our four category queries.
The L1 distance metric is used. Once again, autocor-
relograms perform the best.

4.3.3. Relative Distance Metric. Table 3 compares
the results obtained usingd1 andL1 distance measures

Table 2. Scopevs. recall results
for category queries. (Larger num-
bers indicate better performance.)

Recall

Scope Hist CCV(s) Auto

Query 1

10 .14 .19 .24

30 .19 .19 .38

50 .19 .24 .57

Query 2

10 .13 .19 .38

30 .31 .38 .63

50 .31 .38 .75

Query 3

10 .20 .20 1.0

30 .40 .20 1.0

50 .40 .60 1.0

Query 4

10 .20 .20 .60

30 .20 .20 .80

50 .20 .20 .80

on different features (64 colors). Usingd1 distance
measure is clearly superior. The improvement is spe-
cially noticeable for histograms and CCV(s) (for in-
stance, for the owl images in Fig. 5).

A closer examination of the results shows, however,
that there are instances where thed1 distance measure
performs poorly compared to theL1 distance measure
on histograms and CCV(s). An example is shown in
Fig. 6.

It seems that the failure of thed1 measure is related
to the large change of overall image brightness (other-
wise, the two images are almost identical). We need
to examine such scenarios in greater detail. Autocor-
relograms, however, are not affected byd1 in this case.
Nor doesd1 improve the performance of autocorrelo-
gram much. In other words, autocorrelograms seem
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Table 3. Comparison ofL1 andd1.

L1 distance measure d1 distance measure

Method Hist CCV(s) Auto Hist CCV(s) Auto

r -Measure 6301 3272 172 926 326 164

Avg. r -measure 82 42 2 12 4 2

p1-Measure 21.25 31.60 58.03 47.94 52.09 59.92

Avg. p1-measure 0.28 0.41 0.75 0.62 0.68 0.78

Figure 5. A case whered1 is much better thanL1.

Figure 6. A case whered1 is worse thanL1.

indifferent to thed1 distance measure. This needs to
be formally investigated.

4.3.4. Filtering. Table 4 shows the results of applying
a histogram filter before using the autocorrelogram (we
use 64-color histograms and autocorrelograms).

As we see, the quality of retrieval even improves
somewhat (because false positives are eliminated). As
anticipated, the query response time is less since we

Table 4. Performance of auto(L1)
with hist(d1) filter.

Method Unfiltered Filtered

r -Measure 172 166

p1-Measure 58.02 58.60

consider the correlograms of only a small filtered subset
of the featurebase.

4.3.5. Discussion. The results show that the autocor-
relogram tolerates large changes in appearance of the
same scene caused by changes in viewing positions,
changes in the background scene, partial occlusions,
camera zoom that causes radical changes in shape, etc.
Since we chose small values{1, 3, 5, 7} for the distance
setD, the autocorrelogram distills the global distribu-
tion of local color spatial correlations. In the case of
camera zoom (for example, the third pair of images on
the left column of Fig. 1), though there are big changes
in object shapes, the local color spatial correlations as
well as the global distribution of these correlation do
not change that much. We illustrate this by looking at
how the autocorrelation of yellow color changes with
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Figure 7. The query image, the image ranked one, and the image ranked two.

Figure 8. The change of autocorrelation of yellow color with
distance.

distance in the following three images (Fig. 7). Notice
that the size of yellow circular and rectangular objects
in the query image and the image ranked one are differ-
ent. Despite this, the correlation of yellow with yellow
for the local distance of the image ranked one is closer
to that of the query image than the image ranked, say,
two (Fig. 8).

5. Image Subregion Querying
Using Correlograms

The image subregion querying problem is the follow-
ing: given as input a subregion queryQ of an image
I and an image setS, retrieve fromS those images
Q′ in which the queryQ appears according to human
perception (denotedQ ⊆ Q′). The set of images might
consist of a database of still images, or videos, or some
combination of both. The problem is made even more
difficult than image retrieval by a wide variety of effects
that cause the same object to appear different (such as
changing viewpoint, camera noise and occlusion). The
image subregion querying problem arises in image re-
trieval and in video browsing. For example, a user
might wish to find other pictures in which a given object

appears, or other scenes in a video with a given appear-
ance of a person.

Performance Measure.We use the following mea-
sures to evaluate the performance of various competing
image subregion querying algorithms. IfQ1, . . . ,Qq

are the query images, and for thei -th query Qi ,
I (i )1 , . . . , I (i )ai

are the only images that “contain”Qi ,
(i.e., Qi “appears in” I (i )j , j = 1, . . . ,ai ,) yet due
to the presence of false matches the image subregion
querying algorithm may return this set of “answers”
with various ranks.

1. Average r-measuregives the mean rank of the
answer-images averaged over all queries. It is given
by either of the following expressions:

1

q

q∑
i=1

1

ai

ai∑
j=1

rank
(
I (i )j

)
(19)(

q∑
i=1

ai∑
j=1

rank
(
I (i )j

))/ q∑
i=1

ai (20)

The macroaveraged r-measure given by Eq. (19)
treats all queries with equal importance, whereas
the microaveraged r-measure defined by Eq. (20)
gives greater weightage to queries that have a larger
number of answers. In both cases a lower value of
ther -measure indicates better performance.

2. Average precisionfor a queryQi is given by
(1/ai )

∑ai
j=1 j/ rank(I (i )j ), whereI (i )1 , . . . , I (i )ai

are
the answers for queryQi in the order that they were
retrieved. This quantity gives the average of the pre-
cision values over all recall points (with 1.0 being
perfect performance).

3. Recall/Precision vs. Scope: For a queryQi and a
scope s> 0, the recall r is defined as|{I (i )j |
rank(I (i )j )≤ s}|/ai , and theprecision pis defined as
|{I (i )j | rank(I (i )j )≤ s}|/s. These measures are sim-
pler than the traditional average precision measure
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but still evaluate the effectiveness of the subregion
query retrieval. For both measures, higher values
indicate better performance.

Organization. Section 5.1 explains our approach to
the problem. Section 5.2 describes the experimental
setup and Section 5.3 presents the results.

5.1. Correlogram Intersection

The image subregion querying problem is a harder
problem than image retrieval based on whole image
matching. To avoid exhaustive searching subregions in
an image, one scheme is to defineintersectionof color
histograms (Swain and Ballard, 1991). The scheme can
be interpreted in the following manner. (This interpre-
tation helps us to generalize the method to correlograms
easily.)

Given the histograms for a queryQ and an image
I , the intersection of these two histograms can be con-
sidered as the histogram of an abstract entity notated
as the intersectionQ ∩ I , (which will not be defined
but serves as a conceptual and notational convenience
only). With the color count of the intersection defined
as

Hci (Q ∩ I ) 1= min
{
Hci (Q), Hci (I )

}
, (21)

we can define the intersection of the histograms ofQ
andI as

hci (Q ∩ I ) 1=
Hci (Q ∩ I )
|Q| . (22)

Note that this definition isnot symmetric inQ and
I . The distance|Q − Q ∩ I |h,L1 is a measure of the
presence ofQ in I . WhenQ is a subset ofI , |Q−Q
∩ I |h,L1 = 0 because all the color counts inQ are less
than those inI , and the histogram intersection simply
gives back the histogram forQ.

In an analogous manner, we define the intersection
correlogram as the correlogram of the intersection
Q∩ I (again, merely an abstract entity.) With the count

0(k)ci ,cj
(Q ∩ I ) 1= min

{
0(k)ci ,cj

(Q), 0(k)ci ,cj
(I )

}
, (23)

we can define the intersection correlogram as follows:

γ (k)ci ,cj
(Q ∩ I ) 1=

0(k)ci ,cj
(Q ∩ I )

Hci (Q ∩ I ) · 8k
. (24)

Again we measure the presence ofQ in I by the dis-
tance|Q−Q∩ I |γ,L1, say ifL1 distance measure were
chosen. IfQ ⊆ I , then the latter “should have at least
as many counts of correlating color pairs” as the former.
Thus the counts0 andH for Q∩ I are again those of
Q, and the correlogram ofQ ∩ I becomes exactly the
correlogram ofQ, giving |Q−Q ∩ I |γ,L1 = 0.

We see that the distance betweenQ andQ∩I vani-
shes whenQ is actually a subset ofI ; this affirms the
fact that both correlograms and histograms are global
features. Such astable property is not satisfied by
all features—for instance, spatial coherence (Pass and
Zabih, 1996) is not preserved under subset operations.
Therefore, methods for subregion querying based on
such unstable features are not likely to perform as good
as the histogram or correlogram based methods.

5.2. Experiments

The image database is the same as in Section 4.2.
We use 64 color bins for histograms and autocor-
relograms. The distance set for autocorrelograms is
D = {1, 3, 5, 7}. Our query set for this task consists of
30 queries. Queries have 2 to 16 answer images with
the average number of answers per query being nearly
5. The query set is constructed by selecting “interest-
ing” portions of images from the image database. The
answer images contain the object depicted in the query,
but often with its appearance significantly changed due
to changes in viewpoint, or different lighting, etc. Ex-
amples of some queries and answers (and the rankings
according to the histogram and autocorrelogram inter-
section methods) are shown in Fig. 9.

5.3. Results

The histogram and autocorrelogram intersection meth-
ods for subregion querying are compared in Tables 5
and 6. For each of the evaluation measures proposed
above, the autocorrelogram performs better. The av-
erage rank of the answer images improves by over 30
positions when the autocorrelogram method is used,
and the average precision figure improves by an im-
pressive 56% (see Table 5). Table 6 shows the preci-
sion and recall values for the two methods at various
scopes. Once again, autocorrelograms perform con-
sistently better than histograms at all scopes. Doing
a query-by-query analysis, we find that autocorrelo-
grams do better in terms of the averager -measure on
23 out of the 30 queries. Similarly, autocorrelograms
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Figure 9. Sample queries and answer sets with ranks for various methods. (Lower ranks are better.)
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Table 5. Performance of Histogram and Autocorrelogram In-
tersection methods—I. (Smallerr -measure and larger precision
are better.)

Avg. r -measure Avg.r -measure
Method (macro) (micro) Avg. precision

Hist 56.3 61.3 0.386

Auto 22.5 29.1 0.602

Table 6. Performance of Histogram and
Autocorrelogram Intersection methods—II.
(Larger values are better.)

Method

Precision (%) Recall

Scope Hist Auto Hist Auto

5 0.273 0.493 0.311 0.541

10 0.223 0.347 0.460 0.718

25 0.133 0.165 0.681 0.850

yield better average precision on 26 out of 30 queries.
Thus, for a variety of performance metrics, autocor-
relograms yield better results. This suggests that the
autocorrelogram is a superior method for subregion
querying problem.

6. Other Applications of Correlograms

6.1. Localization Using Correlograms

The location problem is the following: given a query
image (also referred to as the target or model)Q and
an imageI such thatQ ⊆ I , find the “location” inI
whereQ is “present”. It is hard to define the notion of
location mathematically because the model is of some
size. We use the location of the center of the model for
convenience.

This problem arises in tasks such as real-timeobject
tracking or video searching, where it is necessary to
localize the position of an object in an image. Given an
algorithm that solves the location problem, tracking an
objectQ in an image frame sequenceEI = I 1, . . . , I t

is equivalent to finding the location ofQ in each of the
I i ’s. Efficiency is also required in this task because
huge amounts of data need to be processed.

To avoid exhaustive searching in the whole image
(template matching is of such kind), histogram back-
projection was proposed to handle the location problem
efficiently. In the following, we study the histogram

backprojection algorithm first. Then we show how the
correlogram can be used to improve the performance.

The location problem can be viewed as a special case
of the image retrieval problem in the following man-
ner. LetI |p denote the subimage inI of sizeQ located
at positionp. (The assumption about the size of the
subimage is without loss of generality.) The set of all
subimagesI |1, . . . , I ||I | present inI constitutes the
image database andQ is the query image. The solution
I |p to this retrieval problem givesp, the location ofQ
in I . The above interpretation is atemplate match-
ing process. One straightforward approach to the loca-
tion problem istemplate matching. Template matching
takes the queryQas a template and moves this template
over all possible locations in the imageI to find the
best match. This method is likely to yield good results,
but is computationally expensive. Attempts have been
made to make template matching more efficient
(Margalit and Rosenfeld, 1990; Vinod et al., 1996;
Brock-Gunn and Ellis, 1992). Thehistogram backpro-
jection method is one such approach to this problem.
This method has some serious drawbacks, however. In
the following, we explain the problem with the his-
togram backprojection scheme.

The basic idea behind histogram backprojection is
(1) to compute a “goodness value” for each pixel in
I (the goodness of each pixel is the likelihood that
this pixel is in the target); and (2) obtain the subimage
(and hence the location) whose pixels have the highest
goodness values.

Formally, the method can be described as follows.
Theratio histogramis defined for a colorc as

πc,h(I |Q) 1= min

{
Hc(Q)
Hc(I )

, 1

}
. (25)

The goodness of a pixelp ∈ I c is defined to be
πc,h(I |Q). The contribution of a subimageI |p is
given by

5p(I |Q) 1=
∑

q∈I |p
πI (q),h(I |Q). (26)

Then, the location of the model is given by

arg max
p∈I

5p(I |Q). (27)

The above method generally works well in practice,
and is insensitive to changes of image resolution or
histogram resolution (Swain and Ballard, 1991). Note
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Figure 10. A false match for histogram-backprojection.

that backprojecting the ratio-histogram gives thesame
goodness value to all pixels of the same color. It em-
phasizes colors that appear frequently in the query but
not too frequently in the image. This could result in
overemphasizing certain colors inQ. A color c is said
to bedominantinQ, if πc,h(I |Q) is maximum over all
colors. IfI has a subimageI |p (which may be totally
unrelated toQ) that has many pixels of colorc, then
this method tends to identifyQ with I |p, thus causing
an error in some cases.

Figure 10 shows a simple example illustrating this
problem. SupposeQ has 6 black pixels and 4 white
pixels, and imageI has 100 black pixels and 100 white
pixels. Thenπb,h = 0.06,πw,h = 0.04. The location
of the model according to the backprojection method
is in an entirely black patch, which is clearly wrong.

Another problem with histogram backprojection is
inherited from histograms which have no spatial infor-
mation. Pixels of the same color have the same good-
ness value irrespective of their position. Thus, false
matches occur easily when there are multiple similarly
colored objects, as shown in the examples of roses and
zebras in Fig. 11.

Performance Measure.Let an indicator variable
loc(Q, I ) be 1 if the location returned by a method
is within reasonable tolerance of the actual location of
Q in I . Then, given a series of queriesQ1, . . . ,Qq and
corresponding imagesI 1, . . . , I q, thesuccess ratioof
the method is given by∑q

i=1 loc(Qi , I i )

q
(28)

For tracking an objectQ in a sequence of frames
EI = I 1, . . . , I t , the success ratiois therefore∑t

i=1 loc(Q, I i )/t .

Organization. Section 6.1.1 introduces the correlo-
gram correction for the location problem. Section 6.1.2
contains the experiments and results.

6.1.1. Correlogram Correction. To alleviate the
problems with histogram backprojection, we incorpo-
rate local spatial correlation information by using a
correlogram correctionfactor in Eq. (26). The idea is
to integrate discriminating local characteristics while
avoiding local color template matching (Ennesser and
Medioni, 1995). We define alocal correlogram contri-
butionbased on the autocorrelogram of the subimage
I |p so that the goodness of a pixel depends on its
position in addition to its color.
α(k)c (Q) is considered to be the average contribution

of pixel of colorc in Q (for each distancek).
For each pixelp ∈ I , the local autocorrelogram

α(k)p is computed for each distancek ∈ D (D should
contain only small values so thatα(k)p captures local
information for eachp)

α(k)p =
0
(k)
I (p),I (p)({p})

8k
(29)

where{p} represents the pixelp along with its neigh-
bors considered as an image. Now, the correlogram
contribution ofp is defined as

πp,γ (I |Q) 1=
∣∣QI (p) − {p}∣∣γ,L1

(30)

In words, the contribution ofp is theL1-distance be-
tween the local autocorrelogram atp and the part of
the autocorrelogram forQ that corresponds to the color
of p.

Combining this contribution with Eq. (26), the final
goodness value of a subimageI |p is given by

5p(I |Q)1=
∑

q∈I |p

(
βπI (q),h(I |Q)

+(1− β)πq,γ (I |Q)
)
. (31)

where 0≤ β ≤ 1.
It turns out that the correlogram contribution by itself

is also sensitive and occasionally overemphasizes less
dominant colors. Supposec is a less dominant color
(say, the background color) that has a high autocorre-
lation. If I has a subimageI |p (which may be totally
irrelevant toQ) that has many pixels of colorcwith high
autocorrelations, then correlogram backprojection has
a tendency to identifyQ with I |p, thus potentially
causing an error. Since the problems with histograms
and correlograms are in some sense complementary
to each other, the best results are obtained when the
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Figure 11. Location problem: histogram output, query image, and correlogram output.

goodness of a pixel is given by a weighted linear com-
bination of the histogram and correlogram backpro-
jection contributions—adding the local correlogram
contribution to histogram backprojection remedies the
problem that histograms do not take into account any
local information; the histogram contribution ensures
that background colors are not overemphasized. We
call thiscorrelogram correction.

This can also be understood by drawing an anal-
ogy between this approach and the Taylor expansion.
The goodness value obtained from histogram backpro-

jection is like the average constant value in the Taylor
expansion; the local correlogram contribution is like
the first order term in the approximation. Therefore,
the best results are obtained when the goodness value
of a pixel is a weighted linear combination of the
histogram backprojection value and the correlogram
contribution.

6.1.2. Experiments and Results.We use the same
database to perform the location experiments. A model
image and an image that contains the model are chosen.
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Table 7. Results for location
problem (66 queries).

Method Hist Auto

Success ratio 0.78 0.96

Table 8. Results (success ratios)
for the tracking problem.

Method Hist Auto

Bus 0.93 0.99

Clapton 0.44 0.78

Skydive 0.96 0.96

For the location problem, 66 query images and 52 im-
ages that contain these models are chosen and tested.
Both the histogram backprojection and autocorrelo-
gram correction are tried.D = {1, 3, 5} andβ = 0.5
were the parameters.

For the tracking problem, we choose three videos bus
(133 frames), clapton (44 frames), skydive (85 frames).
We useD = {1, 3, 5} andβ = 0.8 for this problem.

For the location problem, Table 7 shows the results
for 66 queries, and Fig. 11 shows some examples.

For the tracking problem, Table 8 shows the result of
histogram backprojection and correlogram correction
for the three test videos. These results clearly show that
correlogram correction alleviates many of the problems
associated with simple histogram backprojection.

Figure 12 shows sample outputs.

6.2. Cut Detection Using Correlograms

The increasing amount of video data requires auto-
mated video analysis. The first step to the automated

Figure 12. Tracking problem: histogram output, query image, and correlogram output.

video content analysis is to segment a video into cam-
era shots (also known askey frame extraction). A cam-
era shotEI = I 1, . . . , I t is an unbroken sequence of
frames from one camera. IfEJ denotes the sequence of
cuts, then a cutJ j occurs when two consecutive frames
〈I i , I i+1〉 are from different shots.

Cut detection algorithms assume that consecutive
frames in a same shot are somewhat moresimilar than
frames in a different shot (other gradual transition, such
as fade and dissolve, are not studied here because cer-
tain mathematical models can be used to treat these
chromatic editing effects). Different cut detectors use
different features to compare the similarity between
two consecutive frames, such as pixel difference, sta-
tistical differences, histogram comparisons, edge dif-
ferences, etc. (Boresczky and Rowe, 1996). One way
to detect cuts using a featuref is by ranking〈I i , I i+1〉
according to|I i − I i+1| f . Let cuts(EI ) be the number
of actual cuts inEI and rank(Ji ) be the rank of the cut
Ji according to this ranking.

Histograms are the most common used image fea-
tures to detect cuts because they are efficient to com-
pute and insensitive to camera motions. Histograms,
however, are not robust to local changes in images that
false positives easily occurs in this case (see Fig. 13).
Since correlograms have been shown to be robust to
large appearance changes for image retrieval, we use
correlograms for cut detection.

Performance Measure. RecallandPrecisionare usu-
ally used to compare the performance of cut detection.
However, it is difficult to measure the performance
of different algorithms based on recall vs. precision
curves (Boresczky and Rowe, 1996). Therefore we look
at recall and precision values separately. In order to
avoid using “optimal” threshold values, we usepreci-
sion vs. scopeto measure false positives andrecall vs.
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Figure 13. Cut detection: False cuts detected by histogram but not by correlogram.

scopeto measure false negatives (misses). We choose
scope values to be the exact cut number cuts( EI ) and
2 cuts( EI ). We also use theexcessive rank value, which
is defined by

cuts( EI )∑
i=1

(rank(Ji )− i ) , (32)

and theaverage precision valuewhich is defined by

1

cuts( EI )
cuts( EI )∑

i=1

i

rank(Ji )
. (33)

Note that a smaller excessive rank value and a larger
average precision value indicate better result (perfect
performance would have values 0 and 1 respectively).

6.2.1. Experiments and Results.We use 64 colors for
histograms, and banded autocorrelograms which have
the same size as histograms. We use 5 video clips from
television, movies, and commercials. The clips are

Table 9. Recall vs. Scope for cut detection. (Smaller values are better.)

Method

Hist Banded-auto

Video Cuts(EI ) 2 Cuts(EI ) Ex. rank value Cuts(EI ) 2 Cuts(EI ) Ex. rank value

1 (9 Cuts) 0.78 1.0 14 1.0 1.0 0

2 (15 Cuts) 0.87 1.0 7 1.0 1.0 0

3 (16 Cuts) 0.75 1.0 25 0.81 1.0 9

4 (7 Cuts) 1.0 1.0 0 1.0 1.0 0

5 (10 Cuts) 0.9 0.9 >10 0.9 1.0 3

diverse enough to capture different kinds of common
scenarios that occur in practice. The results are shown
in Table 9 and Table 10.

The results of our experiments show that banded
autocorrelograms are more effective than histograms
while the two have the same amount of information.
It is certainly more efficient than dividing an image
into 16 subimages (Hampapur et al., 1994). Thus the
autocorrelogram is a promising tool for cut detection.

7. Conclusions

In this paper, we introduced the color correlogram—a
new image feature—for solving several problems that
arise in content-based image retrieval and video brows-
ing. The novelty in this feature is the characterization
of images in terms of the spatial correlation of colors
instead of merely the colorsper se. Experimental evi-
dence suggests that this information discriminates
between “different” images and identifies “similar”
images very well. We show that correlograms can be
computed, processed, and stored at almost no extra
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Table 10. Precision vs. Scope for cut detection. (Larger values are better.)

Method

Hist Banded-auto

Video Cuts(EI ) 2 Cuts(EI ) Agv. prec. value Cuts(EI ) 2 Cuts(EI ) Agv. prec. value

1 (9 Cuts) 0.78 0.5 0.90 1.0 0.5 1.0

2 (15 Cuts) 0.87 0.5 0.98 1.0 0.5 1.0

3 (16 Cuts) 0.75 0.5 0.93 0.81 0.5 0.97

4 (7 Cuts) 1.0 0.5 1.0 1.0 0.5 1.0

5 (10 Cuts) 0.8 0.45 <0.95 0.9 0.5 0.98

cost compared to competing methods, thereby justi-
fying using this instead of many other features to get
better image retrieval quality.

The most important application of correlograms
is to content-based image retrieval (CBIR) systems.
Viewed in this context, a correlogram is neither a
region-based nor a histogram-based method. Unlike
purely local properties, such as pixel position, and gra-
dient direction, or purely global properties, such as
color distribution, a correlogram takes into account the
local color spatial correlation as well as the global dis-
tribution of this spatial correlation. While any scheme
that is based on purely local properties is likely to be
sensitive to large appearance changes, correlograms are
more stable to tolerate these changes and while any
scheme that is based on purely global properties is sus-
ceptible to false positive matches, correlograms seem
to be scalable for CBIR. This is corroborated by our ex-
tensive experiments on large image collections, where
we demonstrate that correlograms are very promising
for CBIR.

One issue that still needs to be resolved satisfacto-
rily is the following: in general, illumination changes
are very hard to handle in color-based CBIR systems
(Gong, 1998; Syeda-Mahmood and Cheng, 1996; Funt
and Finlayson, 1995; Slater and Healey, 1995). Dur-
ing our experiments, we encountered this problem oc-
casionally. Though the correlogram method performs
better on a relative scale, its absolute performance is not
fully satisfactory. The question is, can correlograms,
with some additional embellishments, be made to ad-
dress this specific problem?

On a related note, it also remains to be seen if cor-
relograms, in conjunction with other features, can en-
hance retrieval performance. For instance, how will the
correlogram perform if shape information is used ad-

ditionally? This brings up the question of object-level
retrieval using correlograms. More work needs to be
done in this regard as to finding a better representation
for objects.

Further applications of color correlograms are
image subregion querying and localization, which are
indispensable features of any image management sys-
tem. Our notions of correlogram intersection and cor-
relogram correction seem to perform well in practice.
There is room for improvement of course, and these
need to be investigated in greater detail. We also apply
correlograms to the problem of detecting cuts in video
sequences. An interesting question that arises here is,
can this operation be done in the compressed domain
(Yeo and Liu, 1995)? This would cut down the compu-
tation time drastically and make real-time processing
feasible.

Another major challenge in this context is: what
distance metric for comparing images is close to the
human perception of similarity? Does a measure need
to be a metric (Jacobs et al., 1998)? We also plan to use
supervised learning to improve the results of image re-
trieval and the subregion querying task (we have some
initial results in (Huang et al., 1997)).

In general, the algorithms we propose for various
problems are not only very simple and inexpensive but
are especially easy to incorporate into a CBIR system if
the underlying indexing scheme is correlogram-based.
It pays off more in general if there is a uniform feature
vector that is universally applicable to providing var-
ious functionalities expected of a CBIR system (like
histograms advocated in (Swain and Ballard, 1991)). It
is unreasonable to expect any CBIR system to be ab-
solutely fool-proof; furthermore, it is needless to state
that the correlogram is not a panacea. The goal, how-
ever, is to build better CBIR systems. Based on various
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experiments, we feel that there is a compelling reason
to use correlograms as one of the basic building blocks
in such systems.
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Notes

1. In our database of 14,554 images, the right image is considered
the 353-rd most similar with respect to the left image by color
histogram.

2. The term “correlogram” is adapted from spatial data analysis:
“correlograms are graphs (or tables) that show how spatial auto-
correlation changes with distance.” (Upton and Fingleton, 1985)

3. Interestingly, histogram or CCV’s may not be able to distinguish
between these two images.

4. Equivalently, we could select some threshold image score.
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