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Abstract. We define a new image feature called ttwdor correlogramand use it for image indexing and com-
parison. This feature distills the spatial correlation of colors and when computed efficiently, turns out to be both
effective and inexpensive for content-based image retrieval. The correlogram is robust in tolerating large changes
in appearance and shape caused by changes in viewing position, camera zoom, etc. Experimental evidence shows
that this new feature outperforms not only the traditional color histogram method but also the recently proposed
histogram refinement methods for image indexing/retrieval. We also provide a technique to cut down the storage
requirement of the correlogram so that it is the same as that of histograms, with only negligible performance penalty
compared to the original correlogram.

We also suggest the use of color correlogram as a generic indexing tool to tackle various problems arising from
image retrieval and video browsing. We adapt the correlogram to handle the problems of image subregion querying,
object localization, object tracking, and cut detection. Experimental results again suggest that the color correlogram
is more effective than the histogram for these applications, with insignificant additional storage or processing
cost.

Keywords: image indexing, image features, content-based image retrieval, model-based object recognition,
spatial correlation

1. Introduction “similar” images from the image database. Content-
based video browsing tools also provide users with
In recent times, the availability of image and video re- similar capabilities—a user provides an interesting
sources on the World-Wide Web has increased tremen-frame as a query, and the system retrieves other similar
dously. This has created a demand for effective and frames from a video sequence.
flexible techniques for automatic image retrieval and  Besides the basic image retrieval and video process-
video browsing (Cox et al., 1996; Flickner et al., 1995; ing tasks, several related problems also need to be ad-
Forsyth et al., 1996; Hampapur et al., 1994; Ogle and dressed. While most IR systems retrieve images based
Stonebraker, 1995; Pass and Zabih, 1996; Pentlandon overall image comparison, users are typically in-
etal., 1996; Smith and Chang, 1996). Users need high- terested in finding objects (Fleck et al., 1996; Forsyth,
quality image retrieval (IR) systems in order to find 1996; Enser, 1993). In this case, the user specifies
useful images from the masses of digital image data an “interesting” subregion (usually an interesting ob-
available electronically. In a typical IR system, a user ject) of an image as a query. The system should then
poses a query by providing an existing image (or cre- retrieve images containing this subregion (according
ating one by drawing), and the system retrieves other to human perception) or object from a database. This
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task, calledmage subregion queryings made chal-  turebase, and images most similar to the query image
lenging by the wide variety of effects (such as dif- are returned to the user. An overview of such systems
ferent viewing positions, camera noise and variation, can be found in (1995).

object occlusion, etc.) that cause the same object For a retrieval system to be successful, the feature
to have drastically different appearances in different vector f (Z) for an imageZ should have the following

images. qualities: (i)|f(Z) — f(Z")| should be large if and
The system should also be able to solvelteali- only if Z andZ’ are not “similar”, (ii) f(-) should
zationproblem (also called theecognitionproblem), be fast to compute, and (iiij (Z) should be small in

i.e., itshould find the location of the objectin animage. size.
The lack of an effective and efficientimage segmenta-  Color histograms are commonly used as feature vec-
tion process for large, heterogeneous image databasesors for images (Swain and Ballard, 1991; Flickner
implies that objects have to be located in unseg- et al., 1995; Ogle and Stonebraker, 1995; Pentland
mented images, making the localization problem more etal., 1996). It has been shown that the color histogram
difficult. is a general and flexible tool that can be used for the
Similar demands arise in the context of content- various tasks outlined above.
basedvideo browsing. A primarytaskinvideo process-
ing is cut detection which segments a video into
different camera shots and helps to extract key frames 1.1. Our Results
for video parsing and querying. A flexible tool for
browsing video databases should also provide usersin this paper, we propose a new color feature for im-
with the capability to pose object-level queries that age indexing/retrieval called tloelor correlogramand
have semantic content, such as “track this person in show that it can be effectively used in the various
a sequence of video”. To handle such queries, the sys-image and video processing tasks described above.
tem has to find which frames contain the specified ob- The highlights of this feature are: (i) it includes the
ject or person, and has to locate the object in those spatial correlation of pairs of colors, (ii) it describes
frames. the global distribution of local spatial correlations of
The various tasks described above—image retrieval, colors, (iii) it is easy to compute, and (iv) the size
image subregion querying, object localization and cut of the feature is fairly small. Experimental evidence
detection—become especially challenging when the shows that this new feature (i) outperforms both the
image database is gigantic. For example, the collection traditional histogram method and the recently pro-
of images available on the Internet is huge and unorga- posed histogram refinement method for image index-
nized. The image data is arbitrary, unstructured, and ing/retrieval, and (ii) outperforms the histogram-based
unconstrained; and the processing has to be done inapproaches for the other video browsing tasks listed
real-time for retrieval purposes. For these reasons, tra-above.
ditional (and often slow) computer vision techniques  Informally, a correlogram is a table indexed by color
like object recognition and image segmentation may pairs, where th&th entry for(i, j) specifies the proba-
not be directly applicable to these tasks and new ap- bility of finding a pixel of colorj at a distanc& from a
proaches to these problems are required. pixel of colori. Such an image feature turns out to be
Consider first the basic problem of content-based robust in tolerating large changes in appearance of the
image retrieval. This problem has been widely studied same scene caused by changes in viewing positions,
and several IR systems have been built (Flickner, 1995; changes in the background scene, partial occlusions,
Ogle and Stonebraker, 1995; Pentland et al., 1996; Cox camera zoom that causes radical changes in shape, etc.
et al., 1996; Pass and Zabih, 1996). Most of these (see Fig. 1). We provide efficient algorithms to com-
IR systems adopt the following two-step approach to pute the correlogram.
search image databases (Stricker and Swain, 1994): We also investigate a different distance metric to
(i) (indexing for each image in a database, a feature compare feature vectors. The distance metric, used
vector capturing certain essential properties of the im- commonly to compare vectors, considers the abso-
age is computed and stored in a featurebase, and (ii)lute component-wise differences between vectors. The
(searching given a query image, its feature vector is relative distance metritve use calculates relative dif-
computed, compared to the feature vectors in the fea- ferences instead and in most cases performs better than
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the absolute metric (the improvement is significant es- backs. We discuss these disadvantages and introduce
pecially for histogram-based methods). the idea ofcorrelogram correction We show that it

We investigate the applicability of correlograms to is possible to locate objects in images more accurately
image retrieval as well as other tasks like image sub- by using local color spatial information in addition to
region querying, object localization, and cut detec- histogram backprojection. We then use correlograms
tion. We propose theorrelogram intersectiomethod to compare video frames and detect cuts by looking for
for the image subregion querying problem and show adjacent frames that are very different. Once again, we
that this approach yields significantly better results show that using the correlogram as the feature vector
than the histogram intersection method traditionally yields superior results compared to using histograms.
used in content-based image retrieval. The histogram-  Our preliminary results thus indicate that the correlo-
backprojection approach used for the localization prob- gram method is a more accurate and effective approach
lem in (Swain and Ballard, 1991) has serious draw- tothese tasks compared to the color histogram method.
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Figure 1 Sample queries and answers with ranks for various methods. (Lower ranks are better.)
(continued on next page
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Figure L (continued)

What is more, the computational cost of the correlo- querying. Applications of the correlogram to video

gram method is about the same as that of other simpler browsing problems are described in Section 6. Finally,

approaches, such as the histogram method. Section 7 concludes with some remarks and scope for
further work.

1.2. Organization

2. Related Work
Section 2 gives a brief summary of related work. In
Section 3, we define the color correlogram and show Color histograms are commonly used as image feature
how to compute it efficiently. Section 4 deals with vectors (Swain and Ballard, 1991; Flickner etal., 1995;
the content-based image retrieval problem and the useOgle and Stonebraker, 1995; Pentland et al., 1996) and
of the correlogram for this problem. Section 5 dis- have proved to be a useful and efficient general tool
cusses the use of the correlogram for image subregionfor various applications, such as content-based image
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Figure 2 Two “similar” images with different histograms.

retrieval (Flickner et al., 1995; Ogle and Stonebraker, gram method (Hsu etal., 1995; Smith and Chang, 1996;
1995; Pentland et al., 1996), objectindexing and local- Stricker and Dimai, 1996; Rickman and Stonham,
ization (Swain and Ballard, 1991; Matas et al., 1995), 1996; Yihong et al., 1994; Pass et al., 1996; Pass and
and cut detection for video segmentation (Boresczky Zabih, 1996). One common approach is to divide im-
and Rowe, 1996). A color histogram describes the ages into subregions and impose positional constraints

global color distribution in an image. Itis easy to com-
pute and is insensitive to small changes in viewing po-
sitions and partial occlusion. As a feature vector for
image retrieval, it is susceptible to false positives, how-
ever, since it does not include any spatial information.
This problem is especially acute for large databases,

on the image comparison. Another approach is to aug-
ment the histogram with some spatial information.
Hsuetal. (1995) select two representative colors sig-
nifying the “background” and the principal “object” in
animage. The maximum entropy algorithmis then used
to partition an image into rectangular regions. Only

where false positives are more likely to occur. More- one selected color dominates a region. The similarity
over, the histogram is not robust to large appearance between two images is the degree of overlap between
changes. For instance, the pair of images shown in regions of the same color. The method is tested on a
Fig. 2 (photographs of the same scene taken from dif- small image database. Unfortunately, this method uses

ferent viewpoints) are likely to have quite different
histograms.
Color histograms are also used for image subregion

coarse color segmentation and is susceptible to false
positives.
Smith and Chang (1996) also partition an image,

querying and object localization (Swain and Ballard, but select all colors that are “sufficiently” present in
1991). These two problems are closely related to ob- a region. The colors for a region are represented by
ject recognition, which has been studied for along time a binary color set that is computed using histogram
in computer vision (Roberts, 1965). Since conventional back-projection (Swain and Ballard, 1991). The binary
object recognition techniques cannot recognize general color sets and their location information constitute the
objects in general contexts (as in the natural imagery feature. The absolute spatial position allows the system
and real videos), some work has been done for find- to deal with “region” queries.
ing objects from image databases (Fleck et al., 1996; Stricker and Dimai (1996) divide an image into five
Forsyth, 1996). These techniques, however, are trainedfixed overlapping regions and extract the first three
for some specific tasks, such as finding naked peo- color moments of each region to form a feature vec-
ple, grouping trees, etc. Color histograms are also tor for the image. The storage requirements for this
widely used in video processing. Though there are method are low. The use of overlapping regions makes
several sophisticated techniques for video cut detec- the feature vectors relatively insensitive to small rota-
tion, Boreczky and Rowe (1996) report that the simple tions or translations.
color histogram yields consistently good results com-  Pass et al. (1996a, 1996b) partition histogram bins
pared to five different techniques. by the spatial coherence of pixels. A pixel is coherent
We now briefly discuss some other related work in if it is a part of some “sizable” similar-colored region,
the areas of content-based image retrieval, image sub-and incoherent otherwise. A color coherence vector
region querying, object localization, and cut detection. (CCV) represents this classification for each color in
the image. CCVs are fast to compute and perform
much better than histograms. A detailed comparisons
of CCV'’s with the other methods mentioned above is
given in (Pass and Zabih, 1996).
Several recently proposed schemes incorporate spatial The notion of CCV was further extended in (Pass
information about colors to improve upon the histo- and Zabih, 1999) where additional feature(s) are used

2.1. Content-Based Image Retrieval
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to further refine the CCV-refined histogram. One such characteristics of the whole database. For instance,
extension uses the center of the image (the centermostt yields good results on the Columbia object database
75% of the pixels are defined as the “center”) as the inwhich allimages have a uniform known background.
additional feature. The enhanced CCV is called CCV If there is a large variation in the images in a database,
with successive refinemef€CV(s)) and performs  however, asmall set of principal componentsis unlikely
better than CCV's. to do well on the image subregion querying task. In ad-
Since the image partitioning approach depends on dition, the learning process requires homogeneous data
pixel position, it is unlikely to tolerate large image and deals poorly with outliers. Therefore, this approach
appearance changes. The same problem occurs in theseems suitable only for domain-specific applications,
histogram refinement method, which depends on local but not for image subregion querying from a large het-
properties to further refine color buckets in histograms. erogeneous image database such as the one used in
The correlogram method, however, takes into account (Pass and Zabih, 1996; Huang et al., 1997).
the local spatial correlation between colors as well as  Since the color information (e.g. histogram) is very
the global distribution of this spatial correlation and easy to extract from an image, it has been successfully
this makes the correlogram robust to large appearanceused for object indexing, detection, and localization
changes (see Fig. 1). Moreover, this information is not (Swain and Ballard, 1991; Flickner et al., 1995; Ogle
a local pixel property that histogram refinement ap- and Stonebraker, 1995; Matas et al., 1995; Slater and

proaches can capture. Healey, 1995; Brock-Gunn and Ellis, 1992; Syeda-
Mahmood, 1997; Forsyth, 1996). We briefly review
2.2. Other Image/Video Problems some of these approaches below.

Swain and Ballard (1991) proposéstogram inter-

The image subregion querying problem is closely re- sectiorfor objectidentification antistogram backpro-
lated to the object recognition problem, which has jectionfor object localization. The technique is com-
been studied for a long time by the computer vision putationally easy, does not require image segmentation
community (Roberts, 1965). Some of the early work or even foreground/background separation, and is in-
in object recognition and detection was pioneered by sensitive to small changes in viewing positions, partial
Marr (1978), who suggest that geometric cues such occlusion, and object deformation. Histogram back-
as edge, surface and depth information be identified projection is a very efficient process for locating an
before object recognition is attempted. Most of such object in an image. It has been shown that this algo-
object recognition systems compare the geometric fea- rithm is not only able to locate an object but also to
tures of the model with those of an image using vari- track a moving object. The advantages and disadvan-
ous forms of search, some of which are computation- tages inherent to histograms in general are discussed
ally quite intensive (Huttenlocher and Ullman, 1986; in detail in Section 5.
Grimson and Lozano€?éz, 1987). One disadvantage of color histograms is that they

Such geometric information is hard to extract from are sensitive toillumination changes. Slater and Healey
animage, however, because geometric and photometric(1995) propose an algorithm that computes invariants
properties are relatively uncorrelated (Rao and Ballard, of local color distribution and uses these invariants for
1995), and the central tasks involved in this approach— 3-D object recognition. lllumination correction and
edge detection and region segmentation—are difficult spatial structure comparison are then used to verify the
for unconstrained data in the context of image retrieval potential matches.
and video browsing. Matas et al. (1995) propose the color adjacency

An alternative approach to model-based recognition graph (CAG) as a representation for multiple-colored
is appearance matchingrirst, a database of object objects. Each node of a CAG represents a single color
images under different view positions and lighting component of the image. Edges of the CAG include in-
conditions is constructed. Theprincipal component  formation aboutadjacency of color components. CAGs
analysisis used to analyze only the photometric prop- improve over histograms by incorporating coarse color
erties and ignore geometric properties (Murase and segmentation into histograms. The set of visible colors
Nayar, 1995; Huttenlocher et al., 1996; Rao and and their adjacency relationship remain stable under
Ballard, 1995). This model-based method is effective changes of viewpoint and non-rigid transformations.
only when the principal components capture the The recognition and localization problems are solved
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by subgraph matching. Their approach yields excellent pixels py = (X1, Y1), P2 = (X2, ¥2), we define|p; —
results, but the computational cost of subgraph match- py| 2 max{|X; — Xz|, Y1 — Y2|}. We denote the set
ing is fairly high. {1,2,...,n} by[n].
Forsyth et al. (1996) offer different object models
in order to achieve object recognition under general 3.2. Definitions
contexts. Their focus is on classification rather than
identification. The central processis based on grouping Thehistogram hof 7 is defined fori € [m] by
(i.e., segmentation) and learning. They fuse different
visual cues such as color and texture for segmentation; he (Z) 2 n?. Pr [peZg] (1)
texture and geometric properties for trees; color, texture pel
and specialized geometric properties for human bodies.
Cut detection, as a first step to video segmentation
and video querying, has been given much attention
(Boresczky and Rowe, 1996). The simple histogram
approach gives reasonably good results on this prob-
lem. Histograms, however, are not robust to local
changes in images. Dividing an image into several
subregions may not overcome the problem (Hampapur ® A
etal., 1994) either. Voo @ = P [pzeZellpi—pal=k]. (2
p2el

For any pixel in the image,, (Z)/n? gives the prob-
ability that the color of the pixel is;. The histogram
can be computed i®(n?) time, which is linear in the
image size.

Let a distancal < [n] be fixed a priori. Then, the
correlogramof Z is defined foii, j € [m], k € [d] as

3. The Correlogram Given any pixel of color; in the image, q(k)c, gives

the probability that a pixel at distandeaway from
the given pixel is of colorc;. Note that the size of
the correlogram i) (m?d). Theautocorrelogramof

7 captures spatial correlation between identical colors
only and is defined by

A color correlogram (henceforth correlogram) ex-
presses how the spatial correlation of color changes
with distance. A color histogram (henceforth his-
togram) captures only the color distributionin animage
and does not include any spatial correlation informa-
tion. Thus, the correlogram is one kind of spatial ex-

®7y A K
tension of the histograrh. ac () =vee ). (3)

This information is a subset of the correlogram and

3.1. Notation requires onlyO(md) space.
While choosingl to define the correlogram, we need

LetZ be ann x nimage. (For simplicity, we assume to address the following. A largd would result in
thatthe image is square.) The colorgiare quantized  expensive computation and large storage requirements.
into m colorscy, ..., cm. (In practicemis deemedto A smalld might compromise the quality of the feature.
be a constant and hence we drop it from our running We consider this issue in Section 4.1.
time analysis.)

For a pixelp = (x,y) € Z, let Z(p) denote its Example 1. Consider the simple case whem= 2
color. Thus, the notatiop € Z. is synonymous with andn = 8. Two sample images are shown in Fig. 3.
p € Z,Z(p) = c. For convenience, we use the,- The autocorrelograms corresponding to these two im-
norm to measure the distance between pixels, i.e., for ages are shownin Fig. 4. The change of autocorrelation

Figure 3 Sample images: image 1, image 2.
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Figure 4 Autocorrelograms for images in Fig. 3.

of the foreground color with distance is perceptibly dif-
ferent for these images.

3.3. Distance Metrics

The L; and L, norms are commonly used distance
metrics when comparing two feature vectors. In prac-
tice, theL 1 norm performs better than the norm be-

he (Z7) = 100, andnhg (Z,) = 150. Even though the
absolute difference in the pixel count for color bucket
i is 50 in both cases, clearly the difference is more
significant for the second pair of images.

Thus, the differenceh. (Z) — he (Z')| in Eq. (4)
should be given more importancelif; (Z) + hg, (Z')|
is small and vice versa. We could therefore consider
replacing the expressidhg (Z) — hg (Z7)| in Eq. (4)
by

lhe (Z) — he, (7)]
1+hg(Z) +he (Z7)

(6)

(the 1 in the denominator is added to prevent division
by zero).

This intuition has theoretical justification in
(Haussler, 1992) which suggests that it is sometimes
better to use a “relative” measure of distarmie For
w>0,r,s>0,d, is defined by

Ir —sl

d,r,s) = ———.
u(f.S) w—+r+s

(7)

It is straightforward to verify that (i, is a metric, (ii)

cause the former is more robust to outliers (Rousseeuwfor r s > 0, d,(r.s) € [0,1), and (iii) for 0 < r <

and Leroy, 1987). Hafner et al. (1995) suggest using
a more sophisticated quadratic form of distance
metric, which tries to capture the perceptual similar-
ity between any two colors. To avoid intensive com-
putation of quadratic functions, they propose to use
low-dimensional color features as filters before using
the quadratic form for the distance metric.
We will use thelL ; norm for comparing histograms

and correlograms because it is simple and robust. The

following formulae are used to compute the distance
between image® andZ’:

, A
T —T'hi, =) [he (@) —he (X)) 4
ie[m]
/ A ’
T-T'hu= ), @ -y a) 6
i,jem
ke[d]

From these equations, it is clear that the contribu-
tions of different colors to the dissimilarity are equally
weighted. Intuitively, however, this contribution
should be weighted to take into account some addi-
tional factors.

Example 2. Consider two pairs of imaged 1, Z>)
and(Z7,7%). Lethg(Z1) = 1000,hg(Z2) = 1050,

s<t,dy,(r,s) <d,(r t),d,(s,t) <d,(r,t).

d,, can be applied to feature vectors also. We have
setu = 1. So thed; distance metric for histograms
and correlograms is:

|he (Z) — he (Z")]

A

IZ —T'|hag,= 8)

! i;[m:] 1+hg(Z)+hg(Z)
k Kk ’

|z'_z'/| dé Z ’yc(.,t):J(Z)_VC(l%J(I” 9)

Yy,
N e[[dr?] 1+ Vékg:, @) + Vq(lfc):; @)
€

3.4. An Algorithm

In this section, we look at an efficient algorithm to
compute the correlogram. Our algorithm is amenable
to easy parallelization. Thus, the computation of the
correlogram could be enormously speeded up.

First, to compute the correlogram, it suffices to com-
pute the following count (similar to theooccurrence
matrix defined in (Haralick, 1979) for texture analysis
of gray images)

r¥, (@) = [{preZq. p2eZe | Ip1— pol =k}
(10)
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r

¥, @)
8kh, (Z)

(k)

Voo, L) = (11)

The denominator is the total number of pixels at dis-
tancek from any pixel of colorc;. (The factor & is
due to the properties df ,-norm.) The naive algo-
rithm would be to consider eagh € Z of the colorg

and for eaclk € [d], count allp, € Z of colorc; with

| p1— p2| = k. Unfortunately, this take® (n?d?) time.

To obviate this expensive computation, we define the
quantities

WS (X +iy) €T | 0<i <k
WS y+)eZc|0<] <k (13)

(12)

which count the number of pixels of a given color
within a given distance from a fixed pixel in the positive
horizontal/vertical directions.
Our algorithm works by first computlngp ’ and
We now give an algorithm with a running time
of O(nzd) based on dynamic programming.
The following equation is easy to check

Koy 0 =25 (k=D + 25l , 0 (14)
with the initial condition
AS"0) =1 if peZcandO otherwise. (15)

Now, A%h(k) is computed for allp € Z and for each
k =1,...,d using Eq. (14). The correctness of this
algorithm is obvious. Since we dd(n?) work for each
k, the total time taken i©(n?d).

In a similar manner};* can also be computed effi-
ciently. Now, ignoring boundaries, we have

1—~(k)C @)
Cj,v
= > (’\&fk,yfml)(z" 2) + 25 g1 (200
(X, y)GIci

+ )‘(x K, y+k)(2k) + )‘(x+k y— k+1)(2k o 2))

This computation takes ju€(n?) time.

The hidden constants in the overall running time of
O(n?d) are very small and hence this algorithm is ex-
tremely efficient in practice for smadl.
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3.5. Some Extensions

In this section, we will look at some extensions to color
correlograms. The general theme behind the exten-
sions are: (1) improve the storage efficiency of the
correlogram while not compromising its image dis-
crimination capability, and (2) use additional infor-
mation (such as intensity edges) to further refine the
correlogram, boosting its image retrieval performance.
These extensions can not only be used for the image
retrieval problem, but also in other applications like
cut-detection (see Section 6.2).

3.5.1. Banded Correlogram. In Section 3.4, we saw
that the correlogram (resp. autocorrelogram) takés
(resp.md) space. Though we will see that small values
of d actually suffices, it will be more advantageous if
the storage requirements were trimmed further. This
leads to the definition obanded correlogranfor a
givenb. (For simplicity, assumd dividesd.) For
1<k<hb,

(k+Db-1

Z Yk D).

In a similar manner, the banded autocorrelogram
a(Z) can also be defined. The space requirements
for the banded correlogram (resp. banded autocorrelo-
gram) ism?d/b (resp.md/b). (Note that whet = d,
7 measures thdensityof a colorc; near the coloc;,
thus suggesting the local structure of colors.) The dis-
tance metric defined in Eq. (5) is easily extended to this
case.

Note that banded correlograms are seemingly more
susceptible to false matches since

> (K)

yd, (1) = (16)

T -2, <12 =T, 1, 17)
which follows by the triangle inequality. Although the
banded correlograms have less detailed information as
correlograms, our results show that the approximation
of y by y has only negligible effect on the quality of
the image retrieval problem and other applications.

3.5.2. Edge Correlogram. The idea of exploiting spa-

tial correlation between pairs of colors can also be ex-
tended to other image features such as edges. In the
following, we augmentthe color correlogram with edge
information. This new feature, called thdge correlo-
gram, is likely to have increased discriminative power.
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Supposef :Z — {0, 1} is the edge information of
imageZ, i.e.,, E(p) = 1 if pis on an edge and O
otherwise. (Such information can be obtained using
various edge-detection algorithms.) Now, the ques-
tion is if this useful information can be combined with
(auto)correlograms so as to improve the retrieval qual-
ity even further. We outline one scheme to do this. In
this scheme, each of the color bins is refined to get
7’ with 2m bins.

¢, ifZ(p)=candf(p)=1

. (18)
if Z(p) =cand&(p) =0

I’(p)={

Cc_

Itis easy to see that the definition of both correlograms
and autocorrelograms directly extend to this case. The
storage requirements becomevl (resp. 2nd) for
correlograms (resp. autocorrelograms). Note however
that the number op such tha€(p) = 1is usually very
small. Since we mostly deal with autocorrelograms,
the statistical importance ef* becomes insignificant,
thus rendering the whole operation meaningless. A so-
lution to this problem is to define adge autocorrel-
ogramin which cross correlations between andc_

of the precision at recall equal to 1. The average
pi-measure is th@;-measure divided by.

Images ranked at the top contribute more to fhe
measure. Note that a method is good if it has a low
r-measure and a higp;-measure.

3. Recallvs. Scope Let Q be a query and leQ)],
..., 9@, be multiple “answers” to the quengXis
called acategory query. Now, therecall r is de-
fined for ascope s> 0 as|{Q; | rank(Q;) < s}|/a.
Since it is very hard to identify all relevant images
in a huge database like ours, using this measure
is much simpler than using the traditiomatall vs.
precision Note however that this measure still eval-
uates the effectiveness of the retrieval (Hsu et al.,
1995; Smith and Chang, 1996).

Organization. Section 4.1 lists some efficiency con-
siderations we take into account while using correl-
ograms for image retrieval. Section 4.2 describes our
experimental setup and Section 4.3 provides the results
of the experiments.

are also included. The size an edge autocorrelogram is

thus only 4nd. We can further trim the storage by the
banding technique in Section 3.5.1.

4. Image Retrieval Using Correlograms

The image retrieval problem is the following: I8tbe
an image database agibe the query image. Obtain a
permutation of the images i based orQ, i.e., assign
rankZ) e [|S]] for eachZ € S, using some notion
of similarity to Q. This problem is usually solved by
sorting the image$ € S accordingtd f (Z) — f(Q)|,
where f (-) is a function computing feature vectors of
images and - |¢ is some distance metric defined on
feature vectors.

Performance Measure.Let {Q4, ..., Qq} be the set
of query images. For a ques;, letZ; be the unique
correct answer. The following are two obvious perfor-
mance measures:

1. r-measureof a method which sums up over all

queries, the rank of the correct answer, i.e.,

Z?:l rank(Z;j). We also use the averageneasure

which is ther-measure divided by the number of

queriesq.

. pi-measure of a method which is given by
Ziq:l 1/rankZ;), i.e., the sum (over all queries)

4.1. Efficiency Considerations

Asimage databases grow in size, retrieval systems need
to address efficiency issues in addition to the issue
of retrieval effectiveness. We investigate several gen-
eral methods to improve the efficiency of indexing and
searching, without compromising effectiveness.

Parallelization. The construction of a featurebase for
an image database is readily parallelizable. We can
divide the database into several parts, construct fea-
turebases for these parts simultaneously on different
processors, and finally combine them into a single fea-
turebase for the entire database.

Partial Correlograms. In order to reduce space and
time requirements, we choose a small valud.oT his
does not impair the quality of correlograms or autocor-
relograms very much because in an image, local corre-
lations between colors are more significant than global
correlations. Sometimes, it is also preferable to work
with distance setsyhere a distance s@& is a subset
of [d]. We can thus cut down storage requirements,
while still using a largel. Note that our algorithm can
be modified to handle the case whenc [d].

Though in theory the size of a correlogram is
O(m?d) (and the size of an autocorrelogram is
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O(md)), we observe that the feature vector is not al- situations like different views of the same scene, large
ways dense. This sparsity could be exploited to cut changes in appearance, small lighting changes, spatial
down storage and speed up computations. translations, etc. We also run 4 category queries, each
with a > 1 answers- Query 1 & = 22 owl images),
Filtering. Thereistypically atradeoffbetweentheef- Query 2 & = 17 fox images), Query 3a(= 6 movie
ficiency and effectiveness of search algorithms: more scenes), and Query 4 & 6 moving car images). The
sophisticated methods which are computationally more correct answers to the unique answer queries are ob-
expensive tend to yield better retrieval results. Good tained by an exhaustive manual search of the whole
results can be obtained without sacrificing too much image database.
in terms of efficiency by adopting a two-pass approach ~ We use the_; norm for comparing feature vectors.
(Hafner et al., 1995). In the first pass, we retrieve a The feature vectors we use are histograms (hist), color
set of N images in response to a query image by us- coherent vectors with successive refinement (ccv(s))
ing an inexpensive (and possibly crude) search algo- (Pass and Zabih, 1996), autocorrelograms (auto),
rithm. Even though the ranking of these images could banded autocorrelograms (b-auto), edge autocorrelo-
be unsatisfactory, we just need to guarantee that use-grams (e-auto), and banded edge autocorrelograms (be-
ful images are contained in this set. We can then use aauto). Examples of some queries and answers (and the
more sophisticated matching technique to compare therankings according to various methods) are shown in
guery image to thes&l images only (instead of the Fig. 1. The query response time for autocorrelograms
entire database), and the best images are likely to beis under 2 sec on a Sparc-20 workstation (just by ex-
highly ranked in the resulting ranked list. It is impor- haustive linear search).
tant to choose an appropriatein this approach—the
initially retrieved set should be good enough to contain
the useful images and should be small enough so that4-3- Results

the total retrieval time is reduced. ) )
4.3.1. Unique Answer Queries. Observe that all the

correlogram-related methods are on par in terms of
4.2. Experimental Setup performance and significantly better than histogram

and CCV(s). On average, inthe autocorrelogram-based
The image database consists of 14,554 color JPEG im-method, the correct answer shows up second while
ages of size 23% 168. This includes 11,667 images for histograms and CCV-based methods, the correct
used in Chabot (Ogle and Stonebraker, 1995), 1,440 answer shows up at about 80th and 40th places. The
images used in QBIC (Flickner et al., 1995), and 1,005 banded autocorrelograms perform only slightly worse
images from Corel. Italsoincludes a few groups ofim- than the original ones. With the same data size as his-
ages in PhotoCD format and a number of MPEG video tograms, the banded autocorrelograms retrieve the cor-
frames from the web (Pass and Zabih, 1996). Our het- rect answers more than 79 ranks lower than histograms.
erogeneous image database is thus very realistic andSince the autocorrelograms achieve strong retrieval re-
helps us evaluate various methods. It consists of im- sults, the edge correlograms do not generate too much
ages of animals, humans, landscapes, various objectdmprovement.
like tanks, flags, etc. Also note that the banded edge autocorrelograms

We consider the RGB colorspace with quantiza- have higherp;-measure than the edge autocorrelo-
tion into 64 colors. To improve performance, we first grams. This is because most of the ranks go higher
smooth the images by a small amount. We use the dis-while only a few go lower. Though themeasure be-
tance seD = {1, 3,5, 7} (so,d = 4) for computing comes worse, the;-measure becomes better. It is re-
the autocorrelograms. We ube= 4 for the banded  markable that banded autocorrelogram has the same
autocorrelogram. This results in a feature vector that amount of information as the histogram, but seems lot
is as small as a histogram. more effective than the latter.

Our query set consists of 77 queries. Each of these For 73 out of 77 queries, autocorrelograms per-
queries was manually picked and checked to have aform as well as or better than histograms. In the cases
unique answer Therefore they serve as ground truth where autocorrelograms perform better than color his-
for us to compare different methods in a fair manner. tograms, the average improvement in rank is 104 posi-
In addition, the queries are chosen to represent varioustions. Inthe four cases where color histograms perform
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Table 1 Comparison of various image retrieval methods.

Method Hist CCV(s) Auto b-auto e-auto be-auto
r-Measure 6301 3272 172 196 144 157
Avg. r-measure 81.8 42.5 2.2 25 1.9 2.0
p1-Measure 21.25 31.60 58.06 55.77 60.26 60.88

Avg. pi-measure 0.28 0.41 0.75 0.72 0.78 0.79

better, the average improvement is just two positions. Table 2 Scopevs. recall results
Autocorrelograms, however, still rank the correct an- Lor C?‘“ZQ(’?’ %“‘it”es- r(fLafgef num-
swers within top six in these cases. ers indicate better performance.)

Recall

Statistical Significance AnalysisWe adopt the ap-

’ . Scope Hist CCV(s) Auto
proach used in (Pass and Zabih, 1996) to analyze the

statistical significance of the improvements. We for- Query 1

mulate the null hypothesisly which states that the 10 14 .19 24
autocorrelogram method is as likely to cause a nega- 30 19 19 .38
tive change in rank as a non-negative one. Uridgr 50 19 24 57

the expected number of negative changed is- 38.5,

. .. Query 2
with a standard deviation = +/77/2 ~ 4.39. The
) . L 10 13 19 .38
actual number of negative changes is 4, which is less 30 a1 a8 63
thanM — 70. We can rejecHy at more than 99% ) ) :
standard significance level. 50 33878
For 67 out of 77 queries, autocorrelograms perform Query 3
as well as or better than CCV(s). In the cases where 10 .20 .20 1.0
autocorrelograms perform better than CCV(s), the av- 30 .40 .20 1.0
erage improvement in rank is 66 positions. In the ten 50 40 60 1.0
cases where CCV(s) perform better, the average im- Query 4
provement is two positions. Autocorrelograms, how-
. s . 10 .20 .20 .60
ever, still rank the correct answers within the top 12 in 20 20 20 80
these cases. Again, statistical analysis suggets that : ’ '
50 .20 .20 .80

autocorrelograms are better than CCV(s).

From a usability point of view, we make the follow-
ing observation. Given a query, the user is guaranteed
to locate the correct answer by just checking the top on gifferent features (64 colors). Usirdy distance
two search results (on average) in the case of autocor-measure is clearly superior. The improvement is spe-
relogram. On the other hand, the user needs to checkgig|ly noticeable for histograms and CCV(s) (for in-
at least the top 80 search results (on average) to locatesiance, for the owl images in Fig. 5).
the correct answer in the case of histogram (or top 40 A closer examination of the results shows, however,
search results for the CCV(s)). In practice, this im- that there are instances where thadistance measure
plies that the former is a more “usable” image retrieval performs poorly compared to the distance measure

scheme than the latter two. on histograms and CCV(s). An example is shown in
Fig. 6.
4.3.2. Recall Comparison. Table 2 shows the perfor- It seems that the failure of ttlh measure is related

mance of three features on our four category queries. to the large change of overall image brightness (other-
The L, distance metric is used. Once again, autocor- wise, the two images are almost identical). We need
relograms perform the best. to examine such scenarios in greater detail. Autocor-
relograms, however, are not affecteddyyin this case.
4.3.3. Relative Distance Metric. Table 3 compares  Nor doesd; improve the performance of autocorrelo-
the results obtained usiny andL ; distance measures gram much. In other words, autocorrelograms seem



Spatial Color Indexing and Applications 257

Table 3 Comparison of.; andd;.

L1 distance measure d; distance measure
Method Hist  CCV(s) Auto Hist CCV(s) Auto
r-Measure 6301 3272 172 926 326 164
Avg. r-measure 82 42 2 12 4 2
p1-Measure 21.25 31.60 58.03 47.94 52.09 59.92

Avg. pi-measure 0.28 0.41 0.75 0.62 0.68 0.78

hist: 540, cev(s): 165 auto:4. (Ly)
hist: 5. cev(s): 4. auto:d. (dy)

Figure 5 A case wher@; is much better thah ;.

hist: 1. cev(s): L. auto: 1. (L)
hist: 213, cev(s): 40. auto: 1. (dh)

Figure 6. A case wher@; is worse tharl ;.

indifferent to thed; distance measure. This needs to considerthe correlograms of only a smallfiltered subset
be formally investigated. of the featurebase.

4.3.4.Filtering. Table 4 shows the results of applying 4.3.5. Discussion. The results show that the autocor-
a histogram filter before using the autocorrelogram (we relogram tolerates large changes in appearance of the
use 64-color histograms and autocorrelograms). same scene caused by changes in viewing positions,
As we see, the quality of retrieval even improves changes in the background scene, partial occlusions,
somewhat (because false positives are eliminated). Ascamera zoom that causes radical changes in shape, etc.
anticipated, the query response time is less since we Since we chose small valugk 3, 5, 7} for the distance
setD, the autocorrelogram distills the global distribu-
tion of local color spatial correlations. In the case of
camera zoom (for example, the third pair of images on
the left column of Fig. 1), though there are big changes
in object shapes, the local color spatial correlations as
I -Measure 172 166 well as the global distribution of these correlation do
not change that much. We illustrate this by looking at
how the autocorrelation of yellow color changes with

Table 4 Performance of autbf)
with hist(dy) filter.

Method Unfiltered  Filtered

p1-Measure 58.02 58.60
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Figure 7.

yellow color aulocortelaiion in 1hree images

probabiliiy value

L n n
25 3 35 +
distance

s L
1 1.5 2

Figure 8 The change of autocorrelation of yellow color with
distance.

distance in the following three images (Fig. 7). Notice
that the size of yellow circular and rectangular objects
in the query image and the image ranked one are differ-
ent. Despite this, the correlation of yellow with yellow
for the local distance of the image ranked one is closer
to that of the query image than the image ranked, say,
two (Fig. 8).

5. Image Subregion Querying

Using Correlograms

The image subregion querying problem is the follow-
ing: given as input a subregion que®y of an image

7 and an image sef, retrieve fromS those images

@' in which the queryQ appears according to human
perception (denote@ < Q). The set of images might
consist of a database of stillimages, or videos, or some
combination of both. The problem is made even more
difficultthan image retrieval by a wide variety of effects

that cause the same object to appear different (such as3.

changing viewpoint, camera noise and occlusion). The
image subregion querying problem arises in image re-
trieval and in video browsing. For example, a user
mightwish to find other pictures in which a given object

The query image, the image ranked one, and the image ranked two.

appears, or other scenes in a video with a given appear-
ance of a person.

Performance Measure.We use the following mea-
sures to evaluate the performance of various competing
image subregion querying algorithms. &, ..., Qq

are the query images, and for theth query Q;,
VAL ,Z3) are the only images that “contair®;,

(i.e., Q. “appears m"I“),j =1,...,4q,) yet due

to the presence of false matches the image subregion
guerying algorithm may return this set of “answers”
with various ranks.

1. Average r-measurgjives the mean rank of the
answer-images averaged over all queries. Itis given
by either of the following expressions:

Zrank(I ©)

(iirank(fi”)) / >a (@)

o

1
a (19)

i=1

The macroaveraged 1measure given by Eq. (19)
treats all queries with equal importance, whereas
the microaveraged frmeasure defined by Eq. (20)
gives greater weightage to queries that have a larger
number of answers. In both cases a lower value of
ther-measure indicates better performance.
Average precisionfor a query Q; is given by
(/&) Y5, j/rankZ{), whereZ{’, ..., () are

the answers for quer®; in the order that they were
retrieved. This quantity gives the average of the pre-
cision values over all recall points (withQLbeing
perfect performance).

Recall/Precision vs. Scopd-or a queryQ; and a
scope s-0, the recall r is defined as|{I(') |
rank(Ij')) <s}|/a&, and theprecision pis deflned as
|{Ij') | rank(Ij')) <s}|/s. These measures are sim-
pler than the traditional average precision measure

2.
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but still evaluate the effectiveness of the subregion Again we measure the presence®fn 7 by the dis-

query retrieval. For both measures, higher values tancgQ — QNZJ, ., sayifL, distance measure were

indicate better performance. chosen. IfQ C 7, then the latter “should have at least

as many counts of correlating color pairs” as the former.

Organization. Section 5.1 explains our approach to Thus the count$’ andH for QN7 are again those of
the problem. Section 5.2 describes the experimental Q, and the correlogram a@ N Z becomes exactly the
setup and Section 5.3 presents the results. correlogram ofQ, giving|Q — QN Z|,, =0.

We see that the distance betwe2andQ N7 vani-
shes wher@ is actually a subset df; this affirms the
fact that both correlograms and histograms are global
i ) ) ) features. Such a&table property is not satisfied by
The image subregion querying problem is a harder ) foatres—for instance, spatial coherence (Pass and
problem than image retrieval based on whole image ;i 1996 is not preserved under subset operations.
matching. To avoid exhaustive searching subregionsin Therefore, methods for subregion querying based on

an image, one scheme is to defintersectiorof color such unstable features are not likely to perform as good
histograms (Swain and Ballard, 1991). The scheme can as the histogram or correlogram based methods.
be interpreted in the following manner. (This interpre-

tation helps us to generalize the method to correlograms )
easily.) 5.2. Experiments

Given the histograms for a que@ and an image ) ) . )
7, the intersection of these two histograms can be con- The image database is the same as in Section 4.2.
sidered as the histogram of an abstract entity notated W& use 64 color bins for histograms and autocor-
as the intersectio@ N Z, (which will not be defined relograms. The distance set for a'utocorrelog'rams is
but serves as a conceptual and notational convenienceP = {1. 3.5, 7}. Our query set for this task consists of

only). With the color count of the intersection defined 30 gueries. Queries have 2 to 16 answer images with
as the average number of answers per query being nearly

5. The query set is constructed by selecting “interest-
He (QNT) A min{ He (Q), Hg (Z)}, (21) ing” por’Fions of image; from the imagfe datgbase. The

answer images contain the object depicted in the query,
but often with its appearance significantly changed due
to changes in viewpoint, or different lighting, etc. Ex-
amples of some queries and answers (and the rankings

A Ho(QNT) according to the histogram and autocorrelogram inter-

he (@NI) = o (22) section methods) are shown in Fig. 9.

5.1. Correlogram Intersection

we can define the intersection of the histogramgof
andZ as

Note that this definition isrot symmetric inQ and
Z. The distancéQ — Q N 7|, 1, is a measure of the
presence 00 inZ. WhenQ is a subset of, |Q — O
NZ|n, = 0 because all the color countsdhare less
than those ir?, and the histogram intersection simply
gives back the histogram fa@2.

In an analogous manner, we define the intersection
correlogram as the correlogram of the intersection
QN7 (again, merely an abstract entity.) With the count

5.3. Results

The histogram and autocorrelogram intersection meth-
ods for subregion querying are compared in Tables 5
and 6. For each of the evaluation measures proposed
above, the autocorrelogram performs better. The av-
erage rank of the answer images improves by over 30
positions when the autocorrelogram method is used,
and the average precision figure improves by an im-
© A i © pressive 56% (see Table 5). Table 6 shows the preci-
[ (QNTI) =min[[{y (), T{% (D}, (23) sion and recall values for the two methods at various
scopes. Once again, autocorrelograms perform con-

we can define the intersection correlogram as follows: sjstently better than histograms at all scopes. Doing

a query-by-query analysis, we find that autocorrelo-

» T, QNI grams do better in terms of the averagmeasure on

(k) 2 -
Yo (Q@NI)= He (QNT)- 8k’ (24) 23 out of the 30 queries. Similarly, autocorrelograms
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auto: 2, hist: 50 auto: 5, hist: 113

Query auto: 1, hist: 2 auto: 2, hist: 6 auto: 3, hist: 5

Figure 9.  Sample queries and answer sets with ranks for various methods. (Lower ranks are better.)
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Table 5 Performance of Histogram and Autocorrelogram In-  backprojection algorithm first. Then we show how the
tersection methods—I. (Smallermeasure and larger precision correlogram can be used to improve the performance.
are better) The location problem can be viewed as a special case

Avg. r-measure  Avgr-measure of the image retrieval problem in the following man-
Method (macro) (micro) Avg. precision ner. LetZ|, denote the subimageihof sizeQ located
Hist 56.3 61.3 0.386 at positionp. (The assumption about the size of the
Auto 225 20,1 0.602 subimage is without loss of generality.) The set of all
subimage< |, ..., Z|z presentinZ constitutes the
image database agdlis the query image. The solution
Table 6 Performance of Histogram and Z|p to this retrieval problem givep, the location ofQ
Autocorrelogram - Intersection methods—II. in Z. The above interpretation istamplate match-
(Larger values are better.,) ing process. One straightforward approach to the loca-
Method tion problem igemplate matchingTemplate matching

takes the quer@ as a template and moves this template
over all possible locations in the imagdeto find the

Scope  Hist Auto Hist  Auto best match. This method is likely to yield good results,
but is computationally expensive. Attempts have been

Precision (%) Recall

5 0.273  0.493 0.311 0.541 . -
10 0223 0347 0460 0718 made to make template matching more efficient

: ' ' ' (Margalit and Rosenfeld, 1990; Vinod et al., 1996;
25 0.133 0.165 0.681 0.850

Brock-Gunn and Ellis, 1992). THastogram backpro-
jectionmethod is one such approach to this problem.
yield better average precision on 26 out of 30 queries. This method has some serious drawbacks, however. In

Thus, for a variety of performance metrics, autocor- the following, we explain the problem with the his-
relograms yield better results. This suggests that the t0gram backprojection scheme.

autocorrelogram is a superior method for subregion The basic idea behind histogram backprojection is
querying problem. (1) to compute a “goodness value” for each pixel in

7 (the goodness of each pixel is the likelihood that
this pixel is in the target); and (2) obtain the subimage
(and hence the location) whose pixels have the highest
goodness values.

Formally, the method can be described as follows.

) ) ) ) Theratio histogramis defined for a coloc as
The location problem is the following: given a query

image (also referred to as the target or mod2kxnd AL
an imageZ such thatQ < Z, find the “location” inZ en@]Q) = m'”{
whereQ@ is “present”. Itis hard to define the notion of
location mathematically because the model is of some The goodness of a pixed € Z. is defined to be
size. We use the location of the center of the model for . (7| Q). The contribution of a subimagg|, is
convenience. given by

This problem arises in tasks such as real-tohgct
tracking or video searchingwhere it is necessary to
localize the position of an object in an image. Given an
algorithm that solves the location problem, tracking an
objectQ in an image frame sequenge= 74, ..., Z;
is equivalent to finding the location @ in each of the
Zi's. Efficiency is also required in this task because
huge amounts of data need to be processed. ar%gaxl'[p(l Q- 27)

To avoid exhaustive searching in the whole image
(template matching is of such kind), histogram back-  The above method generally works well in practice,
projection was proposed to handle the location problem and is insensitive to changes of image resolution or
efficiently. In the following, we study the histogram histogram resolution (Swain and Ballard, 1991). Note

6. Other Applications of Correlograms

6.1. Localization Using Correlograms

He(Q) 1}. 25)

He(Z)

MyZ Q= Y mrgn@|Q).  (26)

qeZlp

Then, the location of the model is given by
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that backprojecting the ratio-histogram gives slaene
goodness value to all pixels of the same color. It em-
phasizes colors that appear frequently in the query but
not too frequently in the image. This could result in
overemphasizing certain colors@ A color c is said
tobedominanin Q, if = n(Z | Q) is maximum over all
colors. IfZ has a subimagg|, (which may be totally
unrelated toQ) that has many pixels of colar, then ®
this method tends to identif§ with Z|,, thus causing ol — I'Z(py.2(p (P
an error in some cases. P 8k
Figure 10 shows a simple example illustrating this
problem. Suppos€ has 6 black pixels and 4 white where{p} represents the pixed along with its neigh-
pixels, and imag& has 100 black pixels and 100 white Pors considered as an image. Now, the correlogram
pixels. Thenr,, = 0.06, 7, , = 0.04. The location  contribution ofp is defined as
of the model according to the backprojection method
is in an entirely black patch, which is clearly wrong. mp,(Z19Q) e |Q1(p) - {p}‘
Another problem with histogram backprojection is
inhe_rited f_rom histograms which have no spatial infor- |, words, the contribution op is the L;-distance be-
mation. Pixels of the same color have the same good- yeen the local autocorrelogram ptand the part of

ness value irrespective of their position. Thus, false he autocorrelogram fa@ that corresponds to the color
matches occur easily when there are multiple similarly ¢ p.

coIored.obj.ects, as shown in the examples of roses and Combining this contribution with Eq. (26), the final
zebras in Fig. 11. goodness value of a subimagé, is given by

model image incomeat answer 6.1.1. Correlogram Correction. To alleviate the
problems with histogram backprojection, we incorpo-
rate local spatial correlation information by using a
correlogram correctiorfactor in Eq. (26). The idea is
to integrate discriminating local characteristics while
avoiding local color template matching (Ennesser and
Medioni, 1995). We definelacal correlogram contri-
Figure 10 A false match for histogram-backprojection. bution based on the autocorrelogram of the subimage
Z|p so that the goodness of a pixel depends on its
position in addition to its color.
a®(Q) is considered to be the average contribution
of pixel of colorc in Q (for each distanck).
For each pixelp € Z, the local autocorrelogram
«¥ is computed for each distankec D (D should
contain only small values so tha{P captures local
information for eactp)

(29)

(30)

y,L1

Performance Measure.Let an indicator variable A
loc(Q, T) be 1 if the location returned by a method M=) (Brz@n@ Q)

is within reasonable tolerance of the actual location of a<tlp
QinZ. Then, given a series of querigs, . . ., Qq and +(1 - B)mqy (T 19Q). (31)
corresponding images,, ..., Zq, thesuccess ratiof
the method is given by where 0< 8 < 1.
Itturns outthat the correlogram contribution by itself
?zl loc(Qi, Zi) 28) is also sensitive and occasionally overemphasizes less
q dominant colors. Supposgeis a less dominant color

(say, the background color) that has a high autocorre-
_ For tracking an objec® in a sequence of frames lation. If 7 has a subimagé|, (which may be totally
7 = 1Ii,...,I:, the success ratiois therefore irrelevanttoQ) that has many pixels of colowith high
Zitzl loc(Q, Zi)/t. autocorrelations, then correlogram backprojection has

a tendency to identifyQ with Z|,, thus potentially
Organization. Section 6.1.1 introduces the correlo- causing an error. Since the problems with histograms
gram correction for the location problem. Section6.1.2 and correlograms are in some sense complementary
contains the experiments and results. to each other, the best results are obtained when the
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Figure 11 Location problem: histogram output, query image, and correlogram output.

goodness of a pixel is given by a weighted linear com- jection is like the average constant value in the Taylor
bination of the histogram and correlogram backpro- expansion; the local correlogram contribution is like
jection contributions—adding the local correlogram the first order term in the approximation. Therefore,
contribution to histogram backprojection remedies the the best results are obtained when the goodness value
problem that histograms do not take into account any of a pixel is a weighted linear combination of the
local information; the histogram contribution ensures histogram backprojection value and the correlogram
that background colors are not overemphasized. We contribution.
call thiscorrelogram correction

This can also be understood by drawing an anal- 6.1.2. Experiments and Results.We use the same
ogy between this approach and the Taylor expansion. database to perform the location experiments. A model
The goodness value obtained from histogram backpro- image and an image that contains the model are chosen.
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Table 7 Results for location video content analysis is to segment a video into cam-
problem (66 queries). era shots (also known &sy frame extraction A cam-
Method Hist  Auto era shotZ = 7,,...,Z is an unbroken sequence of

frames from one camera. lf denotes the sequence of
cuts, then a cuf/j occurs when two consecutive frames
(T;,Zi1) are from different shots.

Successratio 0.78 0.96

Table 8 Results (success ratios) Cut detection algorithms assume that consecutive
for the tracking problem. frames in a same shot are somewhat nsimr@lar than
Method Hist Auto framesin adifferent shot (other grqdual transition, such
as fade and dissolve, are not studied here because cer-
Bus 0.93 0.99 tain mathematical models can be used to treat these
Clapton 0.44 0.78 chromatic editing effects). Different cut detectors use
Skydive 0.96 0.96 different features to compare the similarity between

two consecutive frames, such as pixel difference, sta-
tistical differences, histogram comparisons, edge dif-

For the location problem, 66 query images and 52 im- ferences, etc. (Boresczky and Rowe, 1996). One way
ages that contain these models are chosen and tested0 detect cuts using a featufes by ranking(Zi, Zi 1)
Both the histogram backprojection and autocorrelo- according toZ; — Zj.1|¢. Let cutsZ) be the number
gram correction are triedD = {1, 3,5} andp = 0.5 of actual cuts inl and rank.7) be the rank of the cut
were the parameters. Ji according to this ranking.

For the tracking problem, we choose three videos bus ~ Histograms are the most common used image fea-
(133 frames), clapton (44 frames), skydive (85 frames). tures to detect cuts because they are efficient to com-
We useD = {1, 3,5} andg = 0.8 for this problem. pute and insensitive to camera motions. Histograms,

For the location problem, Table 7 shows the results however, are not robust to local changes in images that
for 66 queries, and Fig. 11 shows some examples. false positives easily occurs in this case (see Fig. 13).

For the tracking problem, Table 8 shows the result of Since correlograms have been shown to be robust to
histogram backprojection and correlogram correction large appearance changes for image retrieval, we use
for the three test videos. These results clearly show that correlograms for cut detection.

correlogram correction alleviates many of the problems B
associated with simple histogram backprojection. Performance Measure. RecalidPrecisionare usu-

Figure 12 shows sample outputs. ally used to compare the performance of cut detection.
However, it is difficult to measure the performance
of different algorithms based on recall vs. precision

6.2. Cut Detection Using Correlograms curves (Boresczky and Rowe, 1996). Therefore we look
at recall and precision values separately. In order to

The increasing amount of video data requires auto- avoid using “optimal” threshold values, we useci-

mated video analysis. The first step to the automated sion vs. scop& measure false positives argtall vs.

Figure 12 Tracking problem: histogram output, query image, and correlogram output.
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Figure 13 Cut detection: False cuts detected by histogram but not by correlogram.

scopeto measure false negatives (misses). We choosediverse enough to capture different kinds of common
scope yalues to be the exact cut number @ytand scenarios that occur in practice. The results are shown

2 cutgl). We also use thexcessive rank valughich in Table 9 and Table 10.
is defined by The results of our experiments show that banded
autocorrelograms are more effective than histograms
cuts(/) while the two have the same amount of information.
> (rank(Jp) — i), (32) It is certainly more efficient than dividing an image
i=1 into 16 subimages (Hampapur et al., 1994). Thus the

- . . autocorrelogram is a promising tool for cut detection.
and theaverage precision valughich is defined by g P g

1 cuts() i 7. Conclusions

~ . 33
cutg(l) ,; rank(J;) (53)

In this paper, we introduced the color correlogram—a
new image feature—for solving several problems that
Note that a smaller excessive rank value and a larger arise in content-based image retrieval and video brows-
average precision value indicate better result (perfect ing. The novelty in this feature is the characterization
performance would have values 0 and 1 respectively). of images in terms of the spatial correlation of colors
instead of merely the cologser se Experimental evi-
6.2.1. Experiments and Results.We use 64 colorsfor ~ dence suggests that this information discriminates
histograms, and banded autocorrelograms which havebetween “different” images and identifies “similar”
the same size as histograms. We use 5 video clips fromimages very well. We show that correlograms can be
television, movies, and commercials. The clips are computed, processed, and stored at almost no extra

Table 9 Recall vs. Scope for cut detection. (Smaller values are better.)

Method
Hist Banded-auto
Video Cuts{f) 2 Cutsﬁ) Ex. rank value Cu(@) 2 Cuts{f) Ex. rank value
1 (9 Cuts) 0.78 1.0 14 1.0 1.0 0
2 (15 Cuts) 0.87 1.0 7 1.0 1.0 0
3 (16 Cuts) 0.75 1.0 25 0.81 1.0 9
4 (7 Cuts) 1.0 1.0 0 1.0 1.0 0

5 (10 Cuts) 0.9 0.9 >10 0.9 1.0 3
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Table 10 Precision vs. Scope for cut detection. (Larger values are better.)

Method
Hist Banded-auto

Video Cuts{f) 2Cut£{f) Agv. prec. value Cu(i) ZCuts(f) Agv. prec. value
1 (9 Cuts) 0.78 0.5 0.90 1.0 0.5 1.0

2 (15 Cuts) 0.87 0.5 0.98 1.0 0.5 1.0

3 (16 Cuts) 0.75 0.5 0.93 0.81 0.5 0.97

4 (7 Cuts) 1.0 0.5 1.0 1.0 0.5 1.0

5 (10 Cuts) 0.8 0.45 <0.95 0.9 0.5 0.98

cost compared to competing methods, thereby justi- ditionally? This brings up the question of object-level
fying using this instead of many other features to get retrieval using correlograms. More work needs to be
better image retrieval quality. done in this regard as to finding a better representation
The most important application of correlograms for objects.
is to content-based image retrieval (CBIR) systems. Further applications of color correlograms are
Viewed in this context, a correlogram is neither a image subregion querying and localization, which are
region-based nor a histogram-based method. Unlike indispensable features of any image management sys-
purely local properties, such as pixel position, and gra- tem. Our notions of correlogram intersection and cor-
dient direction, or purely global properties, such as relogram correction seem to perform well in practice.
color distribution, a correlogram takes into account the There is room for improvement of course, and these
local color spatial correlation as well as the global dis- need to be investigated in greater detail. We also apply
tribution of this spatial correlation. While any scheme correlograms to the problem of detecting cuts in video
that is based on purely local properties is likely to be sequences. An interesting question that arises here is,
sensitive to large appearance changes, correlograms arean this operation be done in the compressed domain
more stable to tolerate these changes and while any(Yeo and Liu, 1995)? This would cut down the compu-
scheme that is based on purely global properties is sus-tation time drastically and make real-time processing
ceptible to false positive matches, correlograms seem feasible.
to be scalable for CBIR. This is corroborated by ourex- ~ Another major challenge in this context is: what
tensive experiments on large image collections, where distance metric for comparing images is close to the
we demonstrate that correlograms are very promising human perception of similarity? Does a measure need
for CBIR. to be a metric (Jacobs et al., 1998)? We also plan to use
One issue that still needs to be resolved satisfacto- supervised learning to improve the results of image re-
rily is the following: in general, illumination changes trieval and the subregion querying task (we have some
are very hard to handle in color-based CBIR systems initial results in (Huang et al., 1997)).
(Gong, 1998; Syeda-Mahmood and Cheng, 1996; Funt In general, the algorithms we propose for various
and Finlayson, 1995; Slater and Healey, 1995). Dur- problems are not only very simple and inexpensive but
ing our experiments, we encountered this problem oc- are especially easy to incorporate into a CBIR system if
casionally. Though the correlogram method performs the underlying indexing scheme is correlogram-based.
better on arelative scale, its absolute performance is notlt pays off more in general if there is a uniform feature
fully satisfactory. The question is, can correlograms, vector that is universally applicable to providing var-
with some additional embellishments, be made to ad- ious functionalities expected of a CBIR system (like
dress this specific problem? histograms advocated in (Swain and Ballard, 1991)). It
On a related note, it also remains to be seen if cor- is unreasonable to expect any CBIR system to be ab-
relograms, in conjunction with other features, can en- solutely fool-proof; furthermore, it is needless to state
hance retrieval performance. Forinstance, how willthe that the correlogram is not a panacea. The goal, how-
correlogram perform if shape information is used ad- ever, is to build better CBIR systems. Based on various
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experiments, we feel that there is a compelling reason Funt, B. and Finlayson, G. 1995. Color constant color indexBgE
to use correlograms as one of the basic building blocks  Trans. on Pattern Analysis and Machine Intelligente:522-529.

in such systems.
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Notes

1. In our database of 14,554 images, the right image is considered

the 353-rd most similar with respect to the left image by color
histogram.

2. The term “correlogram” is adapted from spatial data analysis:
“correlograms are graphs (or tables) that show how spatial auto-
correlation changes with distance.” (Upton and Fingleton, 1985)

3. Interestingly, histogram or CCV’s may not be able to distinguish
between these two images.

4. Equivalently, we could select some threshold image score.
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