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We present an empirical study of spatial competition and a methodology to estimate demand
for products with unobservable characteristics. Using panel data, we estimate a discrete-choice
model with latent-product attributes and unobserved heterogeneous consumer preferences. Our
application of the methodology to the network television industry yields estimates that are consis-
tent with experts’ views. Given our estimates, we compute Nash equilibria of a product location
game and find that firms’ observed strategies (such as the degree of product differentiation) are
generally optimal. Discrepancies between actual and optimal strategies reflect the networks’
adherence to “rules of thumb” and, possibly, bounded rationality behavior.

1. Introduction

� Most empirical industry studies focus on price competition, conditional on a given set of
product characteristics. Competition in product space is also important. For example, in informa-
tion industries, such as media and entertainment, the strategic choices are nonmonetary product
characteristics. Analysis of competition in these industries is often complicated by the presence of
unobservable or difficult-to-measure product characteristics. For example, the relevant attributes
of television shows are not obvious.

We present an empirical study of spatial competition and a methodological approach to
estimating product characteristics and consumer preferences for products whose characteristics
are unobservable or difficult to measure. We use panel data on consumers’ choices to identify (i)
the attribute space over which firms compete, (ii) product locations on these attributes, and (iii)
the distribution of consumer preferences. The econometric method is applied to analyze compe-
tition for viewers in the television industry. The estimated attribute space and product locations
are consistent with experts’ views of this industry. For example, one of the attributes represents
the degree of realism in each show. The estimated product locations reveal that firms use coun-
terprogramming (i.e., differentiated products in each time slot) and homogeneous programming
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(i.e., similar products through each night). These strategies are confirmed to be optimal in an
equilibrium analysis given our estimated demand. We compute a Nash equilibrium that suggests
firms can improve their weekly ratings by about 10% by increasing both counterprogramming
and homogeneity.

The first part of the article (Sections 2–4) presents the econometric methodology, while the
latter part (Sections 5 and 6) applies it to the television industry and analyzes spatial competition. In
Section 2 we describe the discrete-choice model of viewer behavior. Consumer utility is specified
to have an ideal-point structure, with utility decreasing in the distance between the consumer’s
most preferred level of the attributes and a product’s attributes.1 The identification of show
characteristics and consumer preferences is not obvious. We do not observe the attribute space
relevant to viewers’ choices, or the attribute levels for each show, or the ideal point of each
consumer.2 We do observe panel data of each viewer’s choice in each period, as described in
Section 3. These choice histories, even with a single airing of each show, provide the covariance
of choices that identifies the covariance matrix of utility for the products. For example, two
products consumed by many of the same individuals will have a positive covariance of utility. As
Section 4 will discuss, we use the latent attribute space to parameterize the covariance matrix of
utility such that products with positive covariance terms are located near each other. Note that no
meaning is assigned a priori to the dimensions of the attribute space. As such, interpreting each
estimated dimension is important to understanding viewer behavior and product differentiation.
The model is estimated using maximum simulated likelihood. Furthermore, to reduce simulation
error we use both importance sampling and low-discrepancy, deterministic sequences as described
by Niederreiter (1978) and the literature on quasi-Monte Carlo integration. The effectiveness of
these simulation methods is described in Section 4.

In Section 5 the econometric approach is applied to the television industry. The television
industry is an economically important one whose products are difficult to characterize. In 2000,
advertisers spent about $52 billion on television ads.3 Revenues depend on audience size and
composition.4 Despite these high stakes, techniques for using industry data to analyze this market
are not well developed. Our study is facilitated by Nielsen Media Research’s panel dataset of
individuals’ viewing choices. We analyze the viewing choices of 3,286 viewers in the week of
November 9, 1992, Monday through Friday, during the prime-time hours of 8 to 11 P.M. We
identify four attributes, which we interpret as plot complexity, character ages, degree of realism,
and appeal to young male urban professionals. These characteristics are in accord with the beliefs
of network strategists and previous studies of viewer behavior.

In Section 6 we use our estimated attribute space to analyze product differentiation in the
network television industry and various scheduling strategies. The estimates of show characteris-
tics imply that the networks use counterprogramming and homogeneous programming, although
not as extensively as they should. These strategies are found to be consistent with competitive
behavior in this industry. That is, in the Nash equilibrium in which firms maximize ratings,
these strategies are widely implemented. In fact, they are implemented more extensively than
in the actual schedules, resulting in gains in weekly ratings of 13.3% for ABC, 6.1% for CBS,
and 15.7% for NBC. Two “rules of thumb”—not airing sitcoms after 10:00 and not airing news
magazines before 10:00—are primarily responsible for the networks’ suboptimal ratings. Even
after controlling for these conventions, we still find discrepancies between actual and optimal
schedules. However, these discrepancies are lower in a model restricted to have only two latent
attributes. This suggests that network strategists may reduce the complexity of the strategy space
by thinking of fewer dimensions than the true attribute space. Interestingly, the collusive outcome,

1 Anderson, de Palma, and Thisse (1992) refer to the ideal-point model as the address model.
2 Using terminology from Heckman (1981b), our model is a discrete-choice model with both structural state

dependence and a components-of-variance structure for the unobserved component of utility.
3 Advertising data are from Competitive Media Reporting, reported by Advertising Age at www.adage.com.
4 Goettler (1999) estimates the value of an additional million viewers to range from $3,830 to $9,300 per 30-second

commercial, depending on audience size and composition.
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which maximizes the networks’ combined ratings, does not yield ratings higher than the Nash
equilibrium ratings.

We now provide a brief review of the relevant choice modelling literature, followed by a
discussion of empirical research on the network television industry.

Similar strategies of using panel data to estimate latent characteristics and individuals’ pref-
erences appear in the literature on voting. Poole and Rosenthal (1985) use a transformed logit
model to estimate both the locations of legislators’ ideal points and the locations of legislative bills
in a unidimensional attribute space. Heckman and Snyder (1997) note that the Poole-Rosenthal
estimator is inconsistent due to the “incidental parameters” problem first identified by Neyman and
Scott (1948). We avoid this problem by estimating the distribution of preferences, as suggested
by Kiefer and Wolfowitz (1956), rather than estimating each viewer’s preference vector.

The empirical marketing and psychometric literatures have also developed many spatial
models of choice behavior. Elrod (1988a, 1988b) uses logit models to estimate up to two latent
attributes and the distribution of consumer preferences. The former study uses a linear utility
specification, and the latter uses an ideal-point model. As noted by Elrod and others, the standard
ideal-point model asymptotically nests the linear structure as the product characteristics approach
plus or minus infinity. In Section 4 we show how the standard ideal point model may be transformed
such that, for each dimension of the attribute space, the linear structure is obtained by setting a
single parameter to zero. This is an essential transformation for convergence if one or more
of the dimensions is linear (or nearly linear), as in our case. More recently, Elrod and Keane
(1995) and Chintagunta (1994) estimate product characteristics using panel data on laundry
detergent purchases. Elrod and Keane use a factor analytic probit model with normally distributed
preferences, whereas Chintagunta uses a logit model with discrete segments of consumer types.

Economists have focused on the theoretical issues of the television industry (Spence and
Owen, 1977), whereas marketing researchers have focused on the empirical issues. Marketers
approach the difficulty of measuring show characteristics in various ways. One approach classifies
shows a priori. Rust and Alpert (1984) classify shows into one of five categories: Action Drama,
Psychological Drama, Comedy, Sports, and Movie. This approach suffers from the subjective
classification of shows and the assumption of homogeneity of shows within each category. While
one might expect well-chosen categories to perform well, we find that a model with only one latent
attribute more accurately predicts covariances in choices than does a model with six categories.

The difficulty of measuring show characteristics led other researchers to estimate them.
Gensch and Ranganathan (1974) use factor analysis, and Rust, Kamakura, and Alpert (1992)
use multidimensional scaling. The main weakness of these approaches is that they ignore that a
positive covariance between two shows need not imply these shows are similar. It might instead
reflect the competition these shows face or the impact of state dependence on choices. Our struc-
tural estimation approach explicitly considers competition among shows and state dependence in
choices. Furthermore, it has the conceptual benefit of being derived from consumer behavior.

2. The model
� In each period t , individual i chooses from among J = 6 mutually exclusive and exhaustive
options indexed by j , corresponding to (1) TV off, (2) ABC, (3) CBS, (4) NBC, (5) Fox, and (6)
nonnetwork programming, such as cable or public television. Let yi ·t denote the response vector,
such that for j = 1, . . . , J , yi j t = 1 if i chooses j at time t and yi j t = 0 otherwise. In the following
subsections, we describe the utility from watching a network show, the utility from watching a
nonnetwork show, and finally, the utility from not watching TV.

� The utility from watching network television. Individual i’s utility from watching network
j at time t may be written as

ui jt = Vi jt + Si jt + εi j t ,

where Vi jt is a function of show characteristics, Si jt is a function of state variables reflecting
the choice in the previous period, and εi j t represents idiosyncratic utility, which is independent
© RAND 2001.
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across all (i, j, t) and uncorrelated with the Vi jt and Si jt . We first present the show-characteristics
component and then discuss state dependence.

Our model is not the only specification available. We use this particular structure because
of its intuitive appeal and ability to nest alternative specifications. In the empirical portion of the
article, we compare our specification to alternatives and find that the data support our structure.

Show characteristics. The component of utility from show characteristics has an intercept and an
ideal-point structure over K attributes, written as

Vi jt = η j t + (z jt − νi,z)
′A(z jt − νi,z), (1)

where νi,z denotes viewer i’s K -dimensional ideal point, z jt denotes the K -dimensional location of
network j’s show during period t , A is a symmetric K × K matrix of the individual’s sensitivity
to distances between her ideal-point and show locations, and η j t denotes an attribute equally
valued by all individuals. When none of these parameters is observed by the econometrician, this
structure is a latent-attribute space. We assume that viewer’s preferences νi,z are constant over
time. Furthermore, viewers know the locations of all shows and η j t .

While a linear specification yields constant marginal utility for the attributes, this quadratic
structure generates positive marginal utility at some attribute levels and negative marginal utility
at other levels. Suppose A is a diagonal matrix. For each dimension a negative weight yields an
ideal-point structure in which νi,z specifies the most preferred level for that attribute. Dimensions
with positive weights exhibit the less intuitive anti-ideal-point structure. While some product
attributes, such as the fuel efficiency of a car, are described well by a linear structure, we believe
the potential characteristics of television shows are more appropriately modelled by the quadratic
or ideal-point framework.5 For example, a little violence may excite some viewers, but too much
may disturb them. Another attribute could be characters’ ages. A viewer who prefers shows about
characters in their thirties would derive less utility from shows with characters in their twenties
or forties, and even less utility from shows about teenagers or people older than fifty.

State dependence. Show characteristics are not the only factor in viewing choices. A viewer’s
choice is also influenced by her choice in the previous period. This state dependence contributes
to a significant lead-in effect in the aggregate ratings. On average, over 56% of a show’s viewers
watched the end of the previous show on the same network. This lead-in effect ranges from 32%
to 81%, and it has a significant role in determining optimal network strategies. State dependence
is usually considered to arise from costs to switching channels. Such costs are perhaps due to
differences in information about the networks’ offerings, the costs of discussing a change by a
group of viewers, or the physical cost of changing the dial or finding the remote control. Moshkin
and Shachar (2000) demonstrate empirically that state dependence is generated by switching
costs for about half the viewers and by incomplete information and search costs for the remaining
viewers.6

There exists a potential bias in the estimation of the state dependence due to the network
strategy of airing similar shows in sequence. Viewers may stay tuned to the same channel because
that channel continues to offer the type of show they prefer. A model without heterogeneous
consumer preferences or with inaccurate a priori show classifications will yield biased estimates
of state dependence. In our model, persistence due to programming strategies and preferences is
captured by the attribute space in equation (1).7

5 Of course, the quadratic structure also nests the linear model. In the latent-attribute case, however, this nesting
is asymptotic and may lead to nonconvergence of the estimator. Section 4 discusses this problem and presents a solution.

6 State dependence in viewing behavior has received attention in previous studies. The treatment is more parsimo-
nious in models of individual viewer behavior than in models of aggregate ratings. Darmon (1976) introduces the concept
of channel loyalty, and Horen (1980) estimates a lead-in effect, both using aggregate-ratings models. Rust and Alpert
(1984) use individual-level data to estimate an audience-flow model, and Shachar and Emerson (2000) allow switching
costs to vary across shows and across demographically defined viewer segments.

7 Restricting the rank of the latent-attribute space can also lead to biased estimates. Hence we use Bayes’s
information criterion (BIC) to determine the number of relevant attributes, as discussed in Section 4.
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We account for persistence due to switching costs via state variables describing the individ-
ual’s choice in the previous period as it relates to each of the current period’s alternatives. The
state variables with respect to watching network j at time t for viewer i are defined in Table
1. These variables enter utility via Si jt , the component of utility due to state dependence. The
complete structure for individual i’s utility from watching network j at time t is

ui jt = η j t + (z jt − νi,z)
′A(z jt − νi,z)

+ δSampleSamplei j t + δInProgressInProgressi j t (2)

+ δStart,i Starti j t + δContinuation,i Continuationi j t + εi j t ,

where both δStart,i and δContinuation,i are permitted to vary across viewers, according to their L
demographic characteristics Xi , as follows.

δStart,i = X ′
i�δ

and

δContinuation,i = δStart,i + δContinuation. (3)

The term δStart,i serves as a “base” measure of persistence for viewer i , while δContinuation is the
incremental cost of leaving a continuing show that was watched last period.

� The utility from watching a nonnetwork channel. Each individual faces Ni nonnetwork
alternatives, such as CNN (Cable News Network), MTV (Music Television), and PBS (Public
Broadcast Station). The number of such alternatives varies across individuals, since different
cable providers offer a variety of subscription packages and the number of public broadcasting
stations varies across the country. Furthermore, individuals often consider only a subset of the
cable channels available. Some viewers, for example, never consider watching the Home Shop-
ping Network. Since we do not observe Ni , it is treated as another dimension of unobserved
heterogeneity. Explicitly, νi,N ≡ log Ni .

The utility from a nonnetwork show has the same structure as utility from a network show.
However, our data do not specify which of the many nonnetwork channels is watched. As such,
we treat the nonnetwork alternative as nesting the Ni nonnetwork options available to individual
i . We specify a common mean ηNon for these shows and conjecture that switching costs are lower
on the hour, since most shows start on the hour.

The utility from each nonnetwork channel, indexed by j ′ = 1, . . . , Ni , is

ui j ′t = ηNon +
(
δMid,i Midt + δHour,i Hourt

)
I{yi, j ′,t−1 = 1} + εi j ′t , (4)

where I{·} is an indicator function. The utility from nesting these Ni choices is simply max j ′ (ui j ′t ).
Under the assumption that {εi j ′t}Ni

j ′=1 are independently distributed type-I extreme value, this
maximum has the same distribution as

ui6t = log

[
Ni∑

j ′=1

exp(ui j ′t − εi j ′t )

]

+ εi6t , (5)

where εi6t is distributed type-I extreme value.8 Substituting (4) into (5) and using the fact that
yi, j ′,t−1 = 1 is satisfied by exactly one j ′ when yi,6,t−1 = 1 and exactly zero j ′ otherwise yields

ui6t = ηNon + log
[
Ni − 1 + exp

(
(δMid,i Midt + δHour,i Hourt )I{yi,6,t−1 = 1}

)]
+ εi6t , (6)

8 This equivalence, established by Juncosa (1949), is discussed in the chapter on extreme value distributions of
Johnson, Kotz, and Balakrishnan (1995).
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TABLE 1 Flow States with Respect to Network j for Viewer i

Variable Equals One If—“Last period viewer i was . . .”

Starti j t tuned to network j , and the show on j is just starting.

Conti j t tuned to network j , and the show on j is a continuation from last period.

Samplei j t tuned to network j , and the show on j is entering the second quarter-hour and is longer than

30 minutes.

InProgressi j t tuned to something other than network j , and the show on j is a continuation from last period.

where Hourt = 1 if t is an hour’s first quarter-hour, Midt = 1 − Hourt , and

δMid,i = δStart,i + δMid

δHour,i = δStart,i + δHour.
(7)

We expect δHour < δMid, since most nonnetwork shows start on the hour and switching costs are
lower when a show is just starting.

� The utility from not watching TV. Individuals not watching TV are engaged in activities
such as reading, meeting friends, working, and so forth. The utility from nonviewing activities
differs among individuals according to their previous choice, the time of day, the day of the
week, and their idiosyncratic taste for the outside alternative, νi,Out. Formally, the utility from the
nonviewing alternative ( j = 1) is

ui1t = X ′
i�9 Hour9t + X ′

i�10 Hour10t + X ′
i�DayDayt

+ ηOut,t + δOut I{yi,1,t−1 = 1} + νi,Out + εi1t , (8)

where the variables Hour9t and Hour10t indicate t being in the 9:00 to 10:00 hour and 10:00 to
11:00 hour, respectively, the variable Dayt is a vector of length five with all zeros except for a
one in the current day’s position, and �Day is an L × 5 parameter matrix. The time-slot and day
effects are permitted to differ across demographic segments because, for example, children go to
bed earlier than adults.

� Model summary. Finally, we assume that in each period viewers myopically choose their
utility-maximizing alternative, given their state variables as inherited from the previous period.
Although some viewers may plan their viewing for the entire night accounting for switching costs
in later periods, we believe such forward-looking viewers are rare.

This model implies that persistence in choices can result not only from switching costs, but
also the networks’ strategies. In particular, combining counterprogramming and homogeneous
programming with individuals’ preference heterogeneity induces persistence in choices. Homo-
geneous programming refers to sequentially scheduling shows with similar characteristics in an
effort to retain viewers (whose ideal points are likely to be near the location of the previously
aired show). Counterprogramming means scheduling in each period shows that differ from the
other networks’ shows aired in that period. Under counterprogramming, each network will serve
viewers with ideal points from a different region of the attribute space. If the networks also im-
plement homogeneous programming, then each network will tend to serve these same viewers
throughout the night. Clearly, these two network strategies can induce a persistence in viewers’
choices that exceeds the persistence from only switching costs. Inappropriate specifications of
either preferences or show characteristics would therefore lead to upwardly biased estimates of
the role of state dependence.

© RAND 2001.
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3. The data

� We estimate the above model for the weekday prime-time hours 8:00 P.M. to 11:00 P.M. using
individual-level data from Nielsen Media Research for the week of November 9, 1992.9 The
dataset contains each individual’s demographic data and viewing choices at each quarter-hour.
Observations are recorded by a Nielsen People Meter (NPM) for each television in the house.
If the television is on, the NPM records the channel selected and the members of the household
watching. Viewers are assigned codes to enter on the NPM when they enter and exit the room.
Observations are recorded every minute by the NPM, but the data we use only specify choices at
the mid-minute of each quarter-hour.

The live broadcast of Monday Night Football is problematic, since the data describe the
network being watched, not the actual show. We are able to translate the network into the show
only if we know the schedule. For stations not in the Eastern time zone, however, we are unable
to obtain the varied scheduling responses to live broadcasts. As such, we only use Eastern time
zone viewers for estimation. Fortunately, this subgroup comprises over half the dataset and is
representative of the entire dataset with respect to the distribution of demographic measures and
viewing patterns. The non-Eastern time zone viewers are used as a holdout sample to test the
model’s out-of-sample prediction of the Tuesday through Friday choices, for which there are no
live broadcasts.

The dataset contains 4,035 households and 13,427 individuals. After dropping children under
the age of two years, people not living in the Eastern time zone, and people not passing Nielsen’s
daily data checks, 3,636 individuals remain. Finally, we omit viewers who never watch network
television during the prime-time weekday hours, since they do not aid in estimating the parameters
of interest. This amounts to assuming that people who never watch network television are not
affected by changes in the networks’ schedules or programs. Such an assumption seems reasonable
unless drastic changes in programming are being considered. The remaining 3,286 viewers are
used to estimate the model.

4. Estimation, heterogeneity, and identification issues

� We use maximum simulated likelihood to estimate the model. This section presents details
of the estimation and identification.

� The likelihood function. For the econometrician, the viewing choice, conditional on νi ,
is probabilistic because εi j t is not observed. We assume these εi j t are drawn from independent
and identical type-I extreme value distributions. As McFadden (1973) illustrates, under these
conditions the viewing-choice probability is multinomial logit. Furthermore, since the εi j t are
independent over time, the likelihood of each viewer’s history of choices for the entire week, yi ,
is simply the product of the probabilities of the choices in each quarter-hour, conditional on the
choice in the previous quarter-hour. That is,

f (yi | θ, Xi , Y, νi ) =
T∏

t=1







J∑

j=1

yi j t exp(ūi j t (θ ; yi,·,t−1, Xi , Y, νi ))

J∑

j=1

exp(ūi j t (θ ; yi,·,t−1, Xi , Y, νi ))







, (9)

where θ is the vector of model parameters (z, η, δ, �, A), Xi is the vector of observed individ-
ual characteristics, Y contains scheduling information needed to define the state variables (i.e.,

9 Although criticized frequently by the networks, Nielsen ratings still serve as the standard measure of audience
size for the television industry and advertisement agencies.
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Continuationi j t , Starti j t , etc.), νi denotes the idiosyncratic component of viewer preferences, and
ūi j t (·) ≡ ui jt (·) − εi j t .10

Since we are interested in modelling choices from 8:00 P.M. to 11:00 P.M., Monday through
Friday, setting t = 1 to be 8:00 on Monday seems appropriate. Due to the state dependence, the
probability of the 8:00 choice depends on yi,·,t−1, the choice made by i at 7:45. This 7:45 choice,
however, is an endogenous variable that depends on some of the same parameters driving the
choices in later periods. Using the 7:45 choice as if it were exogenous would lead to a biased
and inconsistent estimator, as described in Heckman (1981a). A solution to this initial-conditions
problem is to endogenize the 7:45 choice while treating 7:45 as t = 1, the start of the stochastic
process for the evening’s viewing. This period, however, is not really “network” programming,
since the local affiliates independently purchase syndicated programming of their choice. As a
result, ABC affiliates in different cities will most likely air different shows. Since we do not
observe these programming selections, we exclude show characteristics from the 7:45 “network”
utility, which reduces to

ui jt = η j t + εi j t for j = 2, . . . , 5 and t ∈ {1, 14, 27, 40, 53} .

The 7:45 utilities for j = 1 and j = 6 are the same as in equations (8) and (6), respectively, except
there are no state dependence terms because the stochastic process begins at 7:45.

Implementing this solution to the initial-conditions problem is trivial, except that our data
do not specify which channel is watched when viewing occurs at 7:45. For these viewers the
state variables relevant to the 8:00 choice are censored. The probability for an 8:00 period (i.e.,
t ∈ {2, 15, 28, 41, 54} with a censored yi,·,t−1) is

f (yi, j ′,t | θ, yi,·,t−1, Xi , Y, νi ) =
∑

ŷi,·,t−1∈Y
w(ŷi,·,t−1) f (yi, j ′,t | θ, ŷi,·,t−1, Xi , Y, νi ),

where w(ŷi,·,t−1) =

J∑

j=2

ŷi, j,t−1 exp(ūi, j,t−1(θ ; Xi , νi ))

J∑

j=2

exp(ūi, j,t−1(θ ; Xi , νi ))

,

f (yi, j ′,t | θ, ŷi,·,t−1, Xi , Y, νi ) =
exp(ūi j ′t (θ ; ŷi,·,t−1, Xi , Y, νi ))
J∑

j=1

exp(ūi j t (θ ; ŷi,·,t−1, Xi , Y, νi ))

, (10)

and the set Y contains the response vectors ŷ corresponding to each of the J − 1 possible 7:45
viewing choices. That is, we integrate over the possible 7:45 viewing choices using probabilities,
denoted w in (10), derived from evaluating the logit model of the 7:45 choice. For individuals
who choose the outside alternative j = 1 at 7:45, this integration is not necessary, since choosing
to watch nothing is fully disclosed in the data. This is also why the integration is only over the
j = 2, . . . , J viewing alternatives.

Since the εi j t are assumed to be independent across individuals, the likelihood of the n =
3, 286 observed-choice histories in the data is simply the cumulative product of the probabilities
of each viewer’s choice history, as given by (9) and (10).

� Individual heterogeneity. Since νi is unobserved, to compute the likelihood of yi we must
either estimate νi for each viewer or integrate over its distribution. Estimating νi is feasible only
for those viewers who have at least one period of no viewing, one period of network viewing,
and one period of nonnetwork viewing. Furthermore, reasonably precise estimation of the νi

10 Recall that for j = 1, . . . , J , yi j t = 1 if i chooses j at time t and yi j t = 0 otherwise.
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requires variation in choices exceeding this bare minimum. Since many viewers do not exhibit
sufficient variation, we instead integrate out the unobserved preferences and use the resulting
marginal distribution of the choice history to evaluate the likelihood. This amounts to evaluating
a (K + 2)-dimensional integral for each individual. This marginal probability is

s(yi | θ, Xi , Y, P0) =
∫

f (yi | θ, Xi , Y, ν)p0(ν)dν, (11)

where p0 is the density of the true distribution of viewer preferences, P0.
The specification of P0 depends primarily on computational complexity and fit with the data.

The latent-class approach (Kamakura and Russell, 1989; Chintagunta, 1994) is easy to compute
because the integration in (11) becomes a simple probability-weighted average. However, the
implicit assumption of homogeneity within classes is probably violated, especially when the
number of classes is low. On the other hand, normally distributed heterogeneity (Hausman and
Wise, 1978; Heckman, 1981a, 1981b) requires numerical integration and imposes a single-peaked
distribution of νi , which is poorly suited for attributes either strongly liked or disliked. Since
numerical integration can be performed at reasonable cost, the choice of discrete versus continuous
heterogeneity depends on the data.

Comparing likelihood values and information criteria of models with different specifications
for heterogeneity is one way of assessing which P0 is appropriate. Another check, which is feasible
when using disaggregated panel data, is to estimate each individual’s preference vector, holding
the model’s structural parameters fixed at their estimated values, given a conjectured specification
of P0. In particular, to be “internally consistent” this empirical distribution should match P0. Using
data on viewers whose choices vary enough to estimate their νi , we verified that choosing P0 to
be multivariate normal indeed satisfies this check. Other specifications for P0 may be internally
consistent. The specification with seven latent classes, however, fails the consistency check.11

Although the νi vectors are unobserved to the econometrician, we do observe individual
demographic measures that we expect to be correlated with preferences. Thus, we model the
mean of P0 to be a linear function of the L = 14 demographic measures in Xi . In addition to
increasing the model’s predictive powers, this parameterization allows P0 to have multiple peaks
over the population of viewers. We also allow the variance of P0 to vary across demographic
groups, but only for νi,N , since the additional parameters were statistically insignificant for the
other dimensions of νi . In short, we model viewer heterogeneity as follows:

νi,z ∼ N (X ′
i�z, �z),

νi,Out ∼ N (X ′
i�Out, σ

2
Out),

and

νi,N ∼ N (X ′
i�N , exp(X ′

i�σN )2), (12)

where �z is an L × K matrix, �Out, �N , and �σN are length-L column vectors, �z is a K × K
matrix, and σOut is a scalar. Although the random, unobserved portions of these three components
of νi are restricted to be uncorrelated, preferences can be correlated through their demographically
determined means.12

� Simulating the marginal probability. Since we assume νi to be normally distributed, the
integral in (11) does not have a closed-form solution. A consistent and differentiable simulation

11 Alternatively, P0 could be a mixture of discrete and continuous distributions. We experimented with mixture
models, but the marginal improvement in fit was not worth the additional computational costs and loss of parsimony.

12 Furthermore, an F-test indicates that this restriction is not rejected by the data.
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estimator of s(·) is

ŝ(yi | θ, Xi , Y, PR) =
1
R

R∑

r=1

f (yi | θ, Xi , Y, νir ), (13)

where (νi1 , . . . , νiR ) are randomly drawn from the population density P0, specified by (12). Since
f (·) has a closed form in (9), the variance of this simulation estimator is limited to the variance
induced from replacing P0 with PR , the randomly generated empirical distribution of the viewer’s
preferences. Let θ denote the vector of structural parameters in the model (θ ) and the parameters
in the specification of P0 in (12). The maximum simulated likelihood (MSL) estimator is

θ̂MSL = argmax
n∑

i=1

log
[
ŝ(yi | θ, Xi, Y, PR)

]
, (14)

where n denotes the number of individuals. As explained in McFadden (1989) and Pakes and
Pollard (1989), the R variates for each individual’s νi must be independent and remain constant
throughout the estimation procedure. A drawback of using MSL is the bias of θ̂MSL due to the
logarithmic transformation of s(·). Despite this bias, the estimator obtained by MSL is consistent
if R → ∞ as n → ∞, as detailed in Proposition 3 of Hajivassiliou and Ruud (1994). To attain
negligible inconsistency, Hajivassiliou (2000) suggests increasing R until the expectation of the
score function is zero at θ̂MSL.13 In our case this is achieved by R = 1, 024.

Rather than using standard Monte Carlo methods to evaluate ŝ(·), we use quasi-Monte Carlo
(QMC) methods, the theory of which is presented in Niederreiter (1978).14 Such methods, which
use low-discrepancy, deterministic sequences of points, have been found by Papageorgiou and
Traub (1996) and others to yield rates of convergence faster than the 1/

√
R convergence of Monte

Carlo methods when computing integrals in models of asset prices. The performance of QMC
methods varies across applications, depending on the behavior of the integrand. We simulate ŝ(·)
using the Sobol sequence generator in Press et al. (1992). 15 With R = 1, 024, QMC integration
delivers a (relative) root mean square error (RMSE) equal to 36% of MC, on average over
individuals. Furthermore, QMC’s error converges to zero at a rate ranging from R−.6 to R−.85,
compared to R−.5 for MC. 16 These gains reflect the greater uniformity of the Sobol sequence
compared to (pseudo) random sequences, which can have significant gaps and clumping.

To further reduce the variance of ŝ(·), we employ importance sampling as described in the
Monte Carlo literature (see Rubinstein, 1981). Our importance sampler is similar to that used by
Berry, Levinsohn, and Pakes (1995). We draw (νi,1, . . . , νi,R) from a multivariate-t approximation
of each person’s posterior distribution of νi , given some preliminary MSL estimate of θ , and weight
the conditional probabilities to account for the oversampling from regions of νi which lead to
higher probabilities of i’s actual choices. See Goettler and Shachar (1999) for details.

For MC integration with R = 1, 024, importance sampling reduces the RMSE of ŝ(·) by
90%, on average. The importance sampler may also be used with QMC, resulting in an additional
67% reduction in RMSE. These differences translate into significant reductions in the number
of draws needed to attain a given RMSE. For some viewers, attaining 1% accuracy requires 100

13 We simulate all stochastic components of the model to construct an empirical distribution of the score function
at θ̂MSL. A quadratic form of this score function is asymptotically distributed χ2 with degrees of freedom equal to the
number of parameters estimated.

14 We thank John Rust for this suggestion. Rust (1997) assesses the accuracy of QMC methods in solving continuous-
state, infinite-horizon Markovian decision problems.

15 The Sobol points are uniformly dispersed on the (0,1) grid and converted to “quasi-random” N(0,1) draws via
an approximation to the N(0,1) inverse distribution function.

16 The RMSE using N sets of R draws from P0 as RMSE(R) = [(1/N )
∑N

n=1(ŝ(yi | θ, Xi , Y, Pn
R )−strue)2/strue].5,

where strue represents the true value. Since this true value is not computable, we approximate it using R = 220 Sobol
points.
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times more draws using standard Monte Carlo methods than importance sampling with Sobol
points.

Any reduction in the variance of the estimator for s(·) reduces the bias and variance of the
estimator of θ , which is our ultimate interest. Assessing the affect of various simulation methods
on the distribution of θ̂MSL requires repeated estimation. This is computationally infeasible given
the number of parameters and high R.

� Identification. The identification of the show characteristics is intuitive. Shows with large
joint audiences obviously appeal to the same viewers. Given the ideal-point structure of our
model, positive covariances in utility, and hence choices, are predicted for shows close in the
attribute space. Thus, shows with large joint audiences are estimated to have similar characteristics.
Similarly, shows with small joint audiences appeal to viewers with different preferences and are
therefore estimated to be distant in the attribute space.17

This reasoning ignores the fact that large joint audiences may arise for quite different shows
if one follows the other on the same network. The inclusion of state dependence in our model
addresses this concern. A show will be estimated close to its lead-in show only if the retention
rate is high, relative to retention rates for other sequential shows.

Spatial competition also influences the size of joint audiences. Suppose shows A and B are
identical, with show C being the next closest of all the other shows. If the networks compete for
similar viewers by simultaneously airing B and C, then the joint audience of A and C will be
smaller than it would have been had C not been competing against B. Our structural model can
distinguish both theoretically and empirically these factors of joint audience size.

More technically, define ξi j t = (z jt −νz,i )′A(z jt −νz,i )+εi j t . This random variable is the sum
of utility terms not observed by the econometrician. The covariance (across viewers) between ξ j t

and ξ j ′t ′ is a function of their locations, z jt and z j ′t ′ , with covariance decreasing in the distance
between the two shows. Based on the observed covariance of choices by individuals, we can
identify the covariance matrix of ξi j t .

The number of ( j, t) pairs is 204, since we have 36 periods with three networks and 28 periods
with four networks. As such, we can estimate (204 · 205)/2 = 20, 910 independent moments.
Without any constraints on the covariance matrix of εi j t , all these moments are used to identify
this matrix. However, since we assume that εi j t is i.i.d., we can use these moments to identify the
location parameters in z as well as the other model parameters. Essentially, the parameters are
identified by the structure they impose on the 20,910 moments.18

While this structure identifies shows’ locations, it does not distinguish between A and the
scale of the space, determined by �z , �z , and z. Conceptually, the importance of the attribute
space in viewers’ decisions may be increased by either changing A to increase the sensitivity of
utility to distances between shows and ideal points, or changing �z , �z , and z to increase these
distances. Even if we normalize all elements in A to a given constant, there exists an infinite
number of �z , �z , and z combinations that yield the same likelihood. Any rotation or shifting of
the attribute space that preserves the distances between the shows and ideal points will not change
the likelihood. Without loss of generality, we normalize the mean ideal point for at least one
demographically defined group of viewers to be the origin, and normalize to zero the off-diagonal
elements in both �z and A. Furthermore, the diagonal elements of A are normalized to have a

17 Nothing in this argument relies on viewers preferring shows with similar observed characteristics. If viewers
generally seek “variety,” then shows with different observed characteristics will have large joint audiences and will be
close in the estimated attribute space. Our results, presented in Section 5, indicate that viewers are indeed likely to watch
shows with similar observed characteristics. We also assessed variety-seeking within a night by allowing A to depend on
the amount of television watched earlier that night. The relationship was insignificant.

18 While the covariance of ε is a diagonal matrix, the covariance of ξ , which represents the unobserved or random
component of utility, is not diagonal. As such, this specification of random utility does not possess the well-known
“independence of irrelevant alternatives” property. Our choice of type-I extreme value ε is for simplicity in computing
the conditional probability of equation (9).
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magnitude of one. That is, for each dimension k, the preference vector is either an ideal point
(Akk = −1) or an anti-ideal point (Akk = 1).19

Each period of a given network show is restricted to have the same characteristics and η value.
As such, a half-hour show and a two-hour movie both have K +1 show-specific parameters. Given
our intent of uncovering fundamental attributes of the shows, this restriction is natural.20

Turning to the identification of η, we can identify five mean utility parameters for the six
alternatives in each time slot. We set ηNon = 0 for all periods.21

� The number of dimensions. The number of relevant product attributes, or rank of the
attribute space, K , is not included in the estimator θ̂ . Rather, we determine the rank of the
attribute space by estimating the model using K = 1, . . . , 5 and computing Bayes’s information
criterion for each model, as well as other measures of fit that will be reported in Table 8. The
model with K = 4 has the lowest BIC using either the estimation data or the holdout sample.
The estimates of this specification are presented below and serve as the basis for our analysis of
network competition.

� A useful transformation. The ideal-point structure of our model is motivated by the appeal
of quadratic preferences for show attributes. From an econometric perspective, given the latent
nature of z jt , this structure can cause convergence problems. For simplicity, consider the case
when K = 1, A = −1, and νi,z ∼ N (0, σ 2). Define ν̃i,z ≡ νi,z/σ , so that ν̃i,z ∼ N (0, 1). In this
case equation (1) becomes

Vi jt = η j t − (z jt − σ ν̃i,z)
2 = η j t − z2

j t + 2z jtσ ν̃i,z − σ 2ν̃2
i,z . (15)

Clearly, z jt is not identified by the role of z2
j t , since η j t adjusts to maintain the value of the

intercept. Instead, z jt is identified by the term 2z jtσ ν̃i,z . Similarly, σ is identified by its role
in σ 2ν̃2

i,z , since z jt is free to adjust such that z jtσ is unaffected. Indeed, when estimating the
model as specified in (15) (or, equivalently, (1)), the z jt blow up as σ gets small. Using (15), the
linear-random-coefficients model can be asymptotically approached but never attained because
when σ = 0, the model has only an intercept. A solution to both the convergence problem and
asymptotic nesting is to reparameterize the model using z̃ j t ≡ z jtσ and η̃ j t ≡ η j t − z2

j t + z̃2
j t . As

such,

Vi jt = η̃ j t − z̃2
j t + 2z̃ j t ν̃i,z − σ 2ν̃2

i,z .

This transformation is essential whenever one or more of the dimensions has σ near zero and z jtσ

far from zero (for some ( j t)), since estimating parameters whose true values are huge (relative to
the other parameters) is almost impossible.

The transformation for arbitrary (K , �z, �z, A) is

z̃ j t ≡ �.5
z z j t , �̃z ≡ �−.5

z �z, η̃ j t ≡ η j t + z′j t Az jt − z̃′j t Az̃ j t . (16)

Letting zi = �̃z Xi + ν̃i,z , this transformation yields

Vi jt = η̃ j t + z̃′j t Az̃ j t − 2z̃′j t Azi + z′i�
.5
z A�.5

z zi . (17)

19 An alternative normalization is to normalize �z to be an identity matrix and to estimate both the sign and
magnitude of the (diagonal) weight matrix A. Since viewer heterogeneity is of particular interest, we prefer to estimate
�z and normalize A. We did use this alternative normalization to verify that Akk is negative for each dimension.

20 Generally, we could estimate different locations for each quarter-hour segment. However, this restriction is
needed to identify η j,7:45. Shows with a larger than expected audience at 8:00 (given η j,8:00, which is restriced to equal
η j,8:15, probably had a larger lead-in audience from 7:45. This large lead-in translates into a higher η j,7:45. If η j,8:00 were
free to determine the expected audience size during 8:00–8:15, then η j,7:45 could not be identified.

21 Since the networks’ η j are fixed for at least two quarter-hours, we can estimate ηNon in some periods. In
particular, we can estimate ηNon,t as long as at least one network η j,t “overlaps” with a normalized ηNon,t ′ for t �= t ′.
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We numerically integrate over the N(0,1) distribution of ν̃ and estimate the parameters z̃, η̃, �̃z , and
�z . Recall from above that A is normalized to be the negative-identity matrix and the off-diagonal
elements of �z are normalized to be zero.

5. Results
� We report the results for a model with K = 4 dimensions of the attribute space as discussed
in Section 4. The integral in (11) is evaluated numerically using importance sampling with 1,024
points from a Sobol sequence, as detailed in Section 4. The (asymptotic) standard errors are
derived from the inverse of the simulated-information matrix.22 After presenting the estimates,
we evaluate the model’s predictive power and compare it to the performance of a model that
categorizes each show a priori as one of six possible types.

� Switching-costs parameters. The variables with the strongest predictive power are the
state variables. Averaging over all 60 periods, 96% of nonviewers in a given period continue to be
nonviewers the next period. Similarly, 65% of nonnetwork viewers continue to watch nonnetwork
programming. For a network channel this proportion is 50% for shows just beginning and 85% for
shows continuing from the previous period. These high average persistence rates are explained
primarily by the (relatively) large switching costs presented in Table 2.23

As expected, the cost of leaving a network when its show continues from the previous period
is higher than when the show starts that period. For the baseline demographic group, the cost is
�δ,Constant = 1.973 utils for starting shows and �δ,Constant + δContinuation = 1.973 + 1.687 = 3.660
utils for continuing shows.24

Similarly, the nonnetwork switching cost within the hour, δMid = 2.946, is higher than on
the hour, δHour = 1.905. This reflects the fact that within the hour most nonnetwork shows are
continuations. For shows longer than 30 minutes, δSample = −.241 reveals that switching costs
are lower going into the second quarter-hour than going into the later quarter-hours. This reflects
sampling of long shows by some viewers. Also, joining a network show already in progress poses
an additional cost to switching states, since δInProgress = −.361. The estimate of �δ shows that
demographics are only weakly correlated with switching costs. Adults aged 18 to 24 have the
lowest switching costs, or the greatest tendency to “channel surf.”

� Outside utility parameters. We estimated a separate mean utility ηOut,t for each of the
60 periods. These intercepts revealed similar values across nights, with a slight increase through
each night. For simplicity, we report estimates from a model with these regularities imposed. The
twelve time-slot effects are reported as ηOut,8:00 through ηOut,10:45 in Table 3.25 The twelve time-
slot effects and the Friday effect provide the mean utility (ignoring state dependence) from the
outside alternative for members of the baseline demographic group. The estimates reveal lower
utility in each hour’s first quarter-hour. This reflects the tendency for viewers to begin watching
television on the hour.26 Also note that utility for the outside alternative begins an upward trend
at 9:30, presumably as viewers begin to retire for the night.

22 The reported standard errors, therefore, neglect any additional variance due to simulation error in the numerical
integration.

23 Idiosyncratic preferences (νi ) also account for some of the observed persistence. When the model is estimated
without νi , the switching-cost estimates are indeed higher.

24 The baseline demographic group—defined by having all zeros for the demographic dummy variables—corres-
ponds to men, 35 to 49 years old, in a household with annual income between $20,000 and $40,000, with children, in a
nonurban county, with multiple televisions, and a head of household with no more than a high school education. The 25
largest counties in the country are considered urban.

25 This restriction is rejected by a likelihood-ratio test. The test statistic is 156, with a .01 critical value of 72.9.
Nonetheless, our desire to report a manageable number of parameters overrides the marginal improvement in fit. Further-
more, the other parameters are insensitive to this restriction. We also test, and reject, the hypothesis that the twelve ηOut
are the same. The test statistic is 368 and the .01 critical value is 24.7.

26 Since we estimate a show-specific η j t for each show, our model already accounts for the possibility that higher-
quality shows begin on the hour. This downward blip therefore reflects an intrinsic desire to begin watching television on
the hour.
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TABLE 2 Switching Cost Parameter Estimates

Standard
Parameter Estimate Error

δOut 3.397 .020

δCont 1.687 .037

δSample −.241 .051

δInProgress −.361 .037

δHour 1.905 .210

δMid 2.946 .211

�δ,Constant 1.973 .048

�δ,Ages 2−11 .072 .050

�δ,Ages 12−17 −.138 .056

�δ,Ages 18−24 −.244 .044

�δ,Ages 25−34 −.081 .033

�δ,Ages 50−64 .012 .036

�δ,Ages 65+ −.131 .044

�δ,Female .029 .022

�δ,Income<$20,000 .104 .033

�δ,Income>$40,000 −.054 .029

�δ,No Children −.036 .028

�δ,Urban County −.004 .024

�δ,Live Alone .089 .045

�δ,Undergraduate −.022 .029

�δ,Graduate −.143 .032

�δ,Basic Cable −.046 .026

The outside-alternative mean utilities vary across demographic groups according to the
estimates in Table 4. These adjustments are different depending on the hour of the night and
whether the day is Friday.27 First consider the estimate of �Out. Except for ages 18 to 24, the
utility from the outside alternative, during the hour 8:00–9:00, monotonically declines as age
increases. This reflects the fact that older people watch more television than do young people.
This relationship between age and utility from the outside alternative is also present for the later
hours. The table reports �9 + �Out and �10 + �Out to emphasize this point. Note, however, that the
change in utility from one hour to the next varies considerably across demographic groups. As
expected, children between the ages of 2 and 11 experience a much larger increase in utility as
the hours pass than do older children and adults.28

27 Recall from (12) that X ′
i �Out is the mean of νi , and from (8) that X ′

i �9 and X ′
i �10 are added to the utility for

the 9:00–10:00 hour and 10:00–11:00 hour, respectively.
28 For example, consider the increase in nonviewing utility from 8:15 to 10:15 for a 10-year-old child (from a baseline

household) and a 35-year-old (baseline) man. For the man, utility rises by ηOut,10:15 − ηOut,8:15 = 2.764 − 2.398 = .366
utils. For the child utility rises by (1.461 + 2.764) − (.523 + 2.398) = 1.304 utils.
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TABLE 3 Time Slot Effect, Day Effect,
and Idiosyncratic Taste for
the Outside Alternative

Standard
Parameter Estimate Error

ηOut,8:00 2.026 .220

ηOut,8:15 2.398 .220

ηOut,8:30 2.358 .222

ηOut,8:45 2.349 .219

ηOut,9:00 1.957 .225

ηOut,9:15 2.342 .223

ηOut,9:30 2.405 .226

ηOut,9:45 2.593 .225

ηOut,10:00 2.409 .216

ηOut,10:15 2.764 .219

ηOut,10:30 3.038 .220

ηOut,10:45 3.047 .221

ηOut,Friday −.019 .036

σOut .651 .018

The estimates also indicate that women have slightly lower outside utility. Interestingly,
income is weakly correlated with outside utility. The only statistically significant finding is that
people from households with annual income exceeding $40,000 have higher outside utility dur-
ing the 10:00–11:00 hour. Also, outside utility increases in the education level of the head of
household, particularly during the 8:00–10:00 hours.

Another notable finding is that having multiple television sets only affects whether a person
watches TV during the 10:00–11:00 hour. For households without multiple sets, the chance that
a TV is in the bedroom is low. During the last hour of prime time, not being able to watch TV in
the bedroom decreases the utility from watching TV, which is equivalent to increasing the utility
from not watching.

Finally, the only significant day effect is that children aged 2 to 11 years have a lower outside-
alternative utility on Friday.29 People of all ages have fewer pressing concerns on Friday night,
which tends to lower the utility from the outside alternative. While adults and older children
counter this decrease with social opportunities, young children primarily watch more television.

After accounting for the effect of these demographic characteristics, there remains a sig-
nificant degree of unobserved heterogeneity in the taste for the outside alternative. The standard
deviation of the idiosyncratic νi,Out is .651, exceeding the .506 standard deviation (across i) of
X ′

i�Out .

� Nonnetwork utility parameters. Table 5 reports the parameters affecting Ni , the number
of nonnetwork channels available to viewer i . The most significant factor is cable subscription
status. For the baseline viewer, adding basic cable increases the mean Ni from 4.54 to 13.81, the

29 Estimation of a simplified model (without integration) indicates that the day effect is insignificant for all demo-
graphic groups and all days except for children on Friday. We impose these zero effects in the full model.
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TABLE 4 Estimates of � related to the Outside Alternative

Demographic �Out �9 + �Out �10 + �Out �Friday

Ages 2–11 .523 (.069) 1.201 (.077) 1.461 (.087) −.462 (.067)

Ages 12–17 .332 (.086) .445 (.102) .752 (.089) −.082 (.081)

Ages 18–24 .442 (.079) .168 (.091) .035 (.079) .040 (.075)

Ages 25–34 .236 (.057) .066 (.061) .071 (.057) —

Ages 50–64 −.406 (.060) −.281 (.066) −.145 (.061) —

Ages 65+ −.831 (.070) −.576 (.080) −.258 (.071) —

Female −.141 (.036) −.036 (.041) −.061 (.037) —

Income < $20,000 −.078 (.051) .015 (.065) −.090 (.058) —

Income > $40,000 .048 (.045) .059 (.051) .169 (.047) —

No children −.055 (.045) −.058 (.052) .025 (.048) —

Urban county .046 (.038) −.003 (.044) −.091 (.040) —

Live alone .103 (.078) .201 (.088) .120 (.078) —

Undergraduate .167 (.046) .108 (.053) .117 (.051) —

Graduate .352 (.050) .318 (.056) .128 (.052) —

Only one TV −.028 (.041) .063 (.047) .194 (.041) —

Standard errors are in parentheses to the right of the corresponding estimate.

standard deviation from 7.52 to 15.19, and the median from 2.35 to 9.29.30 Not surprisingly, we
also find a greater number of nonnetwork channels in urban areas. The second most significant
factor is being female, which significantly lowers Ni , presumably due to the frequency of sports
programming on many nonnetwork channels.

� Show characteristics. Table A1, in the Appendix, presents the prime-time schedule of
network programs for the five nights in our sample. Each show’s η̃ estimate is also reported. This
parameter reflects a show’s ability to attract viewers with diverse preferences. The standard errors
of these estimates range from .222 to .297.

The most interesting aspect of our model is the latent-attribute space. The simplest way to
inspect the location parameters is to plot the z̃ j t . Figure 1 and Figure 2 each present two of the
four dimensions of the attribute space. The precise location of each show is the left edge of its
descriptive label. The standard errors of the locations range from .036 to .135 with a mean of
.061. Each figure also contains a table of the estimates of �̃z , the coefficients on the demographic
measures in the mean of viewer preferences.

The estimates of �̃z are reported in Table 6. According to these estimates preferences are not
independent across the four dimensions. For example, children tend to prefer shows with high
levels of attribute 3 and low levels of attribute 4, while older viewers tend to prefer shows with
low levels of attribute 3 and high levels of attribute 4. As discussed in Section 4, the attribute
space may be freely rotated without changing the model’s implications or the likelihood function.
In estimation we normalize �z to be diagonal. After estimation we rotate the show locations
and preference vectors such that the preference vectors are independent across dimensions. This
is a natural normalization similar to those used in factor analysis to obtain orthogonal (and

30 The mean of ln(x) where x ∼ N (µ, σ 2) is exp(µ + σ 2/2) and the variance is exp(2µ + σ 2) exp(σ 2 − 1).
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TABLE 5 Estimates of �N and �σN

�N �σN

Standard Standard
Demographic Estimate Error Estimate Error

Constant .853 .288 .139 .073

Ages 2–11 −.243 .113 —

Ages 12–17 −.039 .143 —

Ages 18–24 −.257 .123 —

Ages 25–34 −.140 .087 —

Ages 50–64 −.094 .092 —

Ages 65+ −.259 .114 —

Female −.446 .057 —

Income < $20,000 .351 .088 —

Income > $40,000 −.009 .070 —

No children .105 .074 —

Urban county .380 .063 —

Live alone .275 .124 —

Undergraduate .054 .075 —

Graduate .057 .080 —

Basic cable 1.376 .095 −.255 .084

Premium cable .246 .061 −.042 .072

interpretable) dimensions of the attribute space. The resulting locations and preferences are re-
ported in Figures 1 and 2.

Table 6 reports the estimates of the standard deviation of idiosyncratic preference heterogene-
ity, �.5

z . For each dimension this variation is more than 4.7 standard deviations greater than zero,
indicating, as discussed in Section 4, that preferences have the ideal-point structure rather than
the linear random-coefficient structure.31 While there is significant idiosyncratic (or unobserved)
variation in viewer preferences, much of the variation in νi,z can be explained by demographics.
The percent of variation in preferences νi,z explained by the 14 demographic measures is 73.2%,
34.5%, 91.3%, and 84.2%, respectively, for dimensions 1 through 4.

Interpreting the latent attributes. Although the show locations are based on the objective data,
their interpretation is based on our subjective knowledge, perception, and understanding of these
shows. We estimated many specifications of the model, and in all cases a split between sitcoms
and nonsitcoms was clearly evident. This finding is in accordance with the industry view that the
most distinguishing characteristic of a television show is whether it is a sitcom. Furthermore, in
every specification with at least two latent attributes, one of the attributes reflected the ages of
the characters and targeted viewers. This also accords with the industry view of how shows are
characterized. The following paragraphs present our interpretation of the four dimensions in the
attribute space of the specification reported here.

31 Despite the absence of a linear dimension, the transformation described in Section 4 is still needed for convergence
of the estimation routine, since the untransformed model has highly correlated parameters that are poorly scaled.
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TABLE 6 Estimates of Preference Parameters �̃z and �z

Parameter Dimension 1 Dimension 2 Dimension 3 Dimension 4

�̃z,Ages 2−11 .265 (.148) −.802 (.125) .717 (.144) −.988 (.139)

�̃z,Ages 12−17 .297 (.168) −.384 (.155) .443 (.159) −1.149 (.143)

�̃z,Ages 18−24 .100 (.166) −.174 (.141) .475 (.153) −1.422 (.127)

�̃z,Ages 25−34 −.148 (.098) −.042 (.094) .288 (.098) −.545 (.094)

�̃z,Ages 50−64 .277 (.109) .027 (.098) −.515 (.108) .572 (.107)

�̃z,Ages 65+ −.097 (.153) .075 (.118) −.698 (.138) 1.188 (.129)

�̃z,Female −.131 (.067) −.340 (.061) −.448 (.063) −.201 (.065)

�̃z,Income<$20,000 .436 (.089) −.031 (.082) −.090 (.094) −.261 (.084)

�̃z,Income>$40,000 −.148 (.073) .198 (.069) .000 (.074) .086 (.074)

�̃z,No Children −.324 (.082) .122 (.078) −.210 (.085) .450 (.077)

�̃z,Urban County −.077 (.066) .139 (.062) −.051 (.066) −.235 (.063)

�̃z,Live Alone −.147 (.136) −.008 (.115) −.224 (.143) .159 (.124)

�̃z,Undergraduate −.358 (.082) .235 (.076) −.065 (.084) −.051 (.081)

�̃z,Graduate −.553 (.082) .123 (.081) .036 (.090) −.068 (.091)

�.5
z .283 (.030) .556 (.024) .187 (.039) .409 (.019)

Standard errors are in parentheses to the right of the corresponding estimate.

Dimension 1 appears to be the “plot” dimension. Shows located low in dimension 1 have
intricate, well-developed plot lines, while shows located high are situation comedies and crime
dramas with less-developed plots. Women tend to prefer the shows with more-developed plots.

Dimension 2 reflects the degrees of realism and reality in the shows. Lower-income viewers
tend to prefer shows with high values of this attribute (on the right-hand side of Figure 1),
while viewers from households headed by college graduates prefer shows with low levels of this
attribute. Shows with the highest levels of this attribute are crime dramas like America’s Most
Wanted, American Detective, and the NBC movie Fatal Memories about a true murder story. Not
quite as high are the news magazines, such as 48 Hours and 20/20, along with NFL football.
Then we see fictional dramas, such as Heat of Night and Law and Order, with realistic plots.
Finally, on the low end of dimension 2, we find the situation comedies. Note that all the situation
comedies are contained in the upper left-hand quadrant of dimensions 1 and 2. Situation comedies
are essentially unrealistic shows with thin plots.

Dimensions 3 and 4 reveal the relevance of cast demographic characteristics for viewing
choices. Shachar and Emerson (2000), using a dataset similar to ours, found that individuals
prefer shows with characters whose demographics are similar to their own. The estimates of show
locations and individuals’ ideal points for dimensions 3 and 4 are consistent with this finding.
Consider dimension 4 in Figure 2. Shows with older characters and watched by older viewers are
located low on this attribute, while shows with young characters and watched by young viewers
are high (to the right) in this dimension. Furthermore, shows in the middle use neither particularly
young nor old characters and appeal to the middle-aged viewers with preferences centered in
this dimension. That is, the ages of viewers and characters are monotonically decreasing in this
dimension. This distinction between younger and older shows is most apparent in sitcoms.

Dimension 3 reveals the same phenomenon, but in a less obvious form. The viewer preference
estimates reveal that shows low in dimension 3 appeal to urban, educated men, between the ages
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FIGURE 1

SHOW LOCATIONS IN DIMENSIONS 1 AND 2

of 18 and 34. These same characteristics describe many of the characters in the shows low in
this dimension, such as those on Seinfeld, Melrose Place, Cheers, Wings, and Mad About You.
On the other hand, shows with high levels of this attribute, such as Golden Palace and Family
Matters, have characters that match the characteristics of the children and older women who have
preference vectors high in this dimension.

The interpretation of the attribute space is a “reality check” for our model. Although we have
not used any prior information in the estimation procedure—not even in the choice of starting
values—the results are easy to interpret and, as we demonstrate below, consistent with insiders’
views of this industry.

Measuring show similarity. Simultaneously processing the information in all four dimensions is
© RAND 2001.
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FIGURE 2

SHOW LOCATIONS IN DIMENSIONS 3 AND 4

difficult. Two shows that are close in one figure may be far from one another in the other figure.
One way of processing the information is to construct a matrix of the distances between each pair
of shows. The maximum distance is 1.44, the minimum distance is .04, and the mean distance
is .64. But what do these numbers mean? A more meaningful number is the correlation (across
viewers) in utility derived from the attribute space. For shows located at za and zb, we define

ρu(za, zb) = correlation
[
(za − νz,i )

′A(za − νz,i ), (zb − νz,i )
′A(zb − νz,i )

]
. (18)

This correlation depends on show distances, angles between shows, and the distribution of
preferences νi,z . Correlation is also a better measure of competition between two shows, because
© RAND 2001.
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it directly measures the extent to which two shows compete for the same viewers.32 Using all 64
shows, the lowest correlation is −.630, the highest is .999, and the mean is .363.

Using ρu , we have identified each show’s closest shows. In most cases the show titles clearly
convey the similarities between shows with high correlations. For example, the closest shows to
FBI are Top Cops and American Detective. Similarly, the news magazine 20/20 is closest to two
other news magazines, Primetime Live and 48 Hours.33 Indeed, all the closest pairs support the
intuition that shows that are similar, according to industry standards and common perceptions,
are located near one another in the latent-attribute space.

It is interesting and encouraging to note that while a network’s shows from the same evening
are often located quite close to one another (in Figures 1 and 2)—reflecting the strategy of
homogeneous programming—this is not always the case. For example, on Monday night, NBC’s
two teenage sitcoms Fresh Prince and Blossom, at 8:00 and 8:30, respectively, have a ρu of .985.
The realistic drama movie Fatal Memories, labelled “Nt3:movie(murder),” has a ρu of−.058 with
its lead-in Blossom. Although these two shows have a sizable joint audience, relative to shows
paired at random, it is smaller than the joint audiences typical of shows on the same network
aired in sequence. This result indicates that our model distinguishes, as expected, between the
two sources of large joint audiences—switching costs and similarity in the shows’ attributes.

Another tool for analyzing the estimated attribute space is cluster analysis. The average
linkage algorithm of Sokal and Michener (1958) groups the 64 shows as presented in Table
A2 in the Appendix.34 We find the shows are intuitively categorized by five clusters, which we
call Sitcom Old (SO), Sitcom Young (SY), Drama Fiction (DF), Drama Real (DR), and News
Magazine (NM). Increasing the number of clusters to six identifies within SO a subgroup we call
Sitcom Middle (SM). Increasing the number of clusters to seven yields a subgroup within SY
of Fox-like “sitcoms.” This clustering of shows yields categories that accord well with beliefs of
network strategists and others who are familiar with these shows.

While this categorization is useful for interpreting the results, it is a poor substitute for each
show having its own location in a continuous attribute space. That is, we find significant variation
in characteristics among shows in the same cluster. The most homogeneous category is NM,
whose show-pairs have a mean ρu of .89 (compared to a ρu of one for identical shows). The
other four categories have ρu means ranging from .64 to .76. Homogeneity within categories also
implies a constant ρu for any show in cluster A paired with a show in cluster B. This fails to
hold. For example, show-pairs with one SO and one DF have ρu ranging from −.448 to .924. As
such, knowing the categories of two shows provides incomplete information about the extent to
which they are similar. The consequences of assuming homogeneous shows within categories are
discussed in the next subsection when we compare our results to a model using such categories.

We use the six show clusters from above to assess variety-seeking behavior. We ask, “What
percentage of viewers gets at least X% of its viewing from N show types?” Using only viewers
who watch more than one show, we find 25% of viewers get 70% of their viewing from one
type; 55% get 80% from two types; and 71% get 90% from three types. Hence, most viewers
primarily watch a few types of shows. Using our model to simulate choices, we predict similar
percentages—22, 51, and 67, respectively.

� Goodness of fit and model comparisons. We test the model’s fit in each of the 60 quarter-
hours using the χ2 test presented in Heckman (1984) for models with parameters estimated from
microdata. The test statistic is a quadratic form of the difference between the observed cell counts
and the model’s expected cell counts. Periods with Fox have J = 6 cells and periods without Fox

32 Furthermore, unlike ρu , Euclidean distances are sensitive to whether one uses z jt or z̃ j t .
33 Each show’s closest shows are presented in Goettler and Shachar (1999).
34 Each show begins as its own cluster. The number of clusters is then reduced by merging the two closest clusters.

With average linkage the distance between two clusters is the average distance between pairs of shows, one from each
cluster. We use (1-ρu )/2 as a “distance” measure between zero and one. The merging proceeds until the desired number
of clusters is achieved.
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have J = 5 cells.35 Using a significance level of .01, we fail to reject the null hypothesis that the
model is correctly specified for 55 of the 60 quarter-hours.36

We also assess the model’s ability to predict viewer transitions between periods, and more
generally, covariances in choices (i.e., joint audiences) for all pairs of shows. For instance,
consider Table 7, which presents actual and predicted transition matrices for Monday at 8:30,
8:45, and 9:00. The actual transition matrices provide the percentage of viewers who undergo
each transition. The predicted transition matrices provide the percentage of simulated viewers
who undergo each transition.37 These transition matrices illustrate the roles of switching costs
and show characteristics, and the ability of our model to distinguish between these sources of
persistence. For example, at 9:00 both ABC and NBC register low persistence measures of 40%
and 44%, respectively. In addition, the transitions across networks are large and uneven. NBC
loses 19% of its audience to CBS’s Murphy Brown but gains 22% of ABC’s audience. These
flows make perfect sense when one considers the characteristics of the shows. Many of NBC’s
viewers were sitcom lovers who were not interested in the crime-drama movie Fatal Memories
and hence switched to CBS to continue watching sitcoms. Similarly, many of ABC’s 8:00–9:00
viewers prefer crime dramas and therefore opted to watch NBC’s crime-drama movie rather than
football. Accurately predicting these audience flows, for both the current schedule and alternative
schedules under consideration, is essential to network strategists.

The accuracy of predicted audience flows and ratings for alternative schedules depends on
the model’s ability to predict joint audiences for all pairs of shows—not just those currently aired
in sequence. To assess the model’s ability to do this, we define a pseudo-correlation matrix, ρ̃

with (r, c) element

ρ̃rc =
number of people choosing BOTH r and c√

number choosing r
√

number choosing c
. (19)

This measure is bounded by zero and one. Using actual choices, it varies from zero to .97, with a
mean of .16 and a standard deviation of .14. We construct ρ̃ using simulated viewers and compare
it the actual ρ̃.38

Table 8 compares various specifications of the model using likelihood values, Bayes’s
information criterion, and the RMSE over the elements of ρ̃. We compute these measures using
both the estimation sample and a holdout sample of 3,143 non-Eastern time zone people.39

Models 3 through 8 all use continuous latent-attribute spaces of various dimensions. Only
model 6, with 451 parameters, does not use demographics in the mean of νi,z . This model is
included to demonstrate that a latent-attribute space can be identified even if every person’s
preference vector is from the same distribution. It performs reasonably well. Of course, predicting
ratings for specific demographic groups, as the networks often desire, is much easier and better
when �z is estimated. Interestingly, the interpretation of the attributes and clustering of the shows
is robust to whether �z is used.

35 Constructing a single χ2 statistic to test the model for all 60 periods is not computationally feasible, since
(ignoring the absence of Fox in some periods) 660 cells fully partition the response-vector space. This test also appears in
Moore (1977, 1978) and as a special case in Andrews (1988).

36 The five rejections occur in quarter-hours with movies. This reflects the difficulty of predicting a movie’s rating
in eight periods when its location and η are restricted to the same each period. We use the restriction since it is intuitively
appealing and drastically reduces the number of parameters.

37 Viewers are simulated by randomly drawing νi and εi and determining the utility-maximizing choices.
Alternatively, the predicted transition matrices may be computed as averages over viewers’ predicted probabilities for
each choice conditional on their actual lagged choice. Using these conditional probabilities, we compute the “hit” rate as
the percentage of viewers whose actual choice is her most likely one. Our model “hits” 81.7% of the viewing choices and
93.9% of the TV-off choices.

38 We actually compute ρ̃ across all quarter-hours of every show. Enough viewers are simulated to ensure a
negligible simulation error.

39 We omit Monday from the computation of the holdout likelihood due to the live broadcast of Monday Night
Football. The likelihood for the holdout sample is therefore higher than for the estimation sample.
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TABLE 7 Viewer Transition Matrices for Monday at 8:30, 8:45, and 9:00

Actual at 8:30 Predicted at 8:30
Actual
at 8:15 Off ABC CBS NBC Non Off ABC CBS NBC Non

Off 93.8 1.0 1.5 1.7 2.1 92.1 2.0 1.8 1.8 2.4

ABC 6.2 81.3 3.5 2.7 6.2 8.0 75.5 4.2 3.1 9.2

CBS 7.5 4.5 79.3 2.2 6.5 8.0 4.8 76.4 3.4 7.5

NBC 8.9 7.1 6.9 67.5 9.6 12.5 9.4 4.2 65.5 8.6

Non 5.6 2.3 2.3 2.6 87.2 4.8 6.7 3.1 3.3 82.1

Actual at 8:45 Predicted at 8:45
Actual
at 8:30 Off ABC CBS NBC Non Off ABC CBS NBC Non

Off 92.8 1.5 1.2 1.3 3.2 92.8 1.4 1.9 1.4 2.5

ABC 4.9 86.4 2.1 1.4 5.2 2.8 92.2 .3 .9 3.8

CBS 3.8 3.3 89.3 2.3 1.3 1.5 1.0 95.4 .5 1.5

NBC 4.4 2.2 1.9 88.9 2.5 3.4 1.9 1.2 90.0 3.4

Non 5.2 3.3 1.5 1.9 88.1 7.6 2.7 3.6 2.1 84.0

Actual at 9:00 Predicted at 9:00
Actual
at 8:45 Off ABC CBS NBC Non Off ABC CBS NBC Non

Off 88.5 2.4 3.9 2.2 3.0 89.8 2.0 3.6 2.0 2.6

ABC 11.2 40.3 13.1 22.0 13.4 10.5 53.4 9.9 10.2 16.0

CBS 6.9 6.9 74.1 7.1 5.1 3.7 5.6 78.1 3.5 9.1

NBC 18.3 8.4 19.1 43.9 10.4 17.6 5.2 18.5 42.9 5.8

Non 6.7 12.4 6.2 7.4 67.2 8.4 9.6 7.2 7.8 67.0

Note: Values are the percentage of viewers watching the choice denoted by the row who also watched or were predicted
to watch the choice of the column. “Non” refers to nonnetwork programming. Fox did not broadcast on Monday.

Models 3, 4, 5, 7, and 8 are identical except for K , the dimension of the attribute space. All
measures of fit improve monotonically as K increases. However, BIC is minimized by K = 4. The
estimates of this model are reported in this section and used for the analysis in the next section.

The advantage of continuous show attributes over show categories is illustrated by models
9 and 10. Both models characterize shows using categories and allow viewers to differ in their
preferences over these categories. Model 9 allows preferences to vary only across demographic
segments, while model 10 also allows for unobserved differences among viewers. The show
categories are Sitcom Old, Sitcom Middle, Sitcom Young, Drama Real, Drama Fiction, and News
Magazine, as reported in Table A2.40 Model 3, which uses just a single latent-continuous attribute
(and fewer parameters), outperforms models 9 and 10 with six “observed” show categories. This

40 Our use of categories based on the z jt estimates assumes one could determine a priori the best categorization
scheme. In practice this is unlikely, but we want to be favorable in our treatment of this approach. Model 9 is similar to
the audience flow models of Rust and Alpert (1984) and Rust and Eechambadi (1989), which use five show types and
eight demographically defined viewer segments.
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TABLE 8 Model Comparisons

Model Description Using Estimation Data Using Holdout Data

Model Number of Log RMSE Log RMSE
Label K �z νi Parameters BIC Likelihood ρ̃ BIC Likelihood ρ̃

1 — No No 187 221546 −110016 .0520 170040 −84263 .0532

2 — No Yes 189 218050 −108260 .0407 167086 −82778 .0429

3 1 Yes Yes 270 215178 −106496 .0336 165318 −81566 .0357

4 2 Yes Yes 349 214454 −105814 .0303 165342 −81258 .0334

5 3 Yes Yes 428 213962 −105248 .0283 165692 −81113 .0324

6 4 No Yes 451 215060 −105704 .0306 166916 −81632 .0346

7 4 Yes Yes 507 213721 −104808 .0267 165923 −80909 .0311

8 5 Yes Yes 586 213819 −104537 .0260 166531 −80893 .0310

9 0 Yes No 271 220670 −109238 .0487 170176 −83991 .0502

10 0 Yes Yes 281 215985 −106855 .0339 166551 −82138 .0370

Model 1 only has quality (η j t ), state dependence, �Out , and �N .
Model 2 adds two parameters: the variances of νi,Out and νi,N .
Model 3 adds one latent attribute and parameterizes var(νi,N ) = exp(X ′

i �σN )2).
Models 4–8 are the same as 3 except with more latent attributes, and model 6 sets �z = 0.
Models 9 and 10 both use six show categories from Table A2. Model 9 has no νi heterogeneity.
Model 10 has a νi element for each show category and the same νi,Out and νi,N as models 3–8.
Model 7 is the specification used throughout Sections 5 and 6.

highlights the importance of allowing shows to be characterized continuously—even if along only
a single attribute.

6. Spatial competition and scheduling

� In Section 5 we demonstrated that our estimated attribute space is intuitive. We now use
the estimated product locations to characterize and assess firm behavior.41 First we characterize
spatial competition given our estimates. We then illustrate that firm behavior, for the most part, is
explained by an equilibrium model in which firms maximize ratings, which serve as a proxy for
profits.42 Discrepancies between actual and predicted strategies are primarily due to the networks’
use of two “rules of thumb,” as discussed later.

� Spatial competition. While theoretical results of product-differentiation equilibrium are
available for some spatial competition models, such as Hotelling (1929) and many of the models
discussed in Anderson, de Palma, and Thisse (1992), there are no such results for competition
among multiple firms in multiple dimensions. Here, we examine whether Hotelling’s principle of
minimal differentiation applies, given the distribution of preferences. If it does not hold, then to
what extent do firms differentiate their products in equilibrium? We find that firms in this industry
differentiate their products, and that this strategy is consistent with a Nash equilibrium of the
product location game.

41 Throughout our analysis we assume firms know—or act as if they know—all product locations and the other
estimated parameters of the model.

42 Goettler (1999) analyzes competition among the networks using an estimated-revenue function and finds results
similar to those found here using average ratings. We also ignore costs, since in 1992 programming cost about $20,000
per minute for all shows.
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Implicit in any discussion of spatial competition is a measure of the similarity (or difference)
between two products. Our measure of similarity, denoted ρu , is the correlation (across viewers)
of utility derived from the attribute space, as defined in (18). This measure, for shows A and B,
is nearly identical to the correlation (across viewers) of the probability of watching show A with
the probability of watching show B. Thus, it captures the extent to which two shows compete for
the same viewers.

Observed product differentiation. Since the networks view the 8:00–10:00 period as distinct from
the 10:00–11:00 period, we consider these two periods separately. (We discuss their reasoning for
this breakdown at the end of this section.) In the early period the average ρu of shows aired against
each other is .307, compared to the .428 average over random combinations of these early shows.
In the 10:00–11:00 period the average ρu of competing shows is .609 compared to the average of
.684 for randomly paired shows. Since both of these differences are significant at the 1% level, we
find evidence of strategic counterprogramming in both periods. The tendency to counterprogram
is even clearer using the show types in Table A2 and the schedule in Table A1. In particular,
these networks never simultaneously air three sitcoms or three nonsitcoms during 8:00–10:00.
However, if the networks behaved nonstrategically (i.e., randomly), such events would occur in
about 25% of the time slots because about half the shows are sitcoms.

Optimal product differentiation. We now ask whether counterprogramming is consistent with Nash
equilibrium. A natural game to consider is the “scheduling game” in which each network chooses
the sequence of its shows. This game, which we analyze in the next subsection, is influenced not
only by consumer preferences, but also by state dependence and the restriction that each network
air only its own shows. We first wish to analyze the more conceptual product-location game in an
environment characterized only by consumer preferences. That is, if each network could air the
very popular Cheers, would they all do so? Or does the distribution of preferences, and stock of
other shows, induce them to differentiate?

We consider a single time slot in which each network chooses one show from among the 64
shows in our data. With three networks this strategy space is represented by a three-dimensional,
64×64×64 matrix. Each network’s payoff is its predicted rating (i.e., market share). This normal
form game, conveniently, has a unique pure-strategy Nash equilibrium of Cheers, Full House, and
20/20. As expected, these are popular shows that most people recognize as being very different
from one another. Indeed, the average ρu across these shows is only .094, compared to an average
of .420 across all pairs of shows. Interestingly, this equilibrium is also the collusive outcome.

This single equilibrium, however, cannot serve alone as a basis for characterizing spatial
competition in this market, since these three shows may be unusual in some respects, such as
having unusually high η values. To obtain a characterization less sensitive to particular shows, we
repeatedly select 30 shows at random and determine the Nash equilibria and collusive outcome.43

For 998 of the 1,000 iterations the equilibrium is unique and the other two cases have no
pure-strategy equilibrium. Let ρ̄u denote the average ρu over the three pairs formed from a
triplet of shows. Averaging over the 998 equilibria, ρ̄u is .116 lower than the expected ρ̄u if the
networks behaved randomly (instead of strategically). This difference is significant at the 1% level.
Furthermore, over 69% of the equilibria have ρ̄u lower than the mean ρ̄u over all possible show
triplets using the 30 random shows.44 Thus, in equilibrium firms tend to strategically differentiate
their products.

It is also interesting to note that 607 of the 998 equilibria are the same as the collusive
outcome, and the combined network ratings in the remaining cases are only 1.25% lower in
equilibrium than in the collusive outcome. That is, the gains to differentiation are nearly fully
achieved by the competitive outcome.

43 We also conducted the analysis randomly selecting 10 and 20 shows with similar results.
44 The fact that nearly 31% of the equilibria have less product differentiation than expected from random schedules

reveals that quality considerations often dominate spatial considerations.
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� Scheduling strategies. The single-time-slot game demonstrated that more is to be gained
by targeting a different set of consumers than by crowding a particular high-density niche, thereby
rejecting Hotelling’s principle of minimal differentiation for this market. We now consider
the scheduling game in which the networks choose the sequence of their current stock of
shows to maximize ratings. Notice that ignoring show costs is even less problematic for the
scheduling game, since the strategies do not involve changing which shows are produced. We
use the equilibrium of the scheduling game to determine whether observed scheduling strategies,
including the treatment of 8:00–10:00 as distinct from 10:00–11:00, are optimal.

Observed scheduling strategies. In addition to the counterprogramming already presented, the
networks’ actual schedules reveal the use of homogeneous programming. This strategy generates
high ρu for a network’s shows on the same night. The average ρu for shows on the same night
and network aired during 8:00–10:00 is .109 higher than the average for randomly generated
schedules. This difference is significant at the 1% level.

Optimal scheduling strategies. First we describe each network’s unilateral optimization problem
and then our computation of equilibrium. The most straightforward approach to finding a network’s
optimal (best-response) schedule is to simply compute the average ratings for each feasible
schedule and select the schedule with the highest ratings. But this approach is computationally
infeasible, since a network with 20 prime-time shows has roughly 20! ≈ 1018 possible
schedules. We employ the “iterative-improvements” approach of combinatoric optimization to
find approximate best-response schedules. Beginning with the network’s original schedule, we
execute ratings-improving swaps of continuous blocks of shows (ranging in length from 30 minutes
to three hours) until there are no more such swaps. This process is sure to converge, although
possibly at a local minimum.45

We first compute each network’s optimal schedule, holding the other networks’ schedules
fixed. By airing stronger shows early and by increasing both counterprogramming and
homogeneous programming, ABC, CBS, and NBC are able to increase their (predicted) weekly
ratings by 15.8%, 12.0%, and 15.3%, respectively.46

In each case the ratings gains are almost exclusively at the expense of nonnetwork
programming and the outside alternative of not watching TV. Thus, we expect these gains to
persist when the networks react. We find a Nash equilibrium for the static scheduling game by
cycling through the networks, allowing each network to play its best-response schedule given the
most recent schedules of the other networks. Each of the big three networks has higher average
ratings in equilibrium, although Fox is worse off. Ratings increase by 13.3% for ABC, 6.1% for
CBS, 15.7% for NBC, and decrease by 6.8% for Fox.47 While ABC and CBS have equilibrium
gains lower than their best response gains, NBC benefits from the strategic responses of its
competitors.

The equilibrium gains for ABC, CBS, and NBC come primarily at the expense of nonviewing
and nonnetwork viewing. Since most nonnetwork channels offer the same programming (music,
news, sports, etc.) in every time slot, their ability to respond to the networks is limited. Thus, while
our equilibrium ignores strategic moves by nonnetwork channels, it is likely that such moves have
little impact.

Table 9 reports ratings and scheduling strategies for the actual and equilibrium schedules
of ABC, CBS, and NBC.48 Comparing columns labelled “Actual” with columns labelled

45 Goettler (1999) investigates various modifications of this approach, such as starting at random schedules and
allowing for simultaneous swaps of up to four blocks. The improvements in the attained ratings are minimal and not worth
the increased computational demands.

46 These improvements are statistically significant at the 1% level. The standard deviation of weekly average
ratings, using random draws from the distribution of νi and from the asymptotic distribution of the estimator θ̂MSL, is
less than .26 for each of these networks. The standard deviations of the gains are all less than .13. The improvement for
Fox is an insignificant 2.2%.

47 While the equilibrium reported is not unique, the ratings gains differ by no more than .4 across all equilibria
we’ve found. However, other equilibria may exist that differ by more than this amount.

48 Fox’s equilibrium schedule is the same as its actual schedule.
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TABLE 9 Nash Equilibrium Schedules Compared to Actual Schedules

ABC CBS NBC

Actual Equilibrium Actual Equilibrium Actual Equilibrium

Rating 8.57 9.70 8.69 9.22 8.25 9.54

% gain 13.25 6.06 15.67

CP 8:00–10:00 .33 .12 .26 .20 .33 .14

NH 8:00–10:00 .69 .69 .66 .78 .37 .70

CP 8:00–11:00 .40 .21 .38 .25 .44 .23

NH 8:00–11:00 .39 .70 .46 .79 .39 .75

η8:00 2.33 2.49 2.21 2.14 2.12 2.30

η8:30 2.12 2.32 2.25 2.13 2.06 2.23

η9:00 2.33 2.37 1.95 2.10 2.11 2.12

η9:30 1.94 2.32 1.78 1.92 1.95 1.94

η10:00 2.09 1.85 1.93 1.90 1.90 1.75

η10:30 2.09 1.54 1.93 1.86 1.90 1.71

Rating is the average market share over the week. CP is counterprogramming, measured by average ρu with competing
shows. NH is nightly-homogeneity, measured by average ρu of shows on the same night for that network.

“Equilibrium” reveals three strategies that are implemented more extensively in equilibrium than
in the actual schedules—counterprogramming (low CP), homogeneous programming (high NH),
and “start strong” (declining η).49 For each network, actual CP and equilibrium CP are quite
different when measuring CP for all periods, 8:00–11:00. The same holds for NH. The networks’
limited use of these strategies when considering the entire 8:00–11:00 period is discussed in
the next subsection on “rules of thumb.”50 The “start-strong” strategy results from the state
dependence, which induces firms to air strong shows early in the night since viewers captured by
early shows tend to stay tuned even when the show ends. In equilibrium, show quality (as captured
by η j t ) generally decreases through the night. Thus, while we find that counterprogramming,
homogeneous programming, and “starting fast” are optimal strategies, the networks use these
strategies suboptimally.

Interestingly, we find that collusive behavior in the scheduling game is unable to increase the
networks’ combined ratings. Since each network (ignoring Fox) increases ratings, the gains in the
competitive equilibrium are achieved by pulling viewers from the nonviewing and nonnetwork
viewing alternatives. Essentially, the increased use of counterprogramming enables the networks
to provide programming in each time slot that appeals to more viewers. Also, the increased
homogeneous programming induces viewers to stay tuned to the networks longer once they start
watching. The collusive planner uses these same strategies for the same reasons. As such, it is not
surprising that the collusive outcome is no better than Nash equilibrium.

“Rules of thumb.” Qualitatively, our equilibrium analysis of scheduling confirms the “optimality”
of several strategies used by the networks. That is, the Nash equilibrium of our model predicts

49 Regressions based on 5,000 random ABC schedules reveal that these three strategies explain 74% of the variation
(across schedules) in ABC’s predicted ratings. For CBS and NBC the R-squares are 60% and 62%, respectively.

50 You may notice that ABC’s actual CP is greater than its NH for 8:00–11:00. As such, ABC’s shows are more
similar to their same-time-slot competitors than to the other shows aired by ABC on the same night. The same is true for
NBC. However, for both these networks CP is much less than NH when using only shows aired 8:00–10:00.
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the network strategies we observe. However, the discrepancy between the actual and predicted
strategies and the suboptimal ratings require an explanation.

This suboptimality is explained primarily by two “rules of thumb” employed by the
networks—no sitcoms after 10:00 and no news magazines before 10:00 (during the week). These
rules limit counterprogramming, since sitcoms appeal to very different viewers than do news
magazines. They also limit homogeneous programming, since a schedule with sitcoms early
in the night must necessarily offer a different type of show at 10:00. The differences in our
measurements of these strategies for 8:00–10:00 versus 8:00–11:00, reported in Table 9, suggest
these limitations are severe. The strength of news magazines also implies that these rules limit
each network’s ability to “start fast.” The equilibrium schedules violate these “rules of thumb”
almost every night to attain the high levels of these strategies reported in Table 9. This is the most
apparent deviation of actual network schedules from schedules our model suggests are optimal.

Since 1992 the networks have abandoned one of these rules; news magazines are now aired
frequently before 10:00. According to network strategists sitcoms continue to air primarily
before 10:00, since they are only 30 minutes long and viewers are more likely to turn off the
television at 10:30 if they are not in the middle of a show. Our model, however, suggests that
counterprogramming ought to be pursued across all time periods—despite the increasing utility
for nonviewing in the last hour.

Predicting ratings for sitcoms after 10:00 can be viewed as “out-of-sample,” since the schedule
during the data collection had no sitcoms this late. If our extrapolation of viewer preferences for
sitcoms after 10:00 is wrong, then our predictions may be inaccurate. Fortunately, anecdotal
evidence suggests that people who watch TV after 10:00 P.M. do desire sitcoms. In recent years,
several nonnetwork channels have identified (and taken) the opportunity to serve sitcom viewers
after 10:00. Furthermore, many local network affiliates enjoy high ratings from sitcoms aired at
11:00. In some markets Seinfeld reruns have attracted more viewers than the local news, leading
other affiliates to air additional sitcoms at 11:00. We believe these trends indicate the presence
of a substantial audience for sitcoms after 10:00 and help justify airing sitcoms on the networks
during 10:00–11:00.

An alternative explanation for the discrepancies between actual and optimal schedules may
be that schedule changes are costly. Commercial time used to promote a schedule change has
a high opportunity cost of forgone advertisement revenue. The schedule for the week we study
(November 1992), however, was determined several months in advance and was promoted in
September. Hence, these opportunity costs were incurred for promoting a suboptimal schedule.
Moreover, Goettler (1999) finds that the increase in advertisement revenues from a single schedule
change is significantly higher than an estimate of the opportunity cost. While we believe our model
provides convincing evidence against the “rules of thumb,” we recognize that costs of schedule
changes may contribute to the difference between actual and optimal schedules.

Bounded rationality. We find that even when we acknowledge the above “rules of thumb,” the
networks appear to behave suboptimally. In the Nash equilibrium of the shorter 8:00–10:00
scheduling game, the average ρu is .213. For this time period, however, we observe an average ρu

of .307. The difference between the actual and the equilibrium counterprogramming is significant
at the 1% level. How can we explain the discrepancy?

First we need to elaborate on the decision-making process. While we use viewer-level choice
data, the networks only had (during 1992) access to the aggregate Nielsen ratings and some
aggregate measures of audience transitions (i.e., joint audiences). Network strategists made their
decisions based on these aggregate data and their intuition. While we assume they act rationally, it
might be difficult for them to know where each show is located in a continuous four-dimensional
space and to determine the optimal schedule of these shows.51 It is easier to solve a simpler
problem, such as determining the best schedule of shows located in a two-dimensional space.

51 The tendency to simplify complicated problems to more manageable ones is discussed in Payne, Bettman, and
Johnson (1988). See also Rubinstein (1998).
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To examine whether some degree of “bounded rationality” or limited information leads to the
discrepancy between the actual and predicted strategies and the suboptimal ratings, we compute the
Nash equilibrium schedules when ratings are predicted by a model restricted to have only two latent
attributes. The results suggest that firms may indeed be limited—observed counterprogramming
using the reduced-attribute space is more pronounced and closer to the optimal level. The mean
ρu for the actual schedule is .294, which is much lower than the .386 average over nonstrategic
random schedules and quite close to the mean of .261 for the Nash equilibrium schedule. While
the difference between actual and predicted counterprogramming is statistically significant, it
is much lower than the discrepancy when shows differ along four attributes. Furthermore, the
predicted ratings gain over the actual schedule is 15% lower using the two-dimensional model.

This finding highlights a key aspect of spatial competition. Firms face a difficult task in
identifying competing products when the products have several attributes, some of which are
latent. Furthermore, failing to account for the complexity (i.e., high dimensionality) of consumer
preferences can lead to suboptimal strategies. In such a setting, panel data detailing consumer
choices are extremely valuable. As firms increase their use of such data, they can improve their
strategies and increase both profits and consumer welfare.52

7. Conclusion

� We present an empirical study of spatial competition and a methodology to estimate
demand for products with unobservable characteristics. We demonstrate the effectiveness of
the methodology with panel data on the television industry. Using our estimated demand, we
find that firms’ observed strategies (such as the degree of product differentiation) are generally
confirmed to be optimal in a Nash equilibrium analysis. Discrepancies between the actual and
optimal strategies reflect the networks’ adherence to “rules of thumb” and, possibly, bounded
rationality behavior.

We view this study as a first step toward a better understanding of nontraditional industries,
particularly the entertainment industry. Increases in leisure time and technological growth in the
production and provision of entertainment products indicate that this industry’s importance will
grow. To understand competition, we require demand and supply models for this industry. The
following issues are of special interest: location games among television networks (not shows)
and cable channels; location games among TV products and computer games; and location games
among the producers of TV products, computer games, Web sites, and movies. To analyze these
issues, two extensions of the methodology used in this article may be necessary. First, we need
to consider the dynamic nature of competition. Second, issues of information, branding, and
advertising need to be addressed, since there is much uncertainty from the consumer’s perspective.

Appendix

� Tables A1 and A2 follow.

52 Rossi, McCulloch, and Allenby (1996) discuss the value of purchase history data in target marketing.
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TABLE A1 Show Schedule and Estimates of η̃ jt

ABC η̃abc CBS η̃cbs NBC η̃nbc Fox η̃ f ox

Monday
8:00 FBI Undercover 2.59 Evening Shade 2.31 Fresh Prince 2.65

8:30 Amer Detective 2.77 Hearts Afire 2.25 Blossom 2.31

9:00 NFL 2.50 Murphy Brown 2.42 movie-murder 2.32

9:30 NFL Love and War 1.78 movie-murder

10:00 NFL N Exposure 2.14 movie-murder

10:30 NFL N Exposure movie-murder

Tuesday
8:00 Full House 2.83 Rescue 911 2.70 Quantum Leap 2.06

8:30 Hang w/Cooper 2.18 Rescue 911 Quantum Leap

9:00 Roseanne 2.67 movie-Sinatra 1.86 Reason Doubts 1.71

9:30 Coach 2.46 movie-Sinatra Reason Doubts

10:00 Going Extremes 1.69 movie-Sinatra Dateline 2.03

10:30 Going Extremes movie-Sinatra Dateline

Wednesday
8:00 Wonder Years 2.30 Hat Squad 1.92 Unsolved Myst 2.75 B.H. 90210 2.08

8:30 Doogie Howser 2.08 Hat Squad Unsolved Myst B.H. 90210

9:00 Home Improve 2.91 Heat of Night 1.83 Seinfeld 1.92 Melrose Place 1.05

9:30 Doogie Howser 1.59 Heat of Night Mad About You 1.89 Melrose Place

10:00 Civil Wars .98 48 Hours 2.23 Law and Order 1.64

10:30 Civil Wars 48 Hours Law and Order

Thursday
8:00 Delta 1.67 Top Cops 2.36 Diff World 2.04 Simpsons 2.78

8:30 Room for Two 1.24 Top Cops Diff World Martin 2.01

9:00 Homefront 1.57 Street Stories 1.92 Cheers 2.82 Heights .93

9:30 Homefront Street Stories Wings 2.08 Heights

10:00 Primetime Live 2.45 Knots Landing 1.69 L.A. Law 1.75

10:30 Primetime Live Knots Landing L.A. Law

Friday
8:00 Family Matters 2.27 Golden Palace 1.74 I’ll Fly Away 1.12 Most Wanted 2.11

8:30 Step by Step 2.32 Major Dad 2.04 I’ll Fly Away Most Wanted

9:00 Dinosaurs 1.97 Design Women 1.71 movie-comedy 1.76 Sightings 1.66

9:30 Camp Wilder 1.57 Bob 1.48 movie-comedy Like Suspects 1.35

10:00 20/20 2.83 Picket Fences 1.74 movie-comedy

10:30 20/20 Picket Fences movie-comedy
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TABLE A2 Show Types Using Cluster Analysis

Sitcom Old (SO) Sitcom Young (SY)

Monday 8:00 CBS Evening Shade Monday 8:00 NBC Fresh Prince

Monday 8:30 CBS Hearts Afire Monday 8:30 NBC Blossom

Thursday 8:00 ABC Delta Tuesday 8:00 ABC Full House

Thursday 8:30 ABC Room For Two Tuesday 8:30 ABC Hang w/Cooper

Friday 8:00 CBS Golden Palace Tuesday 9:00 ABC Roseanne

Friday 8:30 CBS Major Dad Wednesday 8:00 ABC Wonder Years

Friday 9:00 CBS Design Women Wednesday 8:30 ABC Doogie Howser

Friday 9:30 CBS Bob Wednesday 9:00 ABC Home Improve

Wednesday 9:30 ABC Doogie Howser

Thursday 8:00 NBC Diff World

Friday 8:00 ABC Family Matters

Friday 8:30 ABC Step By Step

Friday 9:30 ABC Camp Wilder

Sitcom Middle (SM) “SY” Fox-like

Monday 9:00 CBS Murphy Brown Tuesday 8:00 NBC Quantum Leap

Monday 9:30 CBS Love And War Wednesday 8:00 Fox Beverly Hills 90210

Tuesday 9:30 ABC Coach Wednesday 9:00 Fox Melrose Place

Wednesday 9:00 NBC Seinfeld Thursday 8:00 Fox The Simpsons

Wednesday 9:30 NBC Mad About You Thursday 8:30 Fox Martin

Thursday. 9:00 NBC Cheers Thursday 9:00 Fox Heights

Thursday 9:30 NBC Wings Friday 9:00 ABC Dinosaurs

Drama Real (DR) Drama Fiction (DF)

Monday 8:00 ABC FBI Monday 9:00 NBC Movie(Murder)

Monday 8:30 ABC Amer Detective Monday 10:00 CBS N Exposure

Monday 9:00 ABC NFL Tuesday 9:00 NBC Reason Doubts

Tuesday 8:00 CBS Rescue 911 Tuesday 10:00 ABC Going Extremes

Wednesday 8:00 CBS Hat Squad Wednesday 9:00 CBS Heat of Night

Wednesday 8:00 NBC Unsolved Myst Wednesday 10:00 ABC Civil Wars

Thursday 8:00 CBS Top Cops Wednesday 10:00 NBC Law And Order

Friday 8:00 Fox Most Wanted Thursday 9:00 ABC Homefront

Friday 9:00 Fox Sightings Thursday 10:00 CBS Knots Landing

Friday 9:30 Fox Like Suspects Thursday 10:00 NBC L.A. Law

Friday 8:00 NBC I’ll Fly Away

Friday 9:00 NBC Movie(Comedy)

Friday 10:00 CBS Picket Fences
News Magazine (NM)

Tuesday 9:00 CBS Movie(Sinatra)

Tuesday 10:00 NBC Dateline

Wednesday 10:00 CBS 48 Hours

Thursday 9:00 CBS Street Stories

Thursday 10:00 ABC Primetime Live

Friday 10:00 ABC 20/20

Reducing the number of categories to six merges “SY” Fox-like with SY. Further reducing to five categories merges
SM with SO.
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