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Abstract—We study compressive sensing in the spatial domain

to achieve target localization, specifically direction of arrival

(DOA), using multiple-input multiple-output (MIMO) radar. A

sparse localization framework is proposed for a MIMO array in

which transmit and receive elements are placed at random. This

allows for a dramatic reduction in the number of elements needed,

while still attaining performance comparable to that of a filled

(Nyquist) array. By leveraging properties of structured random

matrices, we develop a bound on the coherence of the resulting

measurement matrix, and obtain conditions under which the

measurement matrix satisfies the so-called isotropy property. The

coherence and isotropy concepts are used to establish uniform

and non-uniform recovery guarantees within the proposed spatial

compressive sensing framework. In particular, we show that

non-uniform recovery is guaranteed if the product of the number

of transmit and receive elements, (which is also the number

of degrees of freedom), scales with , where is the

number of targets and is proportional to the array aperture and

determines the angle resolution. In contrast with a filled virtual

MIMO array where the product scales linearly with , the

logarithmic dependence on in the proposed framework supports

the high-resolution provided by the virtual array aperture while

using a small number of MIMO radar elements. In the numerical

results we show that, in the proposed framework, compressive

sensing recovery algorithms are capable of better performance

than classical methods, such as beamforming and MUSIC.

Index Terms—Compressive sensing, direction of arrival estima-

tion, MIMO radar, random arrays.

I. INTRODUCTION

D ETECTION, localization, and tracking of targets are basic

radar functions. Limited data support and low signal-to-

noise ratios (SNR) are among the many challenges frequently

faced by localization systems. Another challenge is the presence

of nearby targets, whether in terms of location or Doppler, since

closely spaced targets are more difficult to discriminate. In mul-

tiple-input multiple-output (MIMO) radar, targets are probed

with multiple, simultaneous waveforms. Relying on the orthog-

onality of the waveforms, returns from the targets are jointly
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processed by multiple receive antennas. MIMO radar is typ-

ically used in two antenna configurations, namely distributed

[1] and colocated [2]. Depending on the mode of operation and

system architecture, MIMO radars have been shown to boost

target detection, enhance spatial resolution, and improve in-

terference suppression. These advantages are achieved by pro-

viding and exploiting a larger number of degrees of freedom

than “conventional” radar.

In this work, we focus on the application of colocated MIMO

radar to direction-of-arrival (DOA) estimation. It is well known

in array signal processing [3] that DOA resolution improves by

increasing the array aperture. However, increasing the aperture

without increasing the number of sensors may lead to ambigu-

ities, i.e., measurements explained by erroneous sets of loca-

tions. A non-ambiguous uniform linear array (ULA) must have

its elements spaced at intervals no larger than , where is

the signal wavelength. ForMIMO radar, unambiguous direction

finding of targets is possible if receive elements are spaced

, and transmit elements are spaced , a configuration

known as virtual ULA [2]. In sampling parlance, the -spaced

array and the MIMO virtual ULA perform spatial sampling at

the Nyquist rate. The main disadvantage of this Nyquist setup

is that the product of the number of transmit and receive ele-

ments, , needs to scale linearly with the array aperture, and

thus with resolution.

In this paper, we propose the use of a sparse, random array ar-

chitecture in which a low number of transmit/receive elements

are placed at random over a large aperture. This setup is an ex-

ample of spatial compressive sensing since spatial sampling is

applied at sub-Nyquist rates. The goal of spatial compressive

sensing is to achieve similar resolution as a filled array, but with

significantly fewer elements.

Localizing targets from undersampled array data links

random arrays to compressive sensing [4]. Random array

theory can be traced back to the 1960’s. In [5], it is shown that

as the number of sensors is increased, the random array pattern,

a well known quantity to radar practitioners, converges to its

average. This is because the array pattern’s variance decreases

linearly with the number of elements. This work was extended

to MIMO radar in [6]. The main conclusion of the classical

random array literature was that the random array pattern can

be controlled by using a sufficient number of sensors. However,

two fundamental questions were left pending: How many

sensors are needed for localization as a function of the number

of targets, and which method should be used for localization?

Here we suggest that the theory and algorithms of compressed

sensing may be used to address these questions.

Early works on compressive sensing radar emphasize that

the sparse nature of many radar problems supports the re-

duction of temporal as well as spatial sampling (an overview

is given in [7]). Recent work on compressive sensing for
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single-input single-output radar [8]–[11] demonstrates either

an increased resolution or a reduction in the temporal sampling

rate. Compressive sensing for MIMO radar has been applied

both on distributed [12] and colocated [13] setups. Much of

the previous literature on compressive sensing for colocated

arrays discusses the ULA setup, either within a passive system

(with only receive elements) [14] or in a MIMO radar [13],

[15] setup. In particular, [15] imposes a MIMO radar virtual

ULA and derives bounds on the number of elements to per-

form range-angle and range-Doppler-angle recovery by using

compressive sensing techniques. As discussed above, the (vir-

tual) ULA setup performs Nyquist sampling in the spatial

domain. In contrast, we are interested in spatial compressive

sensing (i.e., reducing the number of antenna elements while

fixing the array aperture), and rely on a random array geom-

etry. Links between compressive sensing and random arrays

have been explored in [16]. The author shows that spatial com-

pressive sensing can be applied to the passive DOA problem,

allowing for a reduction in the number of receiving elements.

However, the MIMO radar framework poses a major chal-

lenge: contrary to the passive setup, where the rows of the

sensing matrix are independent, the MIMO radar

measurements are dependent (they conform to the structure

of the MIMO random array steering vector). This lack of in-

dependence prevents the application of the vast majority of

results in the compressive sensing literature. A MIMO radar

random array architecture is studied in [17], but no recovery

guarantees are provided.

Low-rate spatial sampling translates into cost savings due to

fewer antenna elements involved. It is of practical interest to

determine the least amount of elements required to guarantee

correct targets recovery. Finding conditions that guarantee re-

covery has been a main topic of research, and it is one of the

underpinnings of compressive sensing theory. Recent work has

shown that, for a sufficient number of independent and iden-

tically distributed (i.i.d.) compressive sensing measurements,

non-uniform recovery can be guaranteed if a specific property

of the random sensingmatrix, called isotropy , holds [18].While

this property plays an important role, this result does not apply to

our setup since the MIMO radar measurements are not in-

dependent. The dependent measurements problem was recently

addressed in [19]. There, the authors derived conditions for non-

uniform recovery using spatial compressive sensing in a MIMO

radar system with transceivers.

This work expands the literature in several ways. We propose

a sparse localization framework for a MIMO random array as-

suming a general setup of transmitters and receivers. We

provide a bound on the coherence of the measurement matrix,

and determine the conditions under which the isotropy property

holds. This allows us to develop both uniform and non-uniform

recovery guarantees for target localization in MIMO radar sys-

tems. The proposed MIMO random array framework is of prac-

tical interest to airborne and other radar applications, where the

spacing between antenna elements may vary as a function of

aspect angle towards the target, or where exact surveying of

element locations is not practical due to natural flexing of the

structures involved. Our results show that one can obtain the

high-resolution provided by a virtual array aperture while using

a reduced number of antenna elements.

Fig. 1. MIMO radar system model.

The paper is organized as follows: Section II introduces the

system model and the proposed sparse localization framework.

Section III discusses spatial compressive sensing. Recovery

guarantees are derived in Section IV. In Section V, we present

numerical results demonstrating the potential of the proposed

framework, followed by conclusions in Section VI.

The following notation is used: boldface denotesmatrices (up-

percase) and vectors (lowercase); for a vector , the -th index

is , while for a matrix , the -th row is denoted by .

The complex conjugate operator is , the transpose operator is

, and the complex conjugate-transpose operator is . We

define as the number of non-zero norm rows of , the sup-

port of collects the indices of such rows, and a -sparsematrix

satisfies . The operator denotes expectation andwe

define as the characteristic function of

the random variable . The symbol “ ” denotes the Kronecker

product. The notation means that the vector

has a circular symmetric complex normal distributionwithmean

and covariance matrix . We denote by the modified

Bessel function of the second kind.

II. SYSTEM MODEL

A. MIMO Radar Model

Wemodel a MIMO radar system (see Fig. 1) in which sen-

sorscollectafinite trainof pulses sentby transmittersand re-

turnedfrom stationary targets.Weassumethat transmittersand

receivers each form a (possibly overlapping) linear array of total

aperture and , respectively. The quantities and

are normalized inwavelength units. Defining

, the -th transmitter is at position on the -axis,

while the -th receiver is at position .Here lies in the in-

terval , and is in . This definition

ensures that when , both and are confined

to the interval , simplifying the notation in the sequel.

Let denote the continuous-time baseband signal trans-

mitted by the -th transmit antenna and let denote the loca-

tion parameter(s) of a generic target, for example, its azimuth

angle. Assume that the propagation is nondispersive and that the

transmitted probing signals are narrowband (in the sense that

the envelope of the signal does not change appreciably across

the antenna array). Then the baseband signal at the target loca-

tion, considering the -th transmitted pulse, can be described by

(see, e.g., [1])

(1)
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Here is the carrier frequency of the radar, is the time

needed by the signal emitted by the -th transmit antenna to

arrive at the target, , denotes the

pulse repetition interval, and

(2)

is the transmit steering vector. Assuming that the transmit array

is calibrated, is a known function of .

To develop an expression for the received signal at the

-th receive antenna, let

(3)

denote the receive steering vector. Here is the time needed

for the signal reflected by the target located at to arrive at the

-th receive antenna. Define the vector of received signals as

. Under the simplifying assumption

of point targets, the received data vector is described by [1]

(4)

where is the number of targets that reflect the signals back to

the radar receiver, is the complex amplitude proportional

to the radar cross sections of the -th target relative to pulse

-th, are locations, and denotes the interference plus-

noise term. The targets’ positions are assumed constant over

the observation interval of pulses. We assume that the target

gains follow a Swerling Case II model, meaning that

they are fixed during the pulse repetition interval , and vary

independently from pulse to pulse [20].

Analyzing how to estimate the number of targets , or the

noise level, without prior information is the topic of current

work [21], but outside the scope of this paper. Therefore in the

following, we assume that the number of targets is known

and the noise level is available.

B. Problem Formulation

The purpose of the system is to determine the DOA angles to

targets of interest. We consider targets associated with a partic-

ular range and Doppler bin. Targets in adjacent range-Doppler

bins contribute as interferences to the bin of interest. The

assumption of a common range bin implies that all waveforms

are received with the same time delay after transmission.

Since range and Doppler measurements are not of interest, the

common time delay and Doppler shift are not explicitly shown

in our model. This approach is justified because angle reso-

lution is essentially independent of range-Doppler resolution

in antenna arrays [22]. Being capable to handle targets with

non-zero Doppler, our approach is applicable to airborne or

ground targets. Targets are assumed in the far-field, meaning

that a target’s DOA parameter (where is the DOA

angle) is constant across the array. Under these assumptions,

the receiver and transmitter steering vectors, and

respectively, become

(5)

and

(6)

By cross-correlating the received signal at each sensor with

filters matched to each of the probing waveforms, we obtain

(7)

where the matrix has elements

(8)

We assume the probing waveforms to be orthogonal (e.g.,

pulses modulated by an orthogonal code), therefore .

Defining the matrix , we have from

(7)

(9)

Here is a matrix with

,

(10)

is a matrix with columns

(11)

known as the “virtual array” steering vector, and

is with .

The term “virtual array” indicates that can be thought of

as a steering vector with elements.

Our aim is to recover and from using a small number of

antenna elements. To do this, we use a sparse localization frame-

work. Neglecting the discretization error, it is assumed that the

target possible locations comply with a grid of points

(with ). Since each element of parameterizes one

column of , it is possible to define an dictio-

nary matrix , where . From (11),

the steering vector is the Kronecker product of the receive

steering vector and the transmit steering vector

:

(12)

The received signal is then expressed as

(13)

where the unknown matrix contains the target locations

and gains. Zero rows of correspond to grid points without a

target. The system model (13) is sparse in the sense that has

only non-zero rows.
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Note that in the sparse localization framework, the matrix

is known, whereas in the array processing model (9), the matrix

is unknown. Given the measurements and matrix ,

our goal translates into determining the non-zero norm rows’

indices of , i.e., the support of . The matrix is governed

by the choice of grid points , by the number of transmit-

ters and their positions, , and by the number of receivers

and their positions, . In the following we assume that the

transmitter (receiver) elements’ positions are in-

dependent and identically distributed (i.i.d.) random variables

governed by a probability density function (pdf) .

III. SPATIAL COMPRESSIVE SENSING FRAMEWORK

The aim of spatial compressive sensing is to recover the un-

known from the measurements (see (13)) using a small

number of antenna elements, , while fixing the array aper-

ture . In this section we introduce the proposed spatial com-

pressive sensing framework and overview practical recovery al-

gorithms (the well-known beamforming method as well as com-

pressive sensing based algorithms).

A. Beamforming

Consider the scenario in which the transmitters and receivers

locations support the Nyquist array (virtual ULA) geometry. In

this setting, the matrix in (13) has a Vandermonde structure,

and the aperture scales linearly with the number of antenna el-

ements, . If we choose the (uniform) grid of

possible target locations to match the array resolution, that

is , then the matrix becomes a Fourier matrix.

In this case, . It follows that can be

estimated as . In array processing, this method

is called beamforming. The support of the unknown is re-

covered by looking for peak values of over the grid

points. Beamforming is also applied to estimate the locations of

targets not limited to a grid. This is done by finding the peaks

of , where is the steering vector (11) swept

over the angles of interest. The shortcoming of the Nyquist array

setup is that the number of elements must scale linearly

with the array aperture and consequently, with the resolution

(i.e., such sampling mode requires ).

Spatial compressive sensing implies that a sparse can be

recovered from a number of spatial measurements significantly

lower than the Nyquist array, i.e., . The idea is to de-

sign the sensing procedure so that the matrix is a scalar mul-

tiple of the identity matrix on average1, i.e., ,

and to control the variance of the non-diagonal elements by

using a sufficient number of measurements. Intuitively, the more

measurements we employ, the closer we get to a diag-

onal . Furthermore, because when , each realization

of has non-zero off-diagonal terms, the beamforming metric

is affected not only by the -th row of and by the

noise, but also by any row of that has non-zero norm. This

entails that, instead of beamforming, we resort to more sophisti-

cated recovery algorithms, which take advantage of the signal’s

sparsity to mitigate the mutual interference among non-zero

rows of . A brief overview of compressive sensing recovery

methods is provided next.

1For instance, this is obtained when using a partial Fourier matrix.

B. Compressive Sensing

One way to classify compressive sensing models is according

to the number of pulses (“snapshots” in array processing

problems): single measurement vector (SMV) for (

reduces to a single vector), or multiple measurement vector

(MMV) for ( is a matrix). The system model in (13) is

an example of an MMV setting. For simplicity, in the following

we consider an SMV scenario (i.e., , , and

in (13)).

In principle, a sparse (i.e., it has only non-zero

rows) can be recovered from the least number of elements

by solving the non-convex combinatorial -norm problem

(14)

or one of its equivalent formulations: a cardinality-constrained

formulation, , or a Lagrangian

formulation, . These three formu-

lations are equivalent for a proper choice of the parameters ,

and , which depend on prior information, e.g., the noise

level or the sparsity . Unfortunately, the solution to any

of these formulations requires an exhaustive search among all

combinations of non-zero indices of , necessitating exponen-

tial complexity [4].

A variety of polynomial complexity algorithms have been

proposed for obtaining an approximate solution to (14). One

family of methods is Matching Pursuit (MP). In its simplest

version, an empty provisional support is refined by adding

one grid-point index at each iteration. Among the matching

pursuit algorithms, the most notable in the SMV setting are

Orthogonal Matching Pursuit (OMP) [23], Orthogonal Least

Squares (OLS) [24], and CoSaMP [25]. For the general MMV

setting, examples are the Rank Aware-Orthogonal Recursive

Matching Pursuit (RA-ORMP) algorithm [26] and its general-

ization, Multi-Branch Matching Pursuit (MBMP) [27]. Another

family of methods is known as Basis Pursuit (BP). The BP

strategy relaxes the -norm in (14) with the -norm [28]. The

reformulation is known as LASSO, defined by

(15)

Unlike (14), this problem is convex, and a global solution can

be found in polynomial time. Since it is a relaxation, the solu-

tion obtained could be different from that of (14). Finding con-

ditions that guarantee correct recovery with a specific method

(e.g., LASSO) has been a main topic of research and one of the

underpinnings of compressive sensing theory [4].

Two kinds of recovery guarantees are defined in compressive

sensing: uniform and non-uniform. A uniform recovery guar-

antee (addressed below by Theorem 2) means that for a fixed

instantiation of the random measurement matrix , all possible

-sparse signals are recovered with high probability. In con-

trast, a non-uniform recovery result (addressed by Theorem 4)

captures the typical recovery behavior for a random measure-

ment matrix . Specifically, suppose we are given an arbitrary

-sparse vector , and we then draw at random (independent

of ). Non-uniform recovery details under what conditions an

algorithm will recover with high probability. Note that, for a

non-uniform guarantee, is being asked to recover only a spe-

cific , not any -sparse vectors. Therefore, uniform recovery

implies non-uniform recovery, but the converse is not true.



ROSSI et al.: SPATIAL COMPRESSIVE SENSING FOR MIMO RADAR 423

Loosely speaking, a uniform recovery guarantee can be ob-

tained if, with high probability, the matrix has small co-

herence [4]. The coherence is defined as the maximum inner

product between the normalized columns of ,

(16)

Alternatively, uniform recovery is guaranteed if satisfies the

Restricted Isometry Property (RIP) [4] with high probability.

Non-uniform recovery follows if a specific property of the

random measurement matrix , called isotropy, holds [18].

The isotropy property states that the components of each row

of have unit variance and are uncorrelated, i.e.,

(17)

for every .

Both (16) and (17) suggest that the matrix plays

a key role in establishing recovery guarantees. Indeed, because

in our setting the rows of are identically distributed, a simple

calculation shows that , thus the

isotropy property requires . Furthermore, as

evident by the definition of coherence in (16), is the maximum

absolute value among normalized off-diagonal elements of .

In Section IV, by deriving statistics of the matrix , we provide

conditions on design’s quantities ( , , , and )

to obtain (uniform and non-uniform) recovery guarantees for

spatial compressive sensing.

IV. RECOVERY GUARANTEES

In this section, we develop recovery guarantees for sparse

localization with MIMO random arrays. In detail, we show how

to choose the grid-points , the number of elements and

the distributions governing the element positions and ,

in order to guarantee target localization by spatial compressive

sensing via (15). Due to the role of the matrix in recovery

guarantees, we start by studying the statistics of .

A. Statistics of

To study the statistics of , we first analyze its relationship

to a quantity known to radar practitioners as the array pattern

[29]. In array processing, the array pattern is the system

response of an array beamformed in direction to a unit am-

plitude target located in direction . In other words, is

the inner product between two normalized columns of the mea-

surement matrix:

(18)

where we defined

(19)

The peak of the absolute value of the array pattern for a target

colinear with the beamforming direction, , is called the

mainlobe. Peaks of for , are known as sidelobes,

and the highest among all the sidelobes is called the peak side-

lobe. Thus the terms in (18) play the role of sidelobes.

The relation between coherence, isotropy and array pattern

is apparent. Indeed, from (16), (18), and the definition of side-

lobes, the coherence, in array processing parlance, is the peak

sidelobe associated with the matrix . Similarly, from (17) and

(18), the isotropy can be related to the mean array pattern

(20)

where the expectation is taken with respect to the

ensemble of element locations. In particular, isotropy requires

that for any .

For a system with randomly placed sensors, the array pat-

tern is a stochastic process. Naturally, statistics of

the array pattern of a random array depend on the pdf of the

sensor locations. In [6], the authors derive the means and

the variances of the real and imaginary parts of . The

following proposition formalizes pertinent results from [6].

For the sake of brevity, we drop the dependency on and

, and denote the array pattern as . Define ,

and assume that the pdf of , , is an even function (so

that ). Further, define the variances of the array

pattern , and

.

Proposition 1: Let the locations of the transmit elements be

i.i.d., drawn from a distribution , and the locations of the

receive elements be i.i.d., drawn from a distribution . Then,

for a given , the following holds:

1) The mean array pattern is the characteristic function of ,

i.e.,

(21)

2) If and are identically distributed, then (22), (23) at the

bottom of the page, and hold.

Proof: See Appendix A.

Proposition 1 links the probability distributions and

(via and ) to the mean and variances of each element

of the matrix , i.e., . As shown below, this

result is used to obtain non-uniform recovery guarantees.

To characterize the statistics of the coherence (defined in

(16)), we need the distribution of the maximum absolute value

among normalized off-diagonal elements of .

We now show that, by imposing specific constraints on the

grid points and on the probability distributions and

, we can characterize the distributions of the elements of .

(22)

(23)
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To do this, we require an intermediate result about the structure

of the matrix when is a uniform grid:

Lemma 1: If is a uniform grid, is a Toeplitz matrix.

Proof: See Appendix B.

Thanks to Lemma 1, whenever is a uniform grid, is

described completely by the elements of its first row, for

. From the definition of , its columns all have

squared-norm equal to . Therefore the elements on themain

diagonal of are equal to . Thus, we need to investigate

the remaining random elements, for . By

exploiting the Kronecker structure of the columns of in (12),

we can express the elements of as:

(24)

where and are the steering vectors of the receiver and trans-

mitter arrays, respectively.

From (24), the random variable is the

product between the random variables

and . As such, the distribution of

(or equivalently, ) can be characterized from the distribu-

tions of and . Following the approach in [5],

we show in Appendix C that the real and imaginary parts of

(or ) have an asymptotic joint Gaussian distri-

bution, but, in general, the variances of real and imaginary parts

of such variables are not equal. Interestingly, a closed form ex-

pression for the cumulative density function (cdf) of the product

of and (i.e., the cdf of ) exists in

the special case when and

. By meeting these condi-

tions, in the following theorem we derive an upper bound on the

sidelobes’ complementary cdf (ccdf), i.e., ,

and show that sidelobes have uniformly distributed phases.

We address two MIMO radar setups: (1) transmitters and

receivers, where and are independent, and (2) trans-

ceivers, where , for all and .

Theorem 1: Let the locations of the transmit elements be

drawn i.i.d. from a distribution , and the locations of the

receive elements be drawn i.i.d. from a distribution . As-

sume that , and the uniform grid are such that the

transmitter and receiver characteristic functions satisfy

(25)

for , where . Then for

:

1) If and are independent:

(26)

where .

2) If for all :

(27)

3) In both scenarios, the phase of is uniformly dis-

tributed on the unit circle, i.e.,

(28)

Proof: See Appendix C.

This theorem characterizes the distribution of for

the transmitters receivers setup, and for the transceivers

setup. In Section IV-D, we provide a practical setup that satisfies

(25). As shown below, this allows to obtain a uniform recovery

guarantee for spatial compressive sensing.

B. Uniform Recovery

The following corollary of Theorem 1 bounds the probability

that the matrix has high coherence, or equivalently, the prob-

ability of a peak sidelobe:

Corollary 1: Let the locations of the transmit elements be

drawn i.i.d. from a distribution , and the locations of the

receivers be drawn i.i.d. from a distribution . Assume that

the distributions and and the uniformly spaced grid-

points are such that (25) holds for . Then:

1) If and are independent:

(29)

where .

2) If for all :

(30)

Proof: See Appendix D.

Since can be interpreted as the peak sidelobe of the array

pattern, (29) ((30)) characterizes the probability of having a

peak sidelobe higher than in a system with transmitters

and receivers ( transceivers). These results are not asymp-

totic (i.e., they do not need the number of measurements and

to tend to infinity). To further explore this point, in numerical

results we compare these bounds with empirical simulations.

The coherence plays a major role in obtaining uniform re-

covery guarantees for compressive sensing algorithms, as well

as guaranteeing the uniqueness of the sparsest solution to (14).

For instance, using the coherence , it is possible to obtain a

bound on the RIP constant, [30]. This en-

sures stable and robust recovery by -minimization (i.e., using

(15)) from noisy measurements. By building on Corollary 1,

the following theorem establishes the number of elements

needed to obtain uniform recovery with high probability using

(15):

Theorem 2: [Uniform recovery guarantee]. Let the locations

of the transmit elements be drawn i.i.d. from a distribution

, and the locations of the receivers be drawn i.i.d. from

a distribution . Let the distributions and , and

the uniform grid be such that relations (25) hold for

. Further, let

(31)

where , and the constant

. Then, with probability at least ,

for any -sparse signal measured from MIMO

radar measurements , with , the solution

of (15) satisfies

(32)

where is a constant that depends only on .
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Proof: See Appendix E.

The significance of (31) is to indicate the number of elements

necessary to control the peak sidelobe. This is used to obtain

a uniform recovery guarantee for spatial compressive sensing.

In addition, the previous theorem ensures exact recovery of any

-sparse signal using (15) in the noise-free case .

It is important to point out that the number of grid points is

not a free variable since must satisfy (25). This point will

be explored in Section IV-D, where we show that the resolution

must be linearly proportional to the “virtual” array aperture .

Uniform recovery guarantees capture a worst case recovery

scenario. Indeed, the average performance is usually much

better than that predicted by uniform recovery guarantees. In

the following section, we show that if we consider a non-uni-

form recovery guarantee, then the zero mean conditions (25)

can be relaxed, and we obtain recovery guarantees that scale

linearly with .

C. Non-Uniform Recovery

We now investigate non-uniform recovery guarantees. In re-

cent work [18], it has been shown that for a sufficient number

of i.i.d. compressive sensing measurements, non-uniform re-

covery is guaranteed if isotropy holds. However, the result in

[18] cannot be directly used in our framework since the

rows of the matrix , following (11), are not i.i.d. This sce-

nario is addressed in [19] in which non-uniform recovery is

guaranteed for a MIMO radar system with transceivers if the

isotropy property (under the name aperture condition) holds.

The following theorem derives conditions on grid points

and probability distributions and , in order for the

random matrix to satisfy the isotropy property:

Theorem 3: Let the locations of the transmit elements be

drawn i.i.d. from a distribution , and the locations of the

receivers be drawn i.i.d. from a distribution . For every ,

the -th row of in (13) satisfies the isotropy property [18], i.e.,

(33)

iff , and are chosen such that, for ,

(34)

where and .

Proof: See Appendix F.

Theorem 3 links grid points and probability distributions

and (through the characteristic function of ) with the

isotropy property of . When (34) holds, it can be shown that

the aperture condition used in [19] holds too. Therefore, using

the same approach as in [19], non-uniform recovery of tar-

gets via (15) is guaranteed in the proposed spatial compressive

sensing framework. The following Theorem customizes The-

orem 2.1 in [19] to our framework:

Theorem 4: [Non-uniform recovery guarantee] Consider a

-sparse measured from MIMO radar measure-

ments , where . Let be an arbi-

trary scalar, and suppose that the random matrix satisfies the

isotropy property, . Then with proba-

bility at least , the solution to (15) obeys

(35)

provided that the number of rows of meets

(36)

where , and are constants.

Proof: The theorem results from Theorem 2.1 in [19] by

performing the following substitutions: for (sparsity),

for (number of rows of ), and for (number of columns

of ). Since in this work we consider -sparse signals, in (35)

we discarded the term that accounts for nearly-sparse signals

present in [19].

Theorem 4 shows that, when the isotropy property is satisfied,

the proposed framework enables us to localize targets using

about MIMO radar measurements.

Some comments are in order. First, it is important to stress

that in (36), the number of elements scales linearly with the

sparsity . This is in contrast with uniform recovery bounds

based on coherence (e.g., (31)), which scale quadratically with

. Moreover, the significance of the logarithmic dependence on

is that the proposed framework enables high resolution with a

small number of MIMO radar elements. This is in contrast with

a filled virtual MIMO array where the product scales lin-

early with . Again, it is crucial to point out that the number

of grid points is not a free variable, because the grid points

must satisfy (34). Second, differently from (35), in (32)

the error did not depend on , and . Third, (35) shows

that reconstruction is stable even when the measurements are

noisy. Additionally, we see from (35) that when , The-

orem 4 guarantees exact reconstruction with high probability,

when (36) holds. Both results above can be extended to approx-

imately sparse vectors, in which case an extra term appears in

the right hand-side of (32) and (35). This situation may emerge

when targets are not exactly on a grid, however, the analysis

of such scenario is outside the scope of this paper. Finally, to

suggest some intuition into the above conditions, notice that re-

covery can be guaranteed by requiring the matrix to satisfy

the isotropy property, , and by controlling the

variances of the non-diagonal elements of (which, according

to (22) and (23), scale with ) through the use of a suffi-

cient number of measurements .

D. Element Locations and Grid-points

We now provide an example of , and that meet

the requirements of Theorem 1 and Theorem 3.

The conditions needed by each theorem constraint the char-

acteristic function of the random variables , . Let,

, such that the random variables and are both

confined to the interval . The characteristic function of

a uniform random variable is the sinc function,

i.e.,

(37)

Therefore, when is uniformly distributed, by choosing

as a uniform grid of -spaced points in the range , we

have that for any (since

). The number of grid points is not a

free variable, because the grid points must satisfy (25) or

(34). For instance, in the example above, must be a uniform
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grid of -spaced points between , and, assuming that

is an integer, the number of grid points is .

The dependence between the number of grid points and the

virtual array aperture can be understood by noticing that both

(25) and (34) impose that grid points are placed at the zeros of

the characteristic function of the relative random variable (i.e.,

the sinc function). The spacing of the zeros is dictated by the

virtual array aperture . The bigger the aperture the more grid

points fit in the range .

Summarizing, choose as a uniform grid of -spaced

points in the range . Then:

1) If both and are uniformly distributed, relations (25)

hold, andwe can invoke Theorem 1 (for uniform recovery);

2) If either or are uniformly distributed, relation (34)

holds, and we can invoke Theorem 3 (for non-uniform

recovery).

Note that non-uniform recovery, i.e., (34), requires only one

density function, say , to be uniform, while the other distri-

bution, , can be arbitrarily chosen, e.g., it can be even de-

terministically dependent on . For instance, (34) is satisfied in

a MIMO radar system with transceivers, i.e., when are

i.i.d. uniform distributed and we deterministically set .

Finally, we remark that the analysis provided in this sec-

tion regarding the statistics of the matrix may be used with

block-sparsity results in the compressive sensing literature [4]

to obtain guarantees for the general MMV scenario.

V. NUMERICAL RESULTS

In this section, we present numerical results illustrating the

proposed spatial compressive sensing framework.

We design an example to follow Theorem 1, in which

and are both uniform distributions, and represents a

uniform grid of -spaced points in the interval , which

implies that the number of grid points is . The system

transmits a total of pulses. When expressed in discrete form,

each pulse consists of orthogonal codes composed by

symbols. In particular, we select the codes to be the rows of the

Fourier matrix. Equal length apertures were assumed for

the transmit and receive arrays, i.e., . The

target gains were given by , with drawn

i.i.d., uniform over , for all (where is

the number of targets). The noise (see (13)) was assumed to

be distributed as and the SNR is de-

fined as . From the definition of the measurement

matrix , its columns all have squared-norm equal to .

Throughout the numerical results, we normalize the columns of

to have unit norm.

We first investigate the statistics of the matrix discussed

in Section III. In particular, we analyze the coherence of the

measurement matrix compared to the result given in The-

orem 1. The virtual aperture was (thus ).

In Fig. 2, we plot the ccdf of the coherence , i.e., ,

as a function of the number of elements for (a) the trans-

mitters and receivers setup and (b) the transceivers setup.

As a reference, we also plot the upper bound given in (29) and

(30), respectively. It can be seen how the upper bound becomes

tighter and tighter as the number of elements increases. In addi-

tion, it is interesting to notice that the coherence of the matrix

for the transceivers setup is very close to the coherence of

Fig. 2. Empirical ccdf of the coherence of the measurement matrix and its

upper bound as a function of the number of elements. (a) considers the trans-

mitters and receivers setup and the upper bound is given in (29); (b) considers

the transceivers setup and the upper bound is given in (30).

the matrix for the the transmitters and receivers setup

when .

We next present localization performance using practical

algorithms. We implemented target localization using LASSO

following the algorithm proposed in [19] to solve problem (15).

In addition, we implement Beamforming, OLS, OMP, CoSaMP,

FOCUSS [31] and MBMP. In the MMV setup we also compare

MBMP, RA-ORMP [26], M-FOCUSS [31], and MUSIC [32].

Concerning MBMP, it requires as input a length branch

vector , which define the algorithm’s complexity (see [27] for

details on setting parameters for MBMP). The output of MBMP

is the estimated support. Notice that, when ,

MBMP reduces to OLS in the SMV scenario, and to RA-ORMP

in the MMV scenario. We define the support recovery error

when the estimated support does not coincide with the true one.

For algorithms that return an estimate of the sparse vector

(e.g., LASSO, FOCUSS and MUSIC), the support was then

identified as the largest modulo entries of the signal .

Analyzing how to set the noise parameter in (14), or the

sparsity , without prior information is the topic of current

work [21], but outside the scope of this paper. Therefore, we

assume that the noise level is available and that the number of

targets is known (notice that this information is needed by

all the algorithms including MBMP). The virtual aperture was

(thus ), and tests were carried out for

targets. The SNR was 20 dB throughout.

The main focus of the paper is to reduce the number of an-

tenna elements while avoiding sidelobes errors and while pre-

serving the high-resolution provided by the virtual array aper-

ture (i.e., recovering -spaced targets). Therefore, to ac-

count for errors due to sidelobes (an erroneous target is esti-

mated at a sidelobe location) and unresolved targets (the re-

sponses of two targets in consecutive grid-points is merged in

only one grid-point), we consider as performance metric the

support recovery error probability, defined as the error event

when at least one target is estimated erroneously.
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Fig. 3. Probability of support recovery error as a function of the number of

rows of . Non-uniform SMV setup. The system settings are ,

, and targets with for all . The SNR is

20 db.

We first treat the non-uniform guarantee setting. Monte Carlo

simulations were carried out using independent realizations

of target gains, targets locations, noise and element positions.

Fig. 3 illustrates the probability of support recovery error as a

function of the number of measurements . From the figure,

it can be seen that compressive sensing algorithms enable better

performance (smaller probability of sidelobe error and better

resolution) than beamforming, which is not well-suited for the

sparse recovery framework. Among compressive sensing algo-

rithms, two main groups appear: on one side, OLS and OMP,

which both have practically the same performance; on the

other side, LASSO, CoSaMP, FOCUSS and MBMP. Among

the latter group, it is important to point out that, although

the recovery guarantee established in Theorem 4 requires the

solution of (15), and thus using LASSO, MBMP provides a

viable and competitive way to perform target localization.

We next consider uniform guarantees. In this setup, we first

generate a realization of the matrix by drawing at random

the element positions. Maintaining the matrix fixed, we per-

form 500 Monte Carlo simulations using independent realiza-

tions of target gains, targets locations and noise. For each re-

covery method, we defined a support recovery error if an error

occur in any of the 500 simulations.We then average throughout

element positions realizations. Fig. 4 illustrates the probability

of support recovery error as a function of the number of mea-

surements . The difference among OLS/OMP and the more

sophisticated methods (i.e., LASSO, CoSaMP, FOCUSS and

MBMP) is even more evident in this setup (e.g., at ,

the probability of OLS/OMP error is greater than 0.1), con-

firming the theoretical finding [33] of OLS/OMP unfitness to de-

liver uniform recovery. On the other hand, MBMP, an extension

of OLS, still provides competitive performance. In particular,

MBMP with outperforms the other methods.

The theoretical results presented in this work focus on the

SMV setting. However, in practice several snapshots can be

available. To explore the benefits of the proposed MIMO

random array framework in such case, in Fig. 5 we consider

an MMV setting and we compare sparse recovery

Fig. 4. Probability of support recovery error as a function of the number of rows

of . Uniform SMV setup. The system settings are , ,

and targets with for all . The SNR is 20 db.

Fig. 5. Probability of support recovery error as a function of the number of

rows of . Non-uniform MMV setup. The system settings are ,

, and targets with for all . The SNR is

20 db.

methods with the well-known MUSIC algorithm. We evaluate

five different elements configurations: , ,

, and . The figure illustrates the probability of

support recovery error as a function of the number of measure-

ments (nonuniform setup). Sparse recovery algorithms

have better performances than MUSIC, and the availability of

multiple snapshots allows to considerably reduce the number of

antenna elements. Moreover, in the MMV setting, algorithms

which are able to exploit the signal subspace information (e.g.,

MBMP and RA-ORMP) posses a clear advantage over those

algorithms that are unable (e.g., M-FOCUSS). For instance,

this can be appreciated by the difference in performance of

FOCUSS and MBMP with when comparing

the SMV (Fig. 3) and MMV (Fig. 5) settings. The numerical

simulations presented in this paper considered a medium SNR

level and show a superior performance of sparse recovery

methods over classical methods (e.g., beamforming or MUSIC)
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in the proposed framework. Since the sparsity property, upon

which sparse recovery methods rely, is independent from the

SNR, we expect a similar behavior also at low SNR (e.g.,

dB or lower).

VI. CONCLUSIONS

We propose a sparse framework to address the source local-

ization problem for a random array MIMO radar system. We

link system design quantities, i.e., the probability distributions

and of the tx/rx sensors location and the sparse lo-

calization grid points , with the statistics of the Gram ma-

trix and the related coherence of the matrix . Based on

this result, we were able to develop uniform and non-uniform

recovery guarantees for spatial compressive sensing. We show

that within the proposed framework, it is possible to localize

targets using about MIMO radar noisy mea-

surements, where is proportional to the array aperture and

determines the angle resolution. In other words, the proposed

framework supports the high-resolution provided by the virtual

array aperture while using a reduced number of MIMO radar el-

ements. This is in contrast with a filled virtual MIMO array for

which the product scales linearly with . Moreover, since

the results characterize the product of the number of transmit

and receive elements, MIMO random array implementation fur-

ther reduces the total number of antenna elements needed. From

numerical simulations it emerges that, in the proposed frame-

work, compressive sensing recovery algorithms (e.g., MBMP)

are capable of better performance (i.e., smaller probability of

sidelobe errors and better resolution) than classical methods,

such as beamforming and MUSIC.

APPENDIX

Proof of Proposition 1:

Mean: The mean is by definition the expectation of

the random array pattern, i.e., , over

. The expectation and the summations can be interchanged

obtaining

(38)

Moreover, the average of does not depend

on the index and , since are identically distributed, and

so are . By dropping the indexes of and and using

, we have the sum of identical terms, divided by

. Thus equals , the characteristic function

of the random variable .

Variance: Let and . For

brevity of notation, we drop the dependency on . First notice

that since is even, its characteristic function is real, thus

so is the mean value of the array pattern . We also have that

, since the real

and imaginary parts are uncorrelated and because .

Next, we need to evaluate and

. In order to derive these quantities, we consider the

expectations given by and . It can be

shown that,

(39)

and

(40)

Substituting the definition of the random array pattern (18)

and (21) in (39) and (40), we obtain (22) and (23).

Proof of Lemma 1: From (18) we have that

, where . When is a uniform

grid, is constant whenever is constant, i.e., along

every diagonal of the matrix . Since depends only on

the term (not on the actual and ), is a Toeplitz

matrix.

Proof of Theorem 1: We define the array pattern associated

with the transmitter as

(41)

and with the receiver arrays as:

(42)

Statistical properties of random arrays were analyzed in [5]

in the case of passive localization (i.e., an array with only

receiving elements). The following lemma customizes useful

results from [5]:

Lemma 2: Let the locations of the receiving array be

i.i.d., drawn from an even distribution and consider a given

. Then is asymptotically jointly Gaussian distributed

(we neglect the dependency on ):

(43)

where and

.

Proof: See [5].

The joint distribution of and can be ob-

tained similarly.

For a given , using Lemma 1 and the assump-

tion that the mean patterns of both the transmitter and receiver

arrays satisfy (25), i.e.,

, we have that, for both transmitter and receiver

arrays, the array pattern evaluated at any grid point is being

drawn from an asymptotically complex normal distribution with

variance defined by the number of transmit and receive ele-

ments, i.e., and .

It follows that the random variable can be ap-

proximated as belonging to Rayleigh distribution, i.e.,

, where , and similarly the

random variable is governed by a Rayleigh distribu-

tion with variance .

If and are independent (part 1), the two random variables

and are independent. Using (24), we have

that the distribution of is the product of two inde-

pendent Rayleigh distributed variables. The cumulative density

function of such a variable is given in [34]. It follows that the

ccdf of satisfies

(44)

where .
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If for all (part 2), by using (24), we have

that . Since the random variable

has a Rayleigh distribution, is dis-

tributed as the square of a Rayleigh distribution, which has cdf

. As such, its ccdf satisfies

(45)

Part 3 follows because, from (24), the phase of is the

sum of the phases of and . In the case of transceivers

the phase of is evidently uniform since it is the same phase

of . In the case of transmitter and receivers, since

both and are two independent circular symmetric

complex normal variables, the sum of the phases is itself uni-

formly distributed over .

Proof of Corollary 1: We take the conservative assump-

tion of independence between the random variables

, for . If and are independent (part

1), from (26), the ccdf of the maximum among such

variables (which gives the coherence), is upper bounded by

(46)
where .

If for all (part 2), by using (27), the ccdf of the

maximum among such variables, is upper bounded by

(47)

This concludes the proof.

Proof of Theorem 2: The theorem follows by combining

the claims of Theorem 2.7 in [30] and Corollary 1. Theorem 2.7

in [30] provides stable recovery guarantees for any -sparse

signal if the measurement matrix has RIP

. The goal is therefore to bound the RIP of the

spatial compressive sensing measurement matrix with prob-

ability higher than . In other words, we want to find how

many measurements we need to satisfy

. By using [30], we have that

if . Moreover, the condition

is equivalent to . There-

fore by invoking (29) in Corollary 1, we can write

(48)

where, by combining and , we

have . We thus look for the value

that makes the right hand-side equal to .

We first approximate the modified Bessel function of the

second kind for a large absolute value and small phase

of the argument (in our setting, the argument is real) [35]:

. We thus would like to enforce

. Defining

and linearizing the function around , we

obtain , where, for simplicity, we used

in place of . This equation can be rewritten in the

form , where . The inverse

function of such equation is called the Lambert function

[36]. For real arguments, it is not injective, therefore it is

divided in two branches: or . Since in our

setup , the lower branch, denoted , is considered,

and our solution satisfies . By using the

asymptotic expansion

and solving for we obtain (31). The claim of the theorem

follows from Theorem 2.7 in [30]. Finally, since in this work we

consider -sparse signals, in the error term (32), we discarded

the term for nearly-sparse signals present in [30].

Proof of Theorem 3: Because the variables are identi-

cally distributed, and so are , the average

does not depend on the index , where the

last relation follows from the definition of . Therefore, we

have

. Thanks to Lemma 1, we can focus only on the first

row of . Using (18), the elements of the first row of

such matrix are for . From (21) in Proposi-

tion 1, we know that . Thus, requiring (34),

i.e., for , together with the fact that

(because ), gives the

“if” direction of the claim.

The “only if” direction follows by noticing that when (34) is

not satisfied there will be at least one such that .

Therefore, the matrix does not satisfy the isotropy property,

showing that (34) is also a necessary condition.
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