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Abstract: As a basic method of spatial data operation, spatial keyword query can provide meaningful
information to meet user demands by searching spatial textual datasets. How to accurately under-
stand users’ intentions and efficiently retrieve results from spatial textual big data are always the
focus of research. Spatial textual big data and their complex correlation between textual features not
only enrich the connotation of spatial objects but also bring difficulties to the efficient recognition and
retrieval of similar spatial objects. Because there are a lot of many-to-many relationships between
massive spatial objects and textual features, most of the existing research results that employ tree-like
and table-like structures to index spatial data and textual data are inefficient in retrieving similar
spatial objects. In this paper, firstly, we define spatial textual concept (STC) as a group of spatial
objects with the same textual keywords in a limited spatial region in order to present the many-to-
many relationships between spatial objects and textual features. Then we attempt to introduce the
concept lattice model to maintain a group of related STCs and propose a hybrid tree-like spatial index
structure, the lattice-tree, for spatial textual big data. Lattice-tree employs R-tree to index the spatial
location of objects, and it embeds a concept lattice structure into specific tree nodes to organize the
STC set from a large number of textual keywords of objects and their relationships. Based on this,
we also propose a novel spatial keyword query, named Top-k spatial concept query (TkSCQ), to
answer STC and retrieve similar spatial objects with multiple textual features. The empirical study is
carried out on two spatial textual big data sets from Yelp and Amap. Experiments on the lattice-tree
verify its feasibility and demonstrate that it is efficient to embed the concept lattice structure into tree
nodes of 3 to 5 levels. Experiments on TkSCQ evaluate lattice from results, keywords, data volume,
and so on, and two baseline index structures based on IR-tree and Fp-tree, named the inverted-tree
and Fpindex-tree, are developed to compare with the lattice-tree on data sets from Yelp and Amap.
Experimental results demonstrate that the Lattice-tree has the better retrieval efficiency in most
cases, especially in the case of large amounts of data queries, where the retrieval performance of the
lattice-tree is much better than the inverted-tree and Fpindex-tree.

Keywords: Top-k spatial concept query; lattice-tree; concept lattice; spatial textual big data

1. Introduction

A spatial keyword query (SKQ) is the basic way to meet users’ location-related de-
mands and to explore the huge potential values of spatial textual big data. It is usually
used to recommend multiple valuable spatial objects that satisfy location and content
requirements to users. With the continuous emergence of massive spatial-temporal big
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data and the widespread use of LBS (location-based services), SKQ has been extended to a
variety of research [1–5] to meet users’ various needs. For example, a spatial group keyword
query [6–8], spatial keyword skyline query [9–11], temporal spatial keyword query [12–14],
etc. However, the huge data volume and various textual features of spatial textual big
data still bring some challenges to the efficiency and effectiveness of SKQ, especially in
multi-textual-keywords queries.

Indicating the efficiency of SKQ, most of the existing index structures are evolved
from inverted table [1,5,15,16], signature [3,17,18], and bitmap [19], etc. for textual features
of spatial data. However, they cannot directly maintain the network-like many-to-many
relationships between spatial objects and textual keywords, and multiple complex traversals
are required to deal with spatial multi-keywords queries in spatial textual big data. On
the other hand, too many textual keywords may often cause trouble for users to set
query conditions. Users often only give fuzzy query ideas based on their biased personal
experience and knowledge, leading to inaccurate or incomplete results of SKQ [20].

A simple example shown in Figure 1 explains the effect of textual keyword selection
on SKQ. In it, seven spatial objects are given, and their textual features and spatial positions
are shown in Figure 1a,b. User attempts to find something similar to “Wal-Mart” fall
within the limited spatial range, i.e., the dotted circle in Figure 1b. Due to the inadequate
understanding of “Wal-Mart” with many textual features in this data context, the conditions
of Query 1 and 2 do not accurately characterize “Wal-Mart”. Thus, their query results are
incorrect. Only Query 3 finds that “Wal-Mart” is the “open” “supermarket” and “Costco”
(d7) is retrieved.
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Figure 1. A simple example of SKQ.

In general, spatial textual big data contain many-dimensional textual features. This
data not only enrich the detailed features of spatial objects, but also show the complex asso-
ciations between spatial objects and offers difficult to efficient SKQ. Most of the traditional
SKQ algorithms usually employ spatial location and textual keywords as query conditions
to retrieve similar spatial objects in spatial proximity and textual relevancy. However, a lack
of knowledge of the textual context often occurs. In this case, users prefer to present their
query intention with analogical objects and find similar spatial objects [6,8,9], especially
in the condition of many textual features. Therefore, the key to efficient SKQ is to quickly
identify similar spatial objects.

To clarify the similarity of spatial objects, we propose a spatial textual concept (STC)
to formalize a group of similar spatial objects with several identical textual features in a
given spatial range. An STC can be represented by four tuples (r, D, K, I), r is a spatial
region, D is a set of spatial objects, K is a set of textual features, and I is the relationships
between D and K. We also name the specific SKQ that targets STC as spatial concept query
(SCQ) to answer the similar spatial textual objects. In the example shown in Figure 1,
c1 = (r, s, {supermarket}, {d3, d7}) represents that in the spatial range of r, the concept c1
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contains two objects, d3 and d7. The textual attribute “supermarket” in a spatial region
of s; and c2 = (r, s, {supermarket, Is open}, {d7}) represents that the concept of “open”
“supermarket” is d7, “Costco”. The many-to-many relationship between spatial objects and
textual features can also be presented. More importantly, the users’ real querying intention
may be directly identified as the STC c2 by the SCQ “Query 3”.

For the maintenance of STCs in spatial textual big data, a novel index scheme and its
top-k SCQ algorithms need to be developed. This paper proposes a hybrid index structure,
a lattice-tree, by embedding the concept lattice [21] model into the nodes of an R-tree like
spatial index structure, in order to construct the STC index structure of spatial textual big
data. Concept lattice, proposed by Wille in 1982, is known as a knowledge mining tool, in
which concept nodes describe the sets of objects with the same features and the linkages
between concept nodes express the hierarchical relationship between them. Due to the
many-to-many relationships between objects and features that can be abstracted by concept
nodes of a concept lattice directly, the concept lattice model has been employed by some
researchers for describing spatial relationships [22], mining spatial association rules [23],
and analyzing spatial data warehouses [24], etc. In essence, lattice-tree is still a kind of tree
index structure. In it, by embedding concept lattice into tree nodes, STCs within the spatial
region of a tree node are indexed by concept nodes of the corresponding concept lattice.

Moreover, this paper also develops the top-k SCQ (TkSCQ) algorithm to efficiently
answer STC. The inputs of the TkSCQ algorithm include a spatial range and a spatial object,
and the outputs are the top k nearest similar spatial objects belonging to the same STC with
the input object. Due to the correspondence between STC and the concept node, efficient
TkSCQ can be achieved by traversing tree nodes and concept nodes only once.

To provide accessible and evaluable conclusions, two baseline algorithms based on
IR-tree [1,2] and FP-tree [25] are employed, and a series of experiments on performance
and efficiency are performed. The experimental results demonstrate the effectiveness and
efficiency of the proposed methods.

To sum up, the main contributions are as follows:

(1) We define spatial textual concept (STC) to formalize a set of similar spatial objects and
develop a hybrid index structure, a lattice-tree, to index the STCs in spatial textual big
data. By embedding concept lattice structures into R-tree nodes, it can not only supply
a tree-like spatial location index but also present the many-to-many relationships
between spatial objects and textual features.

(2) Based on STC, we also develop a top-k spatial concept query (TkSCQ) algorithm to
retrieve the set of similar spatial objects from spatial textual big data. The TkSCQ
algorithm transforms the user’s query request into an STC and retrieves the similar
spatial objects by lattice-tree.

(3) We conduct a series of performance experiments and comparative experiments with
two baseline algorithms. The results demonstrate the applicability of STC to spatial
textual big data and the efficiency of the proposed lattice-tree and TkSCQ.

The remainder of this paper is organized as follows. In Section 2, we describe the
related work. Section 3 formalizes the model and the problem we are trying to work out.
Experimental results are described in Section 4. Finally, we summarize the full paper
in Section 5.

2. Related Work

Due to the rapid development of information technology, spatial textual data can be
easily accessible and location-based Service has been widely used in various human activi-
ties. Some query methods extended from the baseline SKQ method have been proposed.
For example, spatial group keyword query [6–8], prestige-based SKQ [26], spatial keyword
skyline query [9–11], level-aware collective SKQ [27], spatial pattern matching [28], social-
aware SKQ [29–31], etc. Based on the spatial search, these methods pay more attention to
the accuracy and efficiency of a textual features query.



ISPRS Int. J. Geo-Inf. 2022, 11, 312 4 of 18

With the increase in spatial textual big data, not only its data volume but its structure
is becoming more complex, which means that a spatial object has more non-spatial textual
features. Although this provides a variety of chances to enrich data applications, it also
makes it difficult for efficient retrieval and data mining [32,33]. For this, some efforts hope
to identify similar spatial objects with the same textual features to answer SKQ. Spatial
group keyword query [6–8] tries to find a spatial object group to answer the multi-textual
keywords query collectively with the minimum distance cost. Prestige-based SKQ [26]
retrieves the most popular objects with the prestige of the given textual conditions. Further,
level-aware collective SKQ [27] proposes a level-aware keyword scoring paradigm to ask
for a group of similar objects that cover the query keywords collectively. Their query targets
are a group of similar spatial objects that meet the query keywords, although their solving
process is different.

Motivated by this, we attempt to formalize the group of similar spatial objects with
the same textual features as spatial textual concept (STC) and denote its query as spatial
concept query (SCQ).

In addition, from the perspective of spatial index structure, most existing spatial index
schemes can be considered as a hybrid index structure. They employ tree-like structures,
such as R-tree [1,2,17,34,35], Quadtree [3,15], etc., or non-tree structures, such as Grid [5,36],
space-filling curve [16,37], etc., to maintain spatial location features. Inverted file [1,5,15,16],
Fp-tree [25,38], signature [3,17,18], bitmap [19], etc., are also employed to maintain non-
spatial textual features. However, considering a large number of the detailed features of
textual features and their many object associations, how to efficiently find and index similar
spatial objects from spatial textual big data remains a hot research topic.

Since the textual features of spatial objects are or can be easily transformed into
structured data, some classically structured index structures have been widely used to
cope with textual keyword retrieval. Some efforts [2,16,35] integrate inverted file-based
structure into spatial index structure to answer the single keyword SKQ. They create
independent indexes for each keyword and only maintain the one-to-many relationships
between textual features and spatial objects. For multi keywords SKQ, multiple rounds of
keyword traversal and a large number of set operations are required by an inverted file
structure, especially in spatial textual big data [32]. Furthermore, signature based [3] and
bitmap based [19] structures can be considered as the extensive version of the inverted
file. They only maintain the many-to-many relationships in specific several keywords and
a lot of time-consuming set operations are still inevitable to deal with spatial textual big
data [33].

In the study of social networks, the many-to-many relationships between social net-
work data are usually indexed by a network structure to maintain the multiplexity [39]
and the heterogeneity [40] of social network data, so that social-aware SKQ [29–31] can be
achieved. Furthermore, to understand the high dimensional textual features, the idea of
multi-granularity classification has been applied by S2R-tree [41] and CISK [20] to describe
the high dimensional semantic space and the knowledge graph. S2R-tree classifies spatial
objects with high-dimensional semantic information according to hierarchy, and CISK
classifies similar spatial objects into the concept.

The proposed spatial textual concept also inherits the idea of classification to model
the many-to-many relationships between objects and features. Based on the concept
lattice structure, the proposed spatial concept query for STC can retrieve similar spatial
objects directly.

A concept lattice [21] is a lattice structure that represents the hierarchical relationships
between concepts. Each of its nodes is a concept that includes some objects with the same
features. It has been widely used in information retrieval [42], knowledge discovery [43],
association analysis [44], recommender systems [45], and software engineering [46]. Obvi-
ously, concept lattice is a perfect carrier for the STC to carry the many-to-many relationships
in spatial textual big data.
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Therefore, this paper hopes to introduce the concept lattice model to maintain STC
and proposes a novel hybrid index structure, a lattice-tree, to explore the manipulating
mechanism of spatial object similarity. By embedding a concept lattice into some nodes
of the R-tree index, the lattice-tree integrates spatial and textual information into STC in a
seamless way, and all many-to-many relationships in a tree node are fully presented as the
concepts of concept lattice structure [43]. Instead of indexing spatial objects, the lattice-tree
takes STC as the index object so that the efficient query for STC can be achieved. The
Top-k spatial concept query (TkSCQ) algorithm is developed to retrieve the k nearest to
similar spatial objects in an STC. Theoretically, due to the full coverage of a concept lattice
to STC [44], the lattice-tree can find all valuable relationships in spatial textual big data and
is conducive to accurately understanding the query intentions.

3. Methodology
3.1. Principles

As a new way to explore the complex relationships between spatial objects, the pro-
posed spatial textual concept STC is used to present a group of similar spatial objects with
the same textual features within a certain spatial region. In this section, a series of formal
definitions of STC are presented, and the index structure Lattice-tree and the retrieval
scheme Top-k spatial concept query (TkSCQ) for STC are proposed.

Lattice-tree is a hybrid index structure including a tree index structure and some
concept lattice structures. It employs an R-tree structure to maintain the spatial information
of objects and embeds a concept lattice structure into a tree node to organize the textual
information of objects in the tree node as STCs. The concept lattice structure is the complete
set of the many-to-many relationships and its volume is proportional to the quantity and
complexity of textual features, so only some tree nodes that contain a moderate number
of objects contain a concept lattice. TkSCQ is a proposed STC retrieval algorithm based
on lattice-tree for spatial textual big data. By traversing the lattice-tree, it can accurately
retrieve STCs that meet the query conditions to explore the many-to-many relationships
between similar spatial objects.

3.2. STC Formulations

Spatial Textual Big Data can be denoted as a set of spatial objects, D = 〈di = {p, K},
p ∈ P, K ⊆ K〉, where di is the ith spatial object with the spatial information p and a
textual feature set K =

〈
k1, k2, . . . , k j

〉
. K represents the full set of textual features. K

represents the set of possible features that a location p can have or not, which is the subset
of K, K ⊆ K. P represents the set of all the locations p. For example, the “Wal-Mart” in
Figure 1 can be represented by d1 = {p1, {supermarkey, is_open} Spatial Textual Concept
(STC) represents a set of spatial objects D and their common textual features K within a
considered spatial region r. An STC c can be defined by a tuple, c = {r, D, K, I}, where

• r is the considered spatial region,
• D ⊆ D, is a set of spatial objects contained in r,
• K ⊆ K represents the common features of the spatial object of D.
• I ∈ D×K represents the pairs (d, k) indicating that the spatial object d in D has the

feature k in K.

In addition, to present the many-to-many relationships between spatial objects and
textual features in an STC, two operators, f and g, are defined below.

f (D) = {k ⊆ K|∀d ⊆ D, (d, k) ∈ I}

g(K) = {d ⊆ D|∀k ⊆ K, (d, k) ∈ I}

The f operation represents that each spatial object d of D has the textual features K,
and the g operation represents that each textual attribute k of K belongs to the object set D.
Then an STC c must satisfy the following constraints: f (c.D) = c.K and g(c.K) = c.D.
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Concept Lattice can be used to represent the hierarchical relationship between STCs.
Given two STC c1 = (r, D1, K1) and c2 = (r, D2, K2) covering the same spatial region r, the
following partial order relation is defined as:

c1 ≤ c2 ⇔ D1 ⊆ D2(⇔ K2 ⊆ K1)

And c1 is called the sub-concept of c2, c2 is called the super-concept of c1. Based on this,
the Concept Lattice L considering the set C of STCs existing in the spatial region r, can be
formally defined as follows

L = {r, C,≤}

where ≤ is the partial order relation defined above.
To demonstrate the concept lattice, an example employing the case data in Figure 1 is

shown in Table 1 and Figure 2. For the sake of readability, in Figure 2, each STC {r, D, K, I}
reported in the nodes of the lattice is represented only by listing the set of objects D and the
common features K. The search region can be understood as the area that meets the query
conditions of TkSCQ (see details for Section 3.3). Because the spatial object d1 is out of the
search region, it is ignored and the objects d2 to d7 need to be considered. Table 1 shows the
9 STCs from d2 to d7: c0 is the top STC, and c8 is the bottom concept. The corresponding
concept lattice structure is shown in Figure 2.

Table 1. The STCs of Example.

STC Extent Intent *

c0 d2, d3, d4, d5, d6, d7 ∅
c1 d5, d6 1, 4
c2 d2, d4 2
c3 d3, d7 3
c4 d2, d4, d6, d7 5
c5 d2, d4 2, 5
c6 d7 3, 5
c7 d6 1, 4, 5
c8 ∅ 1, 2, 3, 4, 5

* 1: Restaurants, 2: Retailer, 3: Supermarket, 4: Take-out, 5: Is open.
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3.3. Lattice-Tree

Lattice-tree is the proposed hybrid index structure. Its main idea is to embed concept
lattice structure into nodes of the R-tree to maintain STC. Similar to R-tree [47], the lattice-
tree also employs the minimum bounding rectangle (MBR) to split spatial regions and build
a tree index structure to index the spatial information of spatial objects. For the textual
features of spatial objects, the lattice-tree inserts a concept lattice structure into some tree
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nodes. Then the spatial information and textual features of spatial objects can be integrated
into tree nodes in a seamless way.

Let T = {〈ni〉, δ,
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max] is the
threshold for the level of tree node, that determines whether the tree node contains the
concept lattice structure.

As shown in Figure 3, there are three kinds of tree nodes in the lattice-tree. When
the level of a tree node is in the range of
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, the tree node, named tree-lattice node, contains
a L structure, else the tree node only indexes the raw data of spatial objects. The reason
for this is that the concept lattice is the complete set of STC, and too much data will make
the concept lattice bloated and inefficient. Therefore, we hope to only embed the concept
lattice on some tree nodes with a smaller data volume and a larger level to achieve good
performance. The detailed evaluation of this is shown in Section 4.2.
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The initialization process of the lattice-tree is shown in Algorithm 1. It is a progressive
algorithm that can insert spatial objects into the lattice-tree one by one by traversing the
spatial textual big data set once.

Its inputs are the spatial textual big data set D, the parameter of the tree node entries,
δ, and the concept lattice building parameter, r. Its output is the Lattice-tree index structure
T. The initialization process consists of two steps. First, in lines 1 to 6, incrementally create
the tree structure based on the spatial information of spatial objects. Similar to the classical
initialization algorithm of R-tree [47], Algorithm 1 creates a tree structure of T by inserting
spatial objects d into a tree node whose MBR covers d. Then, in lines 7 to 13, it generates
STCs and creates a concept lattice structure L in a tree node n whose level is in
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. The
construction process of the concept lattice is referenced from [21] but is not described in
this article.

In addition, the update process of the lattice-tree is similar to Algorithm 1. Insert some
new spatial textual objects into the tree nodes and update the tree structure by updating
the algorithm of R-tree. Then, traverse the tree-lattice nodes and insert new objects into the
concept lattice structure by the process detailed in lines 6 to 10 in Algorithm 1.
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Algorithm 1: The initialization of lattice-tree

Input: D, δ, ∇;
Output: T;
1: for each d ∈ D: //create tree structure
2: insert d into T.n;
3: if T.n.cns > δ:
4: generate a new tree node n′ and update T;
5: end for;
6: for each n ∈ T: //create concept lattice structure
7: if n.level in

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 2. An example of concept lattice. 

3.3. Lattice-Tree 
Lattice-tree is the proposed hybrid index structure. Its main idea is to embed concept 

lattice structure into nodes of the R-tree to maintain STC. Similar to R-tree [47], the lattice-
tree also employs the minimum bounding rectangle (MBR) to split spatial regions and 
build a tree index structure to index the spatial information of spatial objects. For the tex-
tual features of spatial objects, the lattice-tree inserts a concept lattice structure into some 
tree nodes. Then the spatial information and textual features of spatial objects can be in-
tegrated into tree nodes in a seamless way. 

Let 𝕋 𝒏𝒊 , 𝜹, 𝓻  be a Lattice-tree, where 𝑛  is the set of tree nodes, and 𝑛 𝑖𝑑, 𝑝𝑛, 𝑐𝑛𝑠, 𝑙𝑒𝑣𝑒𝑙, 𝑚𝑏𝑟, 𝐿  is the tree node structure containing the id of node, 𝑖𝑑; par-
ent node, 𝑝𝑛; and children nodes, 𝑐𝑛𝑠; the level of node in tree, 𝑙𝑒𝑣𝑒𝑙 (the 𝑙𝑒𝑣𝑒𝑙 of leaf 
node is 0, and the 𝑙𝑒𝑣𝑒𝑙 of tree root is the maximum value); the minimum bounding rec-
tangle, 𝑚𝑏𝑟; and the concept lattice structure, 𝐿. 𝛿 𝛿 , 𝛿  is the range of the tree 
node’s entries, i.e., the number of child nodes of the tree node, and 𝓇 𝓇 , 𝓇  is 
the threshold for the 𝑙𝑒𝑣𝑒𝑙 of tree node, that determines whether the tree node contains 
the concept lattice structure. 

As shown in Figure 3, there are three kinds of tree nodes in the lattice-tree. When the 𝑙𝑒𝑣𝑒𝑙 of a tree node is in the range of 𝓇, the tree node, named tree-lattice node, contains a 𝐿 structure, else the tree node only indexes the raw data of spatial objects. The reason for 
this is that the concept lattice is the complete set of STC, and too much data will make the 
concept lattice bloated and inefficient. Therefore, we hope to only embed the concept lat-
tice on some tree nodes with a smaller data volume and a larger 𝑙𝑒𝑣𝑒𝑙 to achieve good 
performance. The detailed evaluation of this is shown in Section 4.2. 

 
Figure 3. The framework of lattice-tree. 

:
8: generate the STC set of n→ C;
9: L = (n.mbr, C,≤)
10: n← L
11: end for
12: return T

3.4. Top-k Spatial Concept Query

SCQ can be considered as an improved version of the basic SKQ (spatial keywords
query). It does not match spatial objects one by one according to the user’s query conditions
but conducts conceptual inference from a target object by matching STC, and returns a set
of similar spatial objects. It is conducive to the query condition selection and the integrity
of query results under the condition of many textual features.

A Top-k spatial concept query (TkSKQ) is represented by q =
(

k, p, d̂
)

, where k is the

expected number of query results, p is the spatial location of the querier, and d̂ is the target
spatial object. The query returns a set D̂ of k spatial objects similar to d̂ and D̂ ⊂ D, such
that (1) |D| = k; (2) ∀d ∈ D, d and d̂ belong to the same STC; (3) ∀d ∈ D, A ⊆ d.K, and
∀d′ /∈ D, A ⊆ d′.K; then dist(d, p) < dist(d′, p).

In Figures 1 and 2, in the number of query results, k, is 1, p is the query point identified
by asterisks in Figure 1b, and d̂ is the expected object. The TkSKQ of “Wal-Mart” can be
represented as q = (1, “query point”, “Wal−Mart”). To achieve this, we firstly retrieve the
textual features of “Wal-Mart” from the lattice-tree, i.e., {Supermarket, Is open}, and find
the tree-lattice nodes with a smaller MBR, i.e., a larger level, from the lattice-tree, then we
retrieve the concept lattice structure to achieve k (k = 1) object belonging to the same STC
as “Wal-Mart”, i.e., d7.

The flow chart of the TkSCQ algorithm is shown in Figure 4. It consists of five steps.
Step 1 infers query conditions based on query inputs. Since many textual features will
bring trouble to the accurate selection of query parameters, as in the query example in
Figure 1, query inputs are often incomplete or inaccurate. Therefore, TkSCQ takes a target
spatial object as one of the query inputs, retrieves its textual features A, and transforms the
query conditions

(
k, p, d̂

)
to (k, p, A). Step 2 traverses the lattice-tree to find the tree-lattice

nodes set N̂ with the maximum level and p, A. Step 3 obtains the STCs set Ĉ from N̂. If
the number of spatial objects in Ĉ is less than k, Step 4 replaces the “smallest” tree-lattice
node with its “nearest” tree-lattice node. The “smallest” mean, the least number of spatial
objects and the “nearest” means the nearest tree-lattice node along the lattice-tree structure.
Otherwise, Step 5 retrieves and sorts all spatial objects in Ĉ from the lattice-tree as D̂ and
returns D̂ the results of TkSCQ.
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Algorithm 2 presents the main details of the proposed TkSCQ. Its inputs are the ex-
pected number of query result k, the spatial location p, the target spatial object d̂, and the
Lattice-tree index structure T. Its output is the set of k sorted spatial objects D̂. Correspond-
ing to the process of the flowchart shown in Figure 4, the implementation of each step is
described. In Step 1, in line 1, the textual features of the target spatial object d̂ are retrieved
by traversing the tree nodes of T. Step 2, in lines 2 to 8, retrieves the tree-lattice nodes with
level = T.
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max, the spatial location p, and the textual features set A. Step 3, in lines 9 to
12, traverses the concept lattice structure of each node in N̂ to retrieve the STCs set Ĉ. Step
4, in lines 13 to 18, judges whether the number of spatial objects in Ĉ meet k. If not, retrieve
the tree node with the least number of objects and add its nearest tree-lattice node to N̂ and
update Ĉ. Step 5, in lines 19 to 20, sorts the spatial objects in all STCs of Ĉ by the distance
from p and finds the k spatial objects D̂ to p. Finally, it returns D̂.

Because the two main components, the R-tree structure and concept lattice structure
of the Lattice-tree have the logarithmic retrieval efficiency [21,47], the time complexity
of traversing objects from the lattice-tree can be considered as O(nlogn). In addition,
Step 1 and 2 of Algorithm 2 traverses the tree structure and lattice structure with O(nlogn),
Step 3 traverses some lattice structures with O(nlogn), and Steps 4 and 5 traverse objects
in concept lattice structures with O

(
n2). Therefore, we think that the time complexity of

Algorithm 2 is O
(
nlogn + n2).
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Algorithm 2: TkSCQ

Input: k, p, d̂,T;
Output: the set of k sorted spatial objects D̂;
1: traverse T to retrieve the spatial object d̂ and let A = d̂.K; //Step 1
2: t← T.root //Step 2
3: while t 6= ∅:
4: if t[0].level = T.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 2. An example of concept lattice. 

3.3. Lattice-Tree 
Lattice-tree is the proposed hybrid index structure. Its main idea is to embed concept 

lattice structure into nodes of the R-tree to maintain STC. Similar to R-tree [47], the lattice-
tree also employs the minimum bounding rectangle (MBR) to split spatial regions and 
build a tree index structure to index the spatial information of spatial objects. For the tex-
tual features of spatial objects, the lattice-tree inserts a concept lattice structure into some 
tree nodes. Then the spatial information and textual features of spatial objects can be in-
tegrated into tree nodes in a seamless way. 

Let 𝕋 𝒏𝒊 , 𝜹, 𝓻  be a Lattice-tree, where 𝑛  is the set of tree nodes, and 𝑛 𝑖𝑑, 𝑝𝑛, 𝑐𝑛𝑠, 𝑙𝑒𝑣𝑒𝑙, 𝑚𝑏𝑟, 𝐿  is the tree node structure containing the id of node, 𝑖𝑑; par-
ent node, 𝑝𝑛; and children nodes, 𝑐𝑛𝑠; the level of node in tree, 𝑙𝑒𝑣𝑒𝑙 (the 𝑙𝑒𝑣𝑒𝑙 of leaf 
node is 0, and the 𝑙𝑒𝑣𝑒𝑙 of tree root is the maximum value); the minimum bounding rec-
tangle, 𝑚𝑏𝑟; and the concept lattice structure, 𝐿. 𝛿 𝛿 , 𝛿  is the range of the tree 
node’s entries, i.e., the number of child nodes of the tree node, and 𝓇 𝓇 , 𝓇  is 
the threshold for the 𝑙𝑒𝑣𝑒𝑙 of tree node, that determines whether the tree node contains 
the concept lattice structure. 

As shown in Figure 3, there are three kinds of tree nodes in the lattice-tree. When the 𝑙𝑒𝑣𝑒𝑙 of a tree node is in the range of 𝓇, the tree node, named tree-lattice node, contains a 𝐿 structure, else the tree node only indexes the raw data of spatial objects. The reason for 
this is that the concept lattice is the complete set of STC, and too much data will make the 
concept lattice bloated and inefficient. Therefore, we hope to only embed the concept lat-
tice on some tree nodes with a smaller data volume and a larger 𝑙𝑒𝑣𝑒𝑙 to achieve good 
performance. The detailed evaluation of this is shown in Section 4.2. 

 
Figure 3. The framework of lattice-tree. 

max and ∃c ∈ t[0].L.C, c.K = A:
5: N̂ ← t[0]
6: if p in t[0].child.mbr:
7: t← t[0].child and delete t[0] from t
8: end while
9: for each n ∈ N̂: //Step 3
10: if ∀c ∈ n.L.C, c.K = A
11: Ĉ ← c ;
12: end for
13: while Ĉ.objectnumber < k: //Step 4
14: n′ = min (N̂);
15: n′′ = the nearest tree-lattice node of n′;
16: insert n′′ into N̂;
17: update Ĉ;
18: end while
19: S = sort

(
Ĉ.objects

)
//Step 5

20: D̂ = S[0 : k]
21: return D̂

4. Experiment

In this section, we conduct extensive experiments to evaluate the performance of the
proposed lattice-tree and TkSCQ algorithm on a real dataset. All of the experiments were
deployed on a computer with intel core i5, 3.0 GHz CPU, 24GB RAM, and 64-bit Windows
10, and all the experimental code were written in python 3.7 and several popular libraries,
e.g., NumPy, pandas, etc. The experimental data, code and results have been published in
https://gitee.com/xapGitee/lattice-tree.git (accessed on 17 April 2022).

4.1. Data and Preprocessing

To evaluate the effectiveness of the proposed methods, two examples of STDB, yelp
and amap, are employed. The yelp dataset used in this paper comes from yelp.com, the
most popular review site in the United States, which provides a typical spatial textual
dataset “business” containing 192,690 spatial objects with the 12 fields in the United States.
This paper employs the “business” dataset as the spatial textual big data to evaluate the
lattice-tree and the TkSCQ. The other is a POI (point of interest) dataset from amap.com,
named “amap”, which contains 483,990 business POIs in Shanghai, China.

To model the spatial objects of the yelp dataset, some fields are extracted from “busi-
ness”. The fields of “latitude” and “longitude” are employed to the spatial information,
and these 5 fields: “stars”, “review_count”, “Is_open”, “categories”, and “attributes” are
transformed into 45 binary textual features. They are 3 textual features: S_low, S_middle,
S_high from “stars”; 3 features, S_low, S_middle, S_high from “review_count”; 1 attribute
Is_open from “Is_open”; 26 features, Beauty & Spas, Education, Health & Medical, Automo-
tive, Bars, Mass Media, Event Planning & Services, Financial Services, Local Services, Local
Flavor, Gyms, Parks, Home Services, Fitness & Instruction, Pets, Shopping, Religious Organi-
zations, Active Life, Landscape Architects, Public Services & Government, Restaurants, Hotels
& Travel, Professional Services, Arts & Entertainment, Nightlife, Food from “categories”; and
8 features, Alcohol, DogsAllowed, GoodForDancing, HasTV, Music, Open24Hours, Smoking,
WIFI, RestaurantsTableService, GoodForKids, GoodForGroups, AgesAllowed from “attributes”.
Then, the spatial textual big data Dyelp =

〈
di = {p, K}, K ⊆ Kyelp, 0 ≤ i ≤ 192690

〉
, and

Kyelp =
{

k j
∣∣j ≤ 45

}
.

https://gitee.com/xapGitee/lattice-tree.git
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amap only has location information and a few textual keywords. To ensure the diver-
sity of experimental scenes and the comparability of experimental results, we redesign
30 simulation textual keywords similar to yelp to expand amap. Then, the data volume of
amap with 483,990 spatial objects is greater than that of yelp with 192,690 spatial objects, and
the data complexity of amap with 30 textual keywords is lower than that of yelp 45 keywords.
Damap =

〈
di = {p, K}, K ⊆ Kamap, 0 ≤ i ≤ 483990

〉
, and Kamap =

{
k j
∣∣j ≤ 30

}
.

Dyelp has higher textual complexity (more keywords) and less data than Damap, and the
indexing mechanism of the lattice-tree can be explored comprehensively by employing them.

4.2. The Initialization of Lattice-Tree

In the lattice-tree index structure, 2 parameters δ and
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need to be considered for
its initialization. According to the existing mature schemes [1,2,17,34,35], the number of
tree node entries δ is often taken as [2,4]. Therefore, in this paper, Lattice-tree still uses
this setting δ = [2, 4]. By it, the Lattice-tree Tyelp of Dyelp contains 291,678 tree nodes
(192,609 leaf nodes and 99,069 non-leaf nodes) in 12 level, and the Lattice-tree Tamap of
Damap contains 732,340 tree nodes (483,990 leaf nodes and 248350 non-leaf nodes) in 14 level.
Their leaf nodes are on level 0, and the descriptive statistics of tree nodes in Lattice-tree are
shown in Table 2.

Table 2. The descriptive statistics of Tyelp and Tamap.

Description Tyelp Tamap

Data volume 100 Mb 192 Mb
Index volume 487 Mb 1193 Mb

The number of objects 192,690 483,990
The number of features 45 30

Total of level 12 14
The number of leaf nodes 192,690 483,990

The number of non-leaf nodes 99,069 248,350

Another parameter
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is related to the level of tree node and it determines on which
level the tree-lattice nodes should be created. For evaluating the effective of
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, the time
consumptions of constructing tree-lattice nodes in each level are measured and shown in
Figure 5. Obviously, the initialized time of a tree-lattice node is positively related to the
number of spatial objects it contains, and the performances of level 1 to 5 are better than
others. In addition, too few objects in a tree-lattice node are not conducive to the expression
and retrieval of the complex relationships between objects, and these nodes in level 1 to 2
are not suitable as the tree-lattice node.
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Furthermore, to evaluate the effect of
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, the effect of data volume to initialization time
is shown in Figure 7. It is clear that the initialization time of the concept lattice structures is
longer than the tree structure, and the initialization time of the lattice-tree increases linearly
with the data volume. Finally, the Tyelp’s initialization time of all data Dyelp is 249 s, its tree
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4.3. Evaluation and Comparison

For evaluating the performance of the lattice-tree, two baseline approaches, named
Inverted-tree and Fpindex-tree that are modified from existing methods are employed
to conduct the comparison. Specifically, inverted-tree is a variant of IRtree [1,2], which
replaces the concept lattice structure of the tree-lattice nodes in the lattice-tree to inverted file
structure, and similarly, Fpindex-tree replaces the concept lattice structure to the Fptree [25]
structure. To achieve comparable results, the two approaches and the lattice-tree have
the same initialization parameters, i.e., δ = [2, 4] and
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retrieval algorithms are also modified from Algorithm 2 and replace the retrieval codes of
the concept lattice to the retrieval codes of the IR-tree and Fp-tree. See [1,2] and [25] for
details of the inverted file and Fptree, which will not be repeated.

First, their initialization time cost and storage overhead are as follows. Figure 8 shows
the effect of data volume on the initialization time of Tyelp and Tamap. It is clear that
the inverted-tree is always the best, the lattice-tree lags behind the inverted-tree, and the
Fpindex-tree takes too long. Due to the inverted-tree only indexing each attribute in an
inverted file, it has the shortest initialization time of 167 s in Dyelp and 345 s in Damap. The
lattice-tree initialization cost time is 249 s in Dyelp and 913 s in Damap because it takes a
bit longer time to index the many-to-many relationships by the concept lattice, while the
Fpindex-tree spends the longest time cost at 2304 s in Dyelp and 1527 s in Damap to index the
relationships of all existing textual attribute combinations by Fptree. Although the volume
of Damap is about 2.5 times that of Dyelp, the initialization time of Tamap is only 0.7 times
that of Tyelp. It is clear that the initialization time of the lattice-tree is more sensitive to the
keyword complexity of STBD.
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Figure 9 shows the storage overhead of three approaches. Because of their indexing
mechanism, for both Tyelp and Tamap, the performance ranking and differences between
them are similar to those in Figure 8. In addition, these tree index structures have the same
storage of 46 MB in Tyelp and 118 MB in Tamap overhead with the same parameter δ, and
the differences are in the non-tree structure. In other words, in Tyelp the concept lattice of
the lattice-tree is 441 MB, the inverted file of the inverted-tree is 33 MB, and the Fptree of
the Fpindex-tree is 4520 MB. In Tamap, the concept lattice is 1075 MB, the inverted file is
63 MB, and the Fptree is 2088 MB. In addition, the differences of the lattice-tree and the
inverted-tree between Tyelp and Tamap are consistent with the difference of data volume
between Dyelp and Damap. However, Fpindex-tree is different from the other two. The
storage overhead of its non-tree structure is more complex in Dyelp than Damap. It indicates
that Fpindex-tree is more sensitive to data complexity.

Next, the performance of TkSCQ is observed in three aspects of data volume, the
number of query results k, and the number of textual keywords of target objects d̂. Note
that, to show the unbiased effectiveness, the query location and the textual features are all
random, and all query results are the average of 100 times with the same query conditions.

The effect of data volume on the retrieval time with k = 10 is shown in Figure 10. It
is obvious that the lattice-tree has the best performance (3.8 milliseconds in Dyelp). The
inverted-tree is at 5.3 milliseconds and the Fpindex-tree is at 102.4 milliseconds, and in
Damap, they are 11.5 milliseconds, 14 milliseconds, and 129 milliseconds, respectively. The
retrieval time of the lattice-tree increases moderately with data volume, while the inverted-
tree is slightly behind the lattice-tree, and the Fpindex-tree is the worst one. These results
demonstrate that with k = 10 the retrieval performance of the lattice-tree is better than
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others. The retrieval time of Tyelp is 3.8 milliseconds (about 72% of that of the inverted-tree
and 4% of the Fpindex-tree). Tyelp is 11.5 milliseconds (about 82% of that of Inverted-tree,
and 9% of the Fpindex-tree).

The retrieval time for D with different k = [5, 500] is shown in Figure 11. The lattice-
tree is still always the best one. Further, with the increase of k, more nodes need to be
traversed to find candidates, the retrieval time of these three approaches are accelerates,
and the gap between the lattice-tree and others becomes larger. When k = 500, the retrieval
time of Tyelp, shown in Figure 11a, is 12.3 milliseconds, which is 63% of that of the inverted-
tree and 3% of the Fpindex-tree. The retrieval time of Tamap, shown in Figure 11b, is
42 milliseconds, which is 48% of that of Inverted-tree, and 10% of the Fpindex-tree.
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Figure 12 shows the effect of the keyword number of target object d̂ to retrieval time.
Different from the general TkSKQ algorithm, the inputs of TkSCQ are the location point
p, the result number k, and the target object d̂. The keyword number of d̂ is related to
the complexity of the query because the keywords of d̂ need to be retrieved to match the
textual features of spatial objects. In Figure 12, the indicator is in the range of 3 to 8. When
its value is small (3, 4, or 5), the performance of the inverted-tree is slightly better than
the lattice-tree in Dyelp or Damap. When its value is in 5 to 8, the lattice-tree is obviously
better than the inverted-tree, and their gap increases with the increases of the indicator,
while the Fpindex-tree is the worst one. In the complex case, when the keyword number of
the target object is 8, the lattice-tree has the best performance, the retrieval time of Tyelp
is 12 milliseconds (63% of that of the inverted-tree and 3% of the Fpindex-tree), and the
retrieval time of Tamap is 34 milliseconds (56% of that of the inverted-tree and 15% of the
Fpindex-tree).
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In this section, the performance of the proposed lattice-tree is validated in comparison
with two baseline index structures, the inverted-tree and the Fpindex-tree, in terms of ini-
tialization cost and TkSCQ. For Dyelp or Damap, the initialization time and storage overhead
of the lattice-tree is a little worse than that of the inverted-tree, because the inverted-tree
only indexes single textual features. This is much less than the Fpindex-tree that has a huge
tree structure to index all features combinations of spatial objects. Regarding retrieval time,
it is no doubt that the lattice-tree index structure always has the best retrieval performance
with the different data volume, k, and the keyword number of the target object, especially
in the case of the complex query conditions. The reason for this is that the concept lattice
structure can organize the complex relationships between spatial objects into a concise
lattice structure and supply an efficient searching way to retrieve STC by only traversing
the lattice structure once. In addition, the retrieval performance of the lattice-tree is also
more stable than others in Tyelp and Tamap, while, with the increase in data volume and
complexity, the retrieval performance of the inverted-tree and the Fpindex-tree tend to
decline rapidly.

5. Conclusions

Motivated by the fact that spatial textual big data have been given more dimensionality,
huge data volume and the complexity of the non-spatial textual features have both brought
challenges to the retrieval of the many-to-many relationships between spatial objects
and textual features. Mining rich spatial textual relationships and inferring user’s query
intentions may provide a user with more satisfactory results. This paper hopes to enable the
spatial textual concept STC to form many-to-many relationships and develop the specific
index structure lattice-tree to maintain them. The Top-k spatial concept query (TkSCQ)
algorithm is also developed to address the user’s intention and answer the similar spatial
objects based on STC. A series of extensive experiments are deployed on two spatial textual



ISPRS Int. J. Geo-Inf. 2022, 11, 312 16 of 18

big datasets to evaluate the proposed lattice-tree and TkSCQ in comparison with two
baseline approaches, the inverted-tree and the Fpindex-tree. The experimental results on
the lattice-tree explain the rationality of its structure and show that when the concept lattice
is embedded into tree nodes of levels 3 to 5, the performance of the lattice-tree is better. The
experimental results on TkSCQ also demonstrate that the proposed lattice-tree obviously
has better retrieval efficiency, especially in spatial textual big data. When the number of
query results is 500, the retrieval performance of the lattice-tree in Dyelp is about 1.6 times
that of the inverted-tree and 35 times that of the Fpindex-tree, and the retrieval performance
of the lattice-tree in Damap is about two times that of the inverted-tree and 10 times that of
the Fpindex-tree. In addition, on Dyelp and Damap with different data volume and keyword
complexity, the lattice-tree always shows a more stable retrieval performance than the other
two methods.

Future work will be carried out in the following three directions. First, the scalability
of the lattice-tree will be examined with larger datasets. Second, the size of the lattice-tree
cannot grow unlimitedly. As such, a more flexible partitioned index may be an alternative.
Third, the tree structure of the lattice-tree may be optimized to explore the possibility of
further improving its performance.
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