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Abstract

Detecting land use and land cover changes is critical to
monitor natural resources and analyze global environmental
changes. In this paper, we investigate the land cover de-
tection using the remote sensing data from earth-observing
satellites. Due to the natural disturbances, e.g., clouds and
aerosoles, and the data acquisition errors by devices, remote
sensing data frequently contain much noise. Also, many
land covers cannot be easily identified in most dates of a
year. Instead, they show distinctive temporal patterns only
during certain period of a year, which is also referred to as
the discriminative period. To address these challenges, we
propose a novel framework which combines the spatial con-
text knowledge with the LSTM-based temporal modeling for
land cover detection. Specifically, the framework learns the
spatial context knowledge selectively from its neighboring lo-
cations. Then we propose two approaches for discriminative
period detection based on multi-instance learning and local
attention mechanism, respectively. Our evaluations in two
real-world applications demonstrate the effectiveness of the
proposed method in identifying land covers and detecting
discriminative periods.

1 Introduction

The monitoring of Land Use and Land Cover (LULC)
changes has drawn great attention from governments
and companies for many years. Accurate accounting of
LULC changes can provide promising insights needed
for management of natural resources and help under-
stand the impact of human actions and climate changes
on the environment [10, 24]. For example, deforesta-
tion and forest fires in tropical regions lead to massive
carbon emission. Monitoring crop varieties and plant-
ing area can help analyze the consumption of water and
energy in tillage, irrigation and harvesting.

Effective monitoring of LULC changes requires the
ability to precisely identify land covers over large regions
and over long periods. Recent advances in storing and
processing remote sensing data from satellites provide
tremendous potential for land cover detection. These
remote sensing datasets, such as MODIS and Landsat,
contain multi-spectral features collected at a global scale
under regular time interval, which makes it possible to
detect large-scale land covers over long periods.
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Figure 1: Example vegetation sequences of three burned
locations. Fires occur in different time and frequency.

Most existing land cover products are manually cre-
ated through visual interpretation, which takes advan-
tage of human expertise in the labeling process [21, 23].
However, the limitations of this approach are manifold.
First, manual labeling may result in both false positives
and false negatives due to observational mistakes. Sec-
ond, this approach usually requires multiple observers
to delineate land covers. Their own subjective biases
can result in inconsistent results. Most importantly, the
required substantial human resources make it infeasible
for large regions or for long periods.

In this paper, we investigate automated land cover
detection using a data-driven approach. Compared with
traditional classification problem, land cover detection
is challenging for several reasons. First, the remote
sensing data contain much noise, which is caused by
either natural disturbances (e.g., clouds and aerosoles)
or data acquisition errors by devices. Second, we
cannot distinguish between many land covers in most
single dates of a year. Instead, the successful detection
requires the discovery of distinctive temporal patterns
from a sequence of collected data. Third, these land
covers show their distinctive temporal patterns only
during certain period of a year, which is also referred
to as the discriminative period. For example, croplands
can be identified in certain part of growing season, but
they look similar to barren land after they are harvested.

Moreover, these discriminative periods can shift
across different locations and across different years. For
example, we show the time series of vegetation index
(i.e., higher value indicates higher greenness) for three
burned locations in Fig. 1. We can observe similar pat-
terns (a vegetation decrease followed by a recovery pro-
cess) in different periods and even with different num-
ber of occurrences. Similarly, in cropland monitoring,
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farmers plant and harvest crops in different time across
years due to weather conditions. Such heterogeneity can
severely degrade the performance of traditional sequen-
tial models when they are tested at different locations
or in different years [15]. Moreover, since we cannot eas-
ily identify crop types from crop residues, the periods
before planting and after harvesting are less relevant to
the classification and bring noise to the learning process.

To address these challenges in land cover detec-
tion, we propose a spatio-temporal framework, Context-
aware Analysis for Land covers with Discriminative pe-
riod (CALD). We utilize a Long-Short Term Memory
(LSTM) model to capture long-term temporal depen-
dencies in sequential remote sensing data and embed
the raw data into a more representative feature space at
each time step. After we embed the raw sequential input
using LSTM, we combine each location with its neigh-
boring locations to enhance the learning process. Since
most land covers are contiguous over space, the incorpo-
ration of spatial context assists in mitigating the noise
factors at individual locations. However, the locations
in the spatial neighborhood may belong to different land
covers (when located along the boundary), or contain
much noise. To this end, we design an attention mech-
anism which selectively decreases/increases the weight
on certain neighboring locations and then aggregates
the information over the spatial neighborhood.

Next, we jointly utilize the information at each lo-
cation and the obtained spatial context knowledge to
detect discriminative period and conduct classification.
For most land covers, the discriminative period usually
persists for several consecutive time steps. For example,
it takes several weeks for the land to recover from forest
fires. The modeling of such persistence not only con-
forms to the underlying land cover patterns, but also re-
duces the impact from noise and outliers at certain time
steps. To effectively capture the persistence and de-
tect discriminative period, we propose two approaches,
based on multi-instance learning (MIL) and local at-
tention mechanism [20], respectively. While both ap-
proaches can be used to capture discriminative periods,
they have different characteristics and can adapt to dif-
ferent application scenarios.

The detection of discriminative periods provides
promising insights to explain classification results,
which is of great interest to domain researchers. On the
other hand, most existing land cover detection meth-
ods [4, 11] make classifications only after collecting data
from the entire year. In contrast, our proposed frame-
work can potentially identify land covers at an early
stage after it detects the discriminative period and clas-
sify land covers with sufficient confidence.

We extensively evaluate the proposed method in

cropland mapping and burned area detection. Crop-
land mapping is challenging for agricultural domain be-
cause different crop types look similar in most dates and
are only distinguishable in certain periods of a year. It
becomes more challenging to apply the learned model
to different years due to the shift in planting and har-
vesting time. For the burned area detection, the train-
ing samples collected in the same year have different
burning dates, which results in the heterogeneity within
the training set. The results confirm that our proposed
method outperforms multiple baselines in both tasks. In
addition, we demonstrate that the proposed method can
successfully detect the discriminative period and achieve
reasonable accuracy in early-stage detection.

2 Problem Definition

In this work, we are provided with the data points at
N locations, X = {x1, x2, ..., xN}. Each data point xi

is a sequence of multi-variate spectral features with T

time steps, xi = {x1
i , ..., x

T
i }, where xt

i ∈ R
M . Also, we

are provided with the labels of these sequential data,
Y = {y1, y2, ..., yN}. The label of each location belongs
to one of K land cover classes, i.e., yi ∈ {1, 2, ...,K}.

Our objective is to train a classification model using
the provided sequential data and labels. The learned
model can then be applied to classify any test sequence
into one of K classes. Besides the classification, we
also wish to find the most discriminative time period
for each sample, which provides interpretability to the
classification result.

3 Method

In this section, we first describe the LSTM model used
to capture temporal dependencies and embed input
features. Then we discuss the spatial context learning
through an attention mechanism. Finally, we propose
two approaches to detect discriminative periods from
sequential data. We show the entire flow in Fig. 2.

3.1 Sequential modeling by LSTM Many land
covers (e.g., croplands, plantations, forests, etc.) show
temporal/seasonal changes over long periods. Also,
the remote sensing data are influenced by long-term
weather conditions. Therefore, we model the tempo-
ral relationships among different time steps using Long-
Short Term Memory (LSTM). Compared with tradi-
tional RNN, LSTM can better memorize the temporal
dependencies over a long period of time.

The input features xt at each time step t contain
multi-variate spectral features, which are collected from
different spectral bandwidths. Recent studies show
that combinations of multiple bandwidths can produce
features that better distinguish between different land
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covers [29]. However, these combinations are manually
designed using only a few bandwidths and do not take
full advantage of multi-spectrum. On the other hand,
the incorporation of temporal information can also help
detect land covers. Consider the cropland mapping as
an example. The identification of temporal patterns in
crop growing seasons has turned out to be more effective
for classification than using data from single dates [29].

Here we aim to automatically discover meaningful
combinations of bandwidths from the multi-spectrum
while also incorporating the temporal information.
Hence, we utilize LSTM to embed xt at each time
step into a hidden representation ht ∈ R

H , which
encodes representative features for classification. In
LSTM model, ht is generated through an LSTM cell
with the input of multi-spectral features xt and the in-
formation from previous time steps.

Each LSTM cell contains a cell state ct, which serves
as a memory and allows reserving information from the
past. Specifically, the LSTM first generates a candidate
cell state c̃t by combining xt and ht−1, as:

(3.1) c̃
t = tanh(W c

hh
t−1 +W

c
xx

t),

where W c
h ∈ R

H×H and W c
x ∈ R

H×M denote the
weight parameters used to generate candidate cell state.
Hereinafter we omit the bias terms as they can be
absorbed into weight matrices. Then we generate a
forget gate layer f t ∈ R

H , an input gate layer gt ∈ R
H

and an output gate layer ot using the sigmoid function:

(3.2)

f
t = σ(W f

h h
t−1 +W

f
x x

t),

g
t = σ(W g

hh
t−1 +W

g
xx

t),

o
t = σ(W o

hh
t−1 +W

o
xx

t),

where {W f
h ∈ R

H×H , W f
x ∈ R

H×M} and {W g
h ∈

R
H×H , W g

x ∈ R
H×M} denote two sets of weight

parameters for generating forget gate layer f t and input
gate layer gt, respectively. The forget gate layer is used
to filter the information inherited from ct−1, and the
input gate layer is used to filter the candidate cell state
at time t. In this way we obtain the new cell state ct

and the hidden representation as follows:

(3.3)
c
t = f

t ⊗ c
t−1 + g

t ⊗ c̃
t
,

h
t = o

t ⊗ tanh(ct),

where ⊗ denotes entry-wise product.

3.2 Spatial context learning Since most land cov-
ers are contiguous over space, it is possible to learn spa-
tial context knowledge from the spatial neighborhood
to facilitate the detection process. This can also greatly
help mitigate the noise at individual locations.

Figure 2: The flow chart of the CALD framework.

However, locations in the spatial neighborhood can
misguide the detection in some situations. Considering
a location along the boundary of a corn cropland, some
of its neighboring locations may fall into other crop-
lands (i.e., other classes) and therefore can mislead the
classification. Also, if some neighboring locations are
disturbed by natural factors or data acquisition errors,
their multi-spectral features should not be trusted.

For these reasons, we propose to learn the spatial
context knowledge selectively from neighboring loca-
tions through an attention mechanism. For each loca-
tion, the attention mechanism measures the relevance
between this location and each of its neighboring loca-
tion. Then based on the relevance scores, the attention
model aggregates the information from the entire spa-
tial neighborhood. More formally, for each location i,
we compute a relevance vector αt

i at each time step t.
Each entry αt

i,j denotes the relevance score between lo-
cation i and its neighboring location j, and is computed
as the similarity between the hidden representation of
location i and location j, as follows:

(3.4) α
t
i,j = softmax(ht

j

T
h
t
i),

where the softmax function enforces that the relevance
scores for all the neighboring locations sum to 1.

After obtaining the relevance vector αt at time t,
we compute a spatial context vector sti for location
i as the weighted summation of ht

j over the spatial
neighborhood, as follows:

(3.5) s
t
i =

∑

j∈N(i)

α
t
i,jh

t
j ,

where N(i) denotes the spatial neighborhood of location
i. The range of spatial neighborhood can be adjusted
for different applications. In this work, we set it to be a
1500m-by-1500m squared region centered at location i.

Then by combining the context vector sti and the
hidden representation ht

i, we generate a context-aware
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features eti ∈ R
E for location i at time t, as follows:

(3.6) e
t
i = tanh(W e

hh
t
i +W

e
s s

t
i),

where we
h ∈ R

E×H and W e
s ∈ R

E×H denote the
weight parameters. Later we will utilize the sequence
of {eti}t=1:T as input for discriminative period detection
and classification. Hereinafter we focus on the sequen-
tial modeling of each location independently. Hence, we
omit subscript i when it causes no ambiguity.

3.3 Discriminative Period Detection We now in-
vestigate the detection of discriminative period using
the obtained context-aware features {e1, ..., eT }. As the
discriminative period in land covers usually persists over
time, we propose two methods to model such temporal
persistence and capture the discriminative period. In
the first approach, we design a multi-instance learning
(MIL) structure to aggregate multiple time steps into
the final class label while also modeling the contribu-
tion of each time step. As an alternative approach,
local temporal attention is utilized to detect discrimi-
native period and conduct classification. Later we will
discuss the difference between these two approaches.

3.3.1 MIL aggregation The multi-instance learn-
ing aims to map a bag of instances to a class label of the
entire bag. In our work, we treat each time step as an
instance in the bag (sequence). With the LSTM model
described in Section 3.1, we establish the temporal de-
pendencies between different instances. Then we wish
to capture the persistence of discriminative period and
aggregate all the time steps for classification.

Having obtained the context-aware features et for
t = 1 to T , we first generate a latent output pt at each
time step as follows:

(3.7) p
t = σ(Wpe

t),

where Wp ∈ R
K×E denotes the weight parameters to

transform et into a K-dimensional output pt. Each en-
try ptk represents the intermediate classification measure
for kth class using the collected information by time t.

To incorporate the persistence of discriminative
periods, we consider pt values for several consecutive
time steps to make classification decision. This can
also greatly mitigate the ubiquitous noise and outliers
(caused by natural factors or device errors) that occur
at certain time steps.

In particular, if a location shows high ptk values
for consecutive D time steps, then it is highly likely to
belong to class k. Later we will describe the selection
of D value. For each class k ∈ {1, ...,K}, we take the
maximum of the average ptk value over consecutive D

time steps, as follows:

(3.8) ỹk = max
t

avg(ptk, p
t+1
k , ..., p

t+D−1
k ), k = 1, ...,K,

where the larger ỹk requires the higher average value of
ptk for consecutive D time steps corresponding to the
discriminative period.

Then based on the collected ỹk for k ∈ {1, ...,K},
we adopt a softmax function to generate posterior
probability for each class k:

(3.9) P (ŷ = k|x) =
exp(ỹk)

∑

k′ exp(ỹk′)
,

where we utilize ŷ to distinguish the predicted label with
the provided true label y.

With the predicted labels, we express the cost
function by an entropy-based function, as follows:

(3.10) J =
∑

i

∑

k

−1(yi = k) logP (ŷi = k|x),

where 1(·) denotes the indicator function.
The gradient of cost function with respect to ptk can

be computed as follows:

(3.11)

∂J

∂ptk
=

{

P (ŷ = k|x)−1(y = k), t ∈ [t∗k, t
∗
k+D−1]

0, otherwise,

where t
∗
k = argmax

t
avg(ptk, p

t+1
k , ..., p

t+D−1
k ).

The gradient with respect to model parameters can
be further derived by standard back-propagation algo-
rithm. The time complexity is O(NT (K+η)), where the
number of classes K is a constant factor in our problem,
and η is a constant factor determined by the dimension-
ality of input features, hidden representation, context-
aware features and the size of spatial neighborhood.

3.3.2 Local temporal attention An alternative so-
lution is to utilize the local attention mechanism [20]
to determine the discriminative period. Given the se-
quence of context-aware features {e1, ..., eT }, we aim to
enforce the model to only attend to a period [l, l+D−1],
which indicates the discriminative period.

Specifically, the model first computes the starting
time step through a sigmoid function, as:

(3.12) l̃ = (T −D + 1) · σ(uTtanh(Wlv)),

where v ∈ R
E represents an embedding of the en-

tire sequence, which has the same dimensionality with
context-aware features, and is jointly learned during
the training process [17]. In the simplest case, we can
embed x1:T into v using another LSTM. Wl ∈ R

U×E

and u ∈ R
U are the weight parameters. The resulted

l̃ ∈ (0, T −D + 1), and we select l = ⌈ l̃ ⌉.
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We then measure the relevance score of each time
step t within the period [l, l + D − 1] according to the
similarity between its context-aware features et and the
sequence embedding v. More formally, the relevance
score of time step t is computed via a softmax function
over the time steps within [l, l +D − 1], as:

(3.13) β
t = softmax(vTet).

Then we aggregate et from all the time steps within
the discriminative period [l, l + D − 1] based on the
generated relevance β, and apply a softmax function for
final classification:

(3.14) ŷ = softmax(Wy

∑

t∈[l,l+D−1]

β
t
e
t),

whereWy ∈ R
K×E denotes the parameters to transform

context-aware features to the classification output. This
approach has the same level of complexity with MIL-
based approach (but depends on the constant D).

3.3.3 Model discussion and Implementation de-

tails Now we compare these two approaches. In Algo-
rithm 1, the MIL-based approach detects the discrimi-
native period using the latent outputs at each time step.
On the other hand, the local attention-based approach
selects the discriminative period using the sequence em-
bedding v, which encodes the global information over
the entire sequence. Such global information makes it
more robust to noise and outliers than the MIL-based
approach. Moreover, the local attention-based approach
not only detects the discriminative period, but also
models the contribution of each time step within this
period by {βt}t=l:l+D−1.

However, if we are given the streaming remote sens-
ing data, at a new time step t we need to re-calculate
the relevance βt in local attention model. In contrast,
the MIL-based approach can be incrementally updated,
which potentially leads to a real-time detection. Be-
sides, the MIL approach captures the discriminative pe-
riod for each class separately, which can better adapt to
the scenarios with a diversity of land cover classes.

In this work, we utilize a validation set with Nv

locations to adjust the value of D. We train Artifi-
cial Neural Networks (ANN) separately at each time
step, and measure the classification posterior probabil-
ity {qti = P (ŷti = yi)}t=1:T for each location i in the val-
idation set. We select D to be sufficiently large to cover
the consecutive time windows with stronger discrimina-
tive signals than the remaining periods. More formally,
we represent the distribution of {qti}t=1:T,i=1:Nv

as Q.
Then we compute the average qt=1:T over all the loca-
tions, represented by q̄t=1:T . We set D to be the maxi-
mum number of consecutive time windows, s.t. ∃t′, for
t = t′ to t′ +D, q̄tk is larger than 80 percentile of Q.

3.4 Early-stage detection By explicitly modeling
the discriminative period, we wish to not only improve
the detection, but also detect land covers at an early
stage. Given the streaming remote sensing data for a
location until time t, if the proposed framework has
already captured the true discriminative period and
classified the location with high confidence, we can make
decision before collecting more data. Otherwise, the
framework keeps collecting more remote sensing data
until it detects the dicriminative period that leads to
a confident classification. In this work, we utilize the
posterior probability in Eqs. 3.9 and 3.14 to measure
the classification confidence (more results in Section 4).

4 Experiments

In this section, we evaluate the proposed framework
CALD in two real-world applications - cropland map-
ping and burned area detection.

To populate the input sequential features, we utilize
MODIS MOD09A1 multi-spectral data product [2],
collected by MODIS instruments onboard NASA’s Terra
satellites. This dataset provides global data for every 8
days at 500m spatial resolution. At each date, MODIS
dataset provides reflectance values on 7 spectral bands
for every location. To better learn short-term temporal
patterns, we concatenate spectral features in every 32-
days window as a time step and slide the window by 8
days. Totally we have 43 time steps in a year.

We implement two versions of our proposed frame-
work - CALDmil and CALDatt with MIL and local at-
tention, respectively. We compare them to a diversity
of baselines. The baselines include static approaches -
Artificial Neural Networks (ANN) and Random Forest
(RF) that are applied on the concatenation of sequential
data, as well as widely used advanced sequential models
- SVMhmm [5], 1-NNdtw (The nearest neighbor classifier
with dynamic time warping distance), S2V [18, 27], and
standard LSTM. We also compare to variants of CALD:
CALD with RNN (CALDrnn): Rather than using

LSTM, in this baseline we implement CALDmil with
traditional RNN.
CALD without context (CALDwc): Without using the
spatial context knowledge, we directly take hidden
representation {ht}t=1:T as input to the MIL approach
for discriminative period detection.
CALD without context (CALDsmt): In this baseline,
we first implement CALDwc and then conduct an av-
erage smoothing over the spatial neighborhood.

4.1 Description of learning tasks and datasets

4.1.1 Cropland Mapping We aim to distinguish
between corn and soybean in southwestern Minnesota,
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Table 1: Performance(±standard deviation) of each method in cropland mapping (same-year/cross-year tests)
and burned area detection in terms of AUC and F-1 score.

Same-year cropland mapping Cross-year cropland mapping Burned area detection

Method AUC F1 AUC F1 AUC F1

ANN 0.717(±0.018) 0.711(±0.011) 0.660(±0.021) 0.678(±0.015) 0.805(±0.021) 0.781(±0.020)
RF 0.746(±0.013) 0.733(±0.010) 0.655(±0.014) 0.678(±0.012) 0.816(±0.014) 0.793(±0.011)
SVMhmm 0.753(±0.015) 0.737(±0.011) 0.721(±0.015) 0.697(±0.013) 0.833(±0.022) 0.798(±0.016)
1-NNdtw 0.756(±0.029) 0.750(±0.020) 0.693(±0.031) 0.695(±0.021) 0.683(±0.025) 0.670(±0.021)

S2V 0.789(±0.038) 0.758(±0.018) 0.746(±0.038) 0.712(±0.020) 0.812(±0.028) 0.815(±0.022)
LSTM 0.804(±0.019) 0.766(±0.009) 0.760(±0.019) 0.701(±0.010) 0.928(±0.020) 0.902(±0.019)

CALDrnn 0.808(±0.030) 0.763(±0.022) 0.782(±0.031) 0.749(±0.022) 0.911(±0.021) 0.907(±0.018)

CALDwc 0.842(±0.024) 0.790(±0.014) 0.798(±0.023) 0.740(±0.014) 0.942(±0.024) 0.932(±0.016)
CALDsmt 0.890(±0.023) 0.835(±0.015) 0.822(±0.023) 0.753(±0.014) 0.950(±0.020) 0.935(±0.013)
CALDmil 0.914(±0.019) 0.855(±0.013) 0.850(±0.017) 0.801(±0.015) 0.964(±0.018) 0.960(±0.013)
CALDatt 0.931(±0.012) 0.866(±0.016) 0.856(±0.013) 0.809(±0.009) 0.975(±0.018) 0.977(±0.014)

US. In this test, we take 5,000 locations for each of corn
class and soybean class in 2014 and 2016. The ground-
truth information on these two classes is provided
by USDA Crop Data Layer product [4]. This task
is challenging in agricultural domain mainly for two
reasons: 1) corn and soybean frequently look similar
with each other in most dates of a year, and 2) each
MODIS location is in 500 m spatial resolution and may
contain multiple crop patches when located along the
boundary, likely introducing noisy features.

We randomly select 40% locations and utilize their
sequential features in 2016 as training data, and take
another 10% as validation set. Then we conduct two
groups of tests: 1) We test on the remaining locations
in 2016 (same-year test), and 2) We conduct a cross-year
test on the data acquired from 2014 using the learned
models from 2016 (cross-year test). It is noteworthy
that the planting time differs between these two years
because of the weather conditions in Minnesota. In this
test, the selected D value is 5.

4.1.2 Burned area detection In this application,
we randomly select 4,000 burned locations and another
4,000 unburned locations from Montana, US in 2007.
We divide the data in the same proportion with our
test for cropland mapping. We obtained fire validation
data from government agencies responsible for moni-
toring and managing forests and wildfires [3]. In this
application, the selected D value is 8.

4.2 Classification performance We repeat the ex-
periment with random initialization and random selec-
tion of training set. In Table 1, we report the per-
formance for cropland mapping and burned area de-
tection. It can be seen that the proposed framework
outperforms all the baseline methods by a considerable
margin. Among the baseline methods, we observe that
the sequential baselines (SVMhmm, 1-NNdtw, S2V and

LSTM) result in a better detection than static baselines
(ANN and RF) because temporal patterns are helpful
for identifying land covers. The exception is that 1-
NNdtw performs poorly for burned area detection be-
cause dynamic time warping aligns sequences in an un-
supervised way and can be easily disturbed by long ir-
relevant periods (before/after fires).

These sequential baselines do not perform as well
as CALD since they do not take account of the discrim-
inative periods. Consequently, they are negatively im-
pacted by the irrelevant period in the year (e.g., after
the harvesting/before fires) and the data heterogene-
ity across locations. For example, S2V focuses on min-
ing frequent patterns, which can be noisy fluctuation or
common patterns for both classes.

The improvement from CALDrnn to CALDmil

shows that long-term dependencies are important for
mining land cover patterns from multi-spectral se-
quence. By comparing CALDwc, CALDsmt and
CALDmil, we conclude that spatial context knowl-
edge learned from the proposed attention mechanism
can greatly improve the detection. In contrast, by
equally weighting neighboring locations, the detection
of CALDsmt can be disturbed by neighboring locations
along the boundary or with much noise.
Cross-year performance in cropland mapping: In
Table 1, we also observe that the performance in 2016
(same-year test) is better than the performance in 2014
(cross-year test). This is mainly due to two reasons.
First, the planting time of 2016 is in ahead of 2014,
and thus a successful classification requires the method
to automatically detect such a shift for discriminative
period. Second, the collected multi-spectral features
vary across years due to environmental variables, such as
precipitation, sunlight, etc. Nevertheless, it can be seen
that CALDmil and CALDatt still produce a reasonable
cross-year detection, which stems from their capacity in
capturing discriminative periods.
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(a) (b) (c) (d) (e)

Figure 3: Sentinel-2 satellite images in RGB at 10m spatial resolution [1]. (a)-(d) Cropland patches with corn
and soybean on Jun 23, 2016. Corn shows higher greenness level than soybean on this date. (e) Another cropland
patch captured on Aug 06, 2016, where corn and soybean cannot be easity distinguished.

Figure 4: The performance of CALDmil, CALDatt and
LSTM on cropland mapping from 2006 to 2016 using
the training set in 2016.

Due to the importance of cross-year performance
in agricultural domain, we report the cross-year perfor-
mance on every year from 2006-2016 using the learned
models (CALDmil, CALDatt, and LSTM) from 2016
(Fig. 4). Compared with LSTM, CALD produces better
prediction when applied to different years because they
can automatically detect the shift of discriminative peri-
ods caused by environmental changes. This test demon-
strates their robustness when tested on sequential data
with variations to training data.

4.3 Discriminative period detection We now ver-
ify that CALD can indeed detect discriminative periods.
Cropland mapping: In 2016, both CALDmil and
CALDatt detect the discriminative period for cropland
mapping is from Jun 9 to July 11. To verify this, we
show high-resolution Sentinel-2 images at 10m resolu-
tion. Fig. 3 (a)-(d) show some corn and soybean patches
in four example regions using Sentinel-2 images on Jun
23, which show that corn patches turns into green faster
than nearby soybean patches. Therefore they can be
easily distinguished in this period.

The method CALDmil also detects the discrimina-
tive period (with second highest average pt values) from
Jul 19 to Aug 20. During this period, both corn and soy-
bean samples show very high greenness level and there-
fore it is difficult to distinguish between them by human
(e.g., the Aug 06 Sentinel-2 image shown in Fig. 3 (e)).
Here to verify that this period is indeed a discriminative
period, we only use the multi-spectral features from Jul

(a) (b) (c) (d)

Figure 5: (a) The relevance scores β for all the detected
burned locations, and the Landsat satellite imagery
(30m resolution) for a large burned region in Montana
captured on (b) Jul 31, (c) Aug 09 and (d) Aug 25 in
2007. Stripes in imagery are caused by device errors.

19 to Aug 20 to train and test a simple ANN model,
which produces AUC and F1-score of 0.829 and 0.778,
respectively. It is noteworthy this is better than the
ANN baseline that is trained using full-year sequences
(Table 1). This improvement demonstrates that our
framework has potential to detect the discriminative pe-
riod from the full multi-spectrum, which can not even
be observed directly by human experts.
Burned area detection: we also present the result
for the discriminatve period detection using CALDatt.
Fig. 5 (a) shows the relevance scores (i.e. β value)
of each time step within [l, l + D − 1] for all the
detected burned locations. According to the results, the
discriminative period for most burned locations starts at
28th time step (∼Aug 5, 2007). In our test, CALDmil

and CALDatt result in the same discriminative period.
We validate this using Landsat images at 30m

resolution (since Sentinel data are not available in 2007).
In Fig. 5 (b), we show the largest burned area in
Montana with the Landsat image taken on Jul 31. Here
we can observe that fires have not occurred by Jul 31.
In Fig. 5 (c), we show an image taken on Aug 09 for
the same region, where we notice the burning and the
smoke caused by fires. This conforms very well with our
detection. Then in Fig. 5 (d) captured on Aug 25, we
can see that fires left a burning scar in the region.

4.4 Validation for spatial attention Next, we
demonstrate the effectiveness of the spatial attention

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited519

D
o
w

n
lo

ad
ed

 0
8
/0

9
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



mechanism by two examples, as shown in Fig. 6. The
centered location in Fig. 6 (a) is along the boundary
of a corn cropland patch. From Fig. 6 (b), it can
be seen that the attention mechanism automatically
reduces the weights for the neighboring locations that
do not belong to the same corn patch. Besides, we
show a different case in Fig. 6 (c) where the centered
location has its neighboring locations also in the same
cropland patch. However, as we scrutinize the original
ground-truth data created at higher resolution (30m),
we find these neighboring locations (in red box) are
mixed pixels which contain around 40% area from other
cropland patches. From Fig. 6 (d), we can observe that
the attention mechanism can detect such mixed pixels
and consequently reduce the impact of these noisy data.

4.5 Early detection In Fig. 7 (a), we show the
classification confidence (i.e., the posterior probability)
by CALDmil and CALDatt for the detected corn sam-
ples/burned area over time. In cropland mapping, we
can observe that the confidence increases slowly during
first 18 time steps. This is because crops have not been
planted by this time and crop residues contain limited
discriminative information. By around 27th time step,
we observe that the learning model has gained enough
confidence. Hence we can conduct early-stage detection
by this time without waiting for the incoming data. In
our test, if we make classification using the data by 27th

time step, CALDmil and CALDatt can reach AUC of
0.887 and 0.896 respectively, which are better than the
performance of most baseline methods using complete
sequences throughout the year.

For the burned area detection (Fig. 7 (b)), we
observe that the confidence sharply increases around
27th-28th time steps, which corresponds to the fires. We
can see that the learning model gains high confidence
(>0.92) at around 30th time step. If we stop collecting
data by this time, we can identify burned area with
AUC of 0.962 and 0.968 by CALDmil and CALDatt.

5 Related work

Most LULC detection methods focus on static satel-
lite imagery at individual locations while ignoring their
spatial context and temporal patterns [23, 11, 12]. How-
ever, many land covers cannot be captured using single-
date snapshots, e.g., tree plantations and croplands.

With the development of deep learning, RNN mod-
elhas been ubiquitously implemented. Due to the van-
ishing gradient problem [7], researchers have applied
LSTM and Gated Recurrent Unit (GRU) to memorize
long-term dependencies. These methods have shown
great promise to land cover problems [9]. However,
without explicitly modeling the discriminativ period,

(a) (b)

(c) (d)

Figure 6: (a)(c) Two example regions. Yellow color
denotes corn patches and green color denotes soybean
patches. The black box indicates the centered location
and the red box indicates the mixed pixels. (b)(d)
The obtained relevance scores using spatial attention
mechanism for the centered locations in (a) and (c).

(a) (b)

Figure 7: The classification confidence of (a) corn
vs. soybean over time in 2016, and (b) burned area
vs. unburned area over time in 2007.

these methods suffer from the shift of discriminative
periods and noise brought by irrelevant periods when
tested at different locations or in different years.

There are also existing efforts to explore important
periods or patterns for sequence classification [26, 18, 16,
6]. Rather than detecting discriminative periods, these
works aim to detect frequent patterns, which are likely
to reflect common non-discriminative patterns shared
among classes and also vulnerable to noise.

On the other hand, there exist many works on han-
dling spatio-temporal data [19, 28, 14, 13]. These works
utilize spatial information as constraints [8] or leverage
spatial texture to facilitate the classification [25]. How-
ever, since they do not model the relevance of different
neighboring locations, these approaches perform poorly
for regions along the boundary or with strong noise.
Fully Convolutional Networks (FCN) is also widely used
for classifying each individual pixel/location [22]. How-
ever, these methods mostly focus on classifying static
images. Moreover, the training process of FCN is ex-
tremely inefficient. In contrast, the CALD framework
produces spatial context-aware features for each loca-
tion separately, and thus avoids the heavy training pro-
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cess on the entire image. This is extremely helpful when
we apply the method to a country level or global level.
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7 Conclusion

In this paper, we propose a framework CALD that
combines spatial context and discriminative temporal
information in land cover detection. The experimental
results on two real-world applications demonstrate that
the spatial context knowledge and the modeling of
discriminative period can greatly improve the detection
and also provide the interpretability to predictions.
With the ability to identify land covers at an early stage,
CALD can provide timely information for governments
and companies to manage natural resources.

Given advances in remote sensing technology,
CALD can contribute to many land cover problems.
Also, the method can be applied to other important
applications, such as heath-care data analysis where we
can utilize the similarity relation among patients and
the progression patterns of diseases to make prediction.
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