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Abstract. Recent developments in complex systems analysis have led to new techniques
for detecting causal relationships using relatively short time series, on the order of 30
sequential observations. Although many ecological observation series are even shorter,
perhaps fewer than ten sequential observations, these shorter time series are often highly
replicated in space (i.e., plot replication). Here, we combine the existing techniques of
convergent cross mapping (CCM) and dewdrop regression to build a novel test of causal
relations that leverages spatial replication, which we call multispatial CCM. Using examples
from simulated and real-world ecological data, we test the ability of multispatial CCM to
detect causal relationships between processes. We find that multispatial CCM successfully
detects causal relationships with as few as five sequential observations, even in the presence of
process noise and observation error. Our results suggest that this technique may constitute a
useful test for causality in systems where experiments are difficult to perform and long time
series are not available. This new technique is available in the multispatialCCM package for
the R programming language.
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INTRODUCTION

Detecting causal relationships in complex systems is

one of the fundamental and most challenging goals of

science. Convergent cross mapping (CCM) has recently

been introduced as a practical numerical approach for

identifying causal relationships in weakly coupled

nonlinear systems (Sugihara et al. 2012). This approach

is potentially of great utility in ecology, where many

systems appear to be weakly coupled and complex and

can therefore be difficult to analyze using traditional

techniques (e.g., repeated-measures or mixed-effects

ANOVA, general algebraic modeling systems, neural

networks, or autoregressive models). Typically, CCM

can be applied to time series of roughly 30 or more

sequential observations (Sugihara et al. 2012). However,

ecological time series are often even shorter. In this

report, we present a method that expands the applica-

tion of CCM to very short time series that are spatially

replicated (e.g., data from multiple plots).

CCM is based on an algorithm that compares the

ability of lagged components of one process to estimate

the dynamics of another. In ecology, these processes

might represent time series observations of environmen-

tal data, such as temperature, or of species data, such as

population abundance. There are three basic ways in

which two processes can be causally linked: neither

influences the others’ temporal dynamics, and the

variables are therefore causally unrelated; a forcing

process influences the temporal dynamics of a response

process, but the response process has no effect on the

forcing process in return, meaning that there is

unidirectional causality; or there is bidirectional causal-

ity where each variable influences the others’ dynamics.

In practice, the ability of any method to accurately

distinguish between these cases depends not only on the

strength of underlying relationships, but also on the

amount of data available, the presence of process noise

and observation error, and the sensitivity and assump-

tions of the method. We explore cases for which the

underlying strength and direction of causal interactions,

process noise, and observation error are known, and use

these to assess the detection limits of CCM when applied

to short, replicated observational records.

As described by Sugihara et al. (2012), the dynamics

of a unidirectional forcing process can be more

accurately estimated using information from a response

process than is true for the reverse case. This counter-
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intuitive phenomenon occurs because the response

process necessarily contains information about the

forcing process whereas the reverse may not be true.

For example, consider the dynamics of a species

responding to an exogenous environmental variable,

such as length of day. In a weakly coupled system, many

processes influence species abundance, and consequent-

ly, day length alone will not be a good predictor of the

organism’s endogenous abundance dynamics. However,

changes in day length (the forcing process) necessarily

propagate to and influence the dynamics of the species

(the response process), and day length therefore can be

predicted from species abundance. Thus, observed states

of a forcing process should be significantly better

described by observed states of a response process than

would be expected by random chance, and the accuracy

of that description should improve with increasing time

series length, as this increases the amount of information

available with which to estimate system dynamics (Fig.

1a). This joint criterion therefore provides a metric to

test for significant causal relationships among processes.

Algorithmic and visual descriptions of this approach are

available in the supplement of Sugihara et al. (2012).

Although CCM may perform relatively well on short

time series of 30þ observations, longer time series are

generally preferable, particularly when causal relations

are weak or process noise and observation error are

large (Sugihara et al. 2012). However, ecological time

series are often much shorter, and experiments and

observations generally focus on spatial rather than

temporal replication. Thus, many potential applications

of CCM may not be feasible using the currently

published framework. Nevertheless, spatially replicated

data do contain temporal information, and it seems

plausible that sufficient replication might compensate

for brevity in time series. We present a method (multi-

spatial CCM) to recover this information for application

in CCM through a bootstrapping technique that has

previously been applied to single variable simplex

projection (dewdrop regression; Hsieh et al. 2008).

Dewdrop regression combines information from many

short time series of systems that share similar dynamical

forms to predict their future dynamics. We adapt this

method for CCM in order to leverage the spatial breadth

in ecological data sets. We also present the first

comprehensive test of detection power and error rates

for CCM across a broad range of forcing strengths,

observation error, and process noise magnitudes.

METHODS

Multispatial CCM algorithm

To test the predictive ability of variables, we use

simplex projection, an application of Takens’ theorem

(Sugihara 1990). Simplex projection predicts the dy-

namics of a process that is part of a larger system by

using information from multiple lagged observations of

that single process. Consider as an example a predator–

prey system, where both predator and prey dynamics

influence one another. Because interacting processes

contain information about one another, accurate

predictions of future predator population dynamics

can be made based on knowledge of previous predator

dynamics, even if no information on prey populations is

available (Schaffer 1985, Sugihara and May 1990,

Sugihara 1994). Three consecutive years of predator

population dynamics might be compared to three-year

periods from historical data. To predict next year’s

population size, simplex projection identifies a subset of

observed three-year dynamics that are most similar to

the current three-year trend, and averages predictions

across these observations weighted by their similarity.

Recent work has shown these techniques to be

applicable under a wide range of circumstances (Sugi-

hara and May 1990, Deyle and Sugihara 2011) and

perform well both on simulated and observed data

(Deyle et al. 2013, Perretti et al. 2013).

Classical simplex projection uses a single long time

series, which means that most observations have many

corresponding historical observations, and many lagged

time steps that can be used to make predictions and

estimates. In the multispatial approach that we propose,

we instead leverage information from many short time

series, by drawing samples from the pool of all spatially

replicated observations. We then look across these

samples to find observations with similar historical

dynamics and use a weighted average of those observa-

tions to estimate expected dynamics for subsequent time

steps. Based on these estimates, we can characterize how

well the dynamics of a putative forcing process are

described by the dynamics of a suspected response

process and thus assess their causal relatedness.

To test for significant causal relationships between

two candidate processes, the multispatial CCM algo-

rithm proceeds in five steps, which are described briefly

below. An annotated implementation of these steps for

the R programming environment (R Core Development

Team 2014) is available in the multispatialCCM

package available through the Comprehensive R Ar-

chive Network (CRAN) (available online).6 Worked

examples of applying these functions to real and

simulated data are available in the Appendix.

Determine the best embedding dimension for the

analysis.—In simplex projection, the accuracy of pre-

dictions varies as a function of embedding dimension, E,

which describes the size of the time windows (i.e.,

number of time steps) that are used for prediction (E¼ 3

in the predator–prey example in Methods: Multispatial

CCM algorithm). One can estimate an optimal embed-

ding dimension by using simplex projection to test the

ability of a process to predict its own dynamics through

leave-one-out cross-validation (i.e., removing one ob-

servation from the time series and using the rest of the

time series to predict its dynamics).

6 http://CRAN.R-project.org
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In multispatial simplex projection, we sample across

many short time series from spatial replicates. Because

of this, it is important that time lags should not cross

gaps between plots in the composite time series. Even

though multispatial CCM assumes that data from

multiple plots come from the same dynamical system,

observations from the end of the time series of one plot

will have no bearing on the beginning of the time series

of another plot. As a result, lagged dimensions are only

considered when they come from the same plot (i.e., do

not cross any gaps), which therefore limits the potential

embedding dimension E for an analysis. For example, if

only five observations are recorded in each plot, then E

� 4, as the analysis requires four observations to

describe historical dynamics followed by one observa-

tion against which to test estimated values.

Test for nonlinearity and stochastic noise.—Because

CCM applies in coupled nonlinear systems, it is

important that the system under consideration is not

purely random, in which case other tests for causality

(e.g., Granger’s test; see Detto et al. 2012) rather than

CCMmight instead be considered (Sugihara et al. 2012).

Furthermore, it is important to test that dynamics are

not so dissimilar among plots, or so strongly influenced

by stochastic noise, that causal links cannot be

recovered. To accomplish this, the same simplex

projection algorithm described in Methods: Multispatial

CCM algorithm: Determine the best embedding dimen-

sion for the analysis can be applied. Using the E

identified with techniques described above, predictions

should be made based on historical dynamics for

observations that are increasingly far into the future.

If the system is nonlinear, then predictive power should

significantly decrease with increasing prediction time

(Sugihara 1994). Predictive power for short time

intervals should also be better than expected by random

chance. Note that this is a necessary but insufficient

criterion for determining nonlinearity. For a completely

random process, predictive ability should be equally low

regardless of prediction interval. However, an autocor-

related system dominated by stochastic noise could show

the same decreasing pattern that we use to detect

nonlinearity. In these cases, CCM should (correctly)

return that there is no causal forcing in either direction,

as increasing information about the system should not

increase predictive ability.

Calculate two processes’ abilities to describe each

others’ dynamics using CCM.—In addition to varying

with E, predictive skill also varies as a function of library

length, L, which describes the number of historical

observations that are used to generate predictions. In

multispatial CCM, L increases both with increased

observation time in each spatial replicate and with

increased number of spatial replicates included in the

composite time series. As L increases, it is more likely

that previous trends will have been observed that are

similar to current trends, thus improving the predictive

ability of simplex projection. Because processes that are

FIG. 1. Example applications of multispatial CCM. Lines
and shaded regions show mean 6 SD from bootstrapped
iterations. Causal forcing is indicated when the Pearson
correlation coefficient q is significantly greater than zero for
large library length L (number of historical observations,
including observation time and number of spatial replicates
included in the composite time series) and that q increases
significantly with increasing L. (a) A simulated system of
interacting processes, where X causes Y, but Y does not cause
X, as correctly indicated by the test (causal network shown in
inset), is based on 20 observations in 10 plots, as in the
multispatialCCM R package example files (Supplement). (b) A
real-world example (Appendix: Fig. A14b) comparing soil
nitrate and invading plant species richness in a plant
biodiversity experiment at Cedar Creek, indicating that nitrate
dynamics force invader species richness (purple line and
shading), but the reverse is not true (brown line and shading).
(c) A second example (Appendix: Fig. A11a) comparing annual
summer precipitation (June–August) and Elymus (Agropyron)
repens aboveground biomass dynamics, indicating that biomass
is forced by precipitation (blue line and shading), but the
reverse is not true (green line and shading). See Appendix for
details.

ADAM THOMAS CLARK ET AL.1176 Ecology, Vol. 96, No. 5
R

ep
o
r
ts



responding to the effects of a forcing process should be

good indicators of the dynamics of the forcing process

( just as species abundance should be a good indicator of

day length in the example in Methods: multispatial CCM

algorithm), the strength of that description should

consequently increase as L increases, approaching some

finite limit for very large L (Sugihara et al. 2012).

Use bootstrapping to leverage spatial information.—To

prevent the order in which spatial replicates are sampled

from influencing the outcome of the test, we use a

simple, nonparametric bootstrapping routine. Given n

spatial replicates, we draw n samples (with replacement)

from among all spatial replicates and repeat tests for the

best E, the relationship between predictive power and

interval, and for CCM for this resampled assemblage.

We then repeat this procedure for many iterations in

order to average across many potential combinations

and orderings of spatial data. This also provides

estimates for uncertainty around the predictive power

estimated in each test. In the annotated examples we

present, we use 100 iterations per test and for each

iteration calculate the Pearson correlation coefficient q,

comparing predicted estimates from the CCM algorithm

to observed values at each library length. For analysis of

real data, the number of iterations required will almost

always exceed 100 (e.g., we use 1000 replicates for our

real-world examples). We discuss how to determine

whether sufficient iterations have been conducted in the

Appendix.

Test whether these predictions indicate a significant

causal relationship.—Finally, it is necessary to determine

whether the calculated q is significantly greater than zero

and whether it increases significantly with L. Testing for

this increase can be complicated by two factors. First,

because the relationship between q and L is often not

well described by simple parametric curves, statistical

tests, such as regression based on particular functions,

may not be a good indicator of significance in all cases.

Second, a very rapid rise of q with L may be an

indication of synchrony (see Sugihara et al. 2012 and

citations therein). Synchrony arises when forcing of one

process by another is so strong that the response process

dynamics become subordinate to the forcing process.

Consequently, both processes become good predictors

of one another’s dynamics, even if forcing is solely

unidirectional, which can confound CCM analysis and

should not necessarily be taken as an indication of a

causal link.

PLATE 1. A small bunch of Andropogon gerardii in an old field at Cedar Creek, Minnesota, USA. A. gerardii reduces local soil
nitrate concentrations to levels significantly below those required by many other species, leading to reduced recruitment around the
individual. Similar effects occur in plots with low soil nitrate concentrations in the Big Biodiversity experiment, which reduces
invasion success by non-planted species. Photo credit: A. T. Clark.
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In the analyses presented here, we interpret CCM

results for which q is greater at the longest L available

than at the shortest L available and where q at the

longest L is greater than zero as indicating causal

forcing. Note that the longest L is determined by data

availability, whereas the shortest is determined by E. To

test for statistical significance of this signal, we use the

nonparametric bootstrapping conducted in Methods:

Multispatial CCM algorithm: Use bootstrapping to

leverage spatial information to determine whether the q

vs. L relationship passes both of these criteria for at least

95% of bootstrapped iterations.

Simulating system dynamics

We applied the multispatial CCM method to a

simulated dynamical system as considered in Sugihara

et al. (2012). The model describes competition between

two species, where X and Y signify the abundance of the

two species, t and tþ 1 are times, rX and rY are species’

intrinsic growth rates, a describes the effect of species X

on the dynamics of species Y, and b describes the effects

of species Y on species X:

Xðt þ 1Þ ¼ XðtÞ
�

rX � rXXðtÞ � bYðtÞ
�

Yðt þ 1Þ ¼ YðtÞ
�

rY � rYYðtÞ � aXðtÞ
�

:

We used the parameters b ¼ 0 and a � 0 for all

simulations presented here. This corresponds to a system

where process Y is influenced by process X, but X is not

influenced by Y, except for the case where a ¼ 0, in

which case neither process influences the other.

To introduce process noise into our simulation, we

drew rX from a random normal distribution centered on

3.8 with SD rP, and rY from a random normal

distribution centered on 3.5 also with SD rP for each

simulation of each plot. Consequently, species dynamics

varied among plots based on rP, but did not vary

through time within a single plot. To introduce

observation error into the system that was proportional

to species abundance, we multiplied each observed value

of X and Y by a random, log-normally distributed

variable with mean 1 (0 on the log scale) and SD rO

after simulating the entire time series. Consequently, the

observation error did not change the actual trajectory of

the processes, but did alter the values that were used for

subsequent analyses.

To test the ability of multispatial CCM to detect

different causal signals across a range of forcing

strengths and magnitudes of process noise and observa-

tion error, we simulated the system for five different

values of a spaced evenly between 0 and 2.5, for five

values of rP spaced evenly between 0 and 0.2, and for

five values of rO spaced evenly between 0 and 0.2. In

these simulations, the average values for X(t) and Y(t)

are both around 0.7. Thus, across the range of a values

that we tested (0.000, 0.625, 1.250, 1.875, and 2.500),

roughly 0%, 7.1%, 14.1%, 21.2%, and 28.2%, respective-

ly, of the dynamics of Y(t) were determined by the

dynamics of X(t). Similarly, the range of rP and rO

values that we tested (0.00, 0.05, 0.10, 0.15, and 0.20)

corresponded to average differences of roughly 0%,

1.6%, 3.1%, 4.6%, and 6.0%, respectively, in individual

species’ growth rates among plots (for rP), and 0.0%,

5.9%, 11.4%, 17.0%, and 23.4%, respectively, between

observed and actual values of X(t) and Y(t) for rO.

We compared these parameters in a fully factorial

design (5 3 5 3 5 ¼ 125 combinations), simulated each

parameter set 1200 times, and bootstrapped each

simulated library 100 times. This resulted in 15 million

individual multispatial CCM tests for causality in each

direction. In each simulation, we chose the first value for

X and Y in each plot from a random, uniform

distribution between 0 and 1. We considered three

scenarios, representing different kinds of plot data. In

scenario 1, we simulated 20 observations from each of

100 separate systems, representing 20 sequential obser-

vations in 100 plots. Second, we simulated 10 observa-

tions from each of 100 plots, and third, 5 observations in

each of 100 plots to assess the effect of shrinking time

series length on multispatial CCM performance. These

time periods roughly correspond to the number of

annual observations that might be expected from an

established long-term ecological research site, from a

single long-term research project, and from a PhD

dissertation, respectively. In the Appendix, we consider

a further set of cases in the same model with

bidirectional causation (i.e., where b . 0).

Real-world examples

We also apply CCM to two examples of real-world

data. First, we consider a short time series (4–7 sequential

samples in each of 72 spatial replicates) describing the

dynamics of invading plant species and soil nitrate in the

Big Biodiversity experiment at Cedar Creek, Minnesota,

USA. Experimental results suggest that soil nitrate

dynamics force invasion dynamics, while the reverse

should not be true (Fargione and Tilman 2005; see Plate

1)). Second, we consider a longer time series (62 replicates

of about 20 observations each) recording annual dynam-

ics for summer precipitation and aboveground biomass

for the cool-season, drought-intolerant grass Elymus

(Agropyron) repens. In this system, E. repens dynamics

should be forced by precipitation, but the reverse should

not be true. Eight further examples and detailed methods,

diagnostic tests, and descriptions of the data are

presented in Appendix A.

RESULTS

Our analyses of simulated data using multispatial

CCM correctly recovered causal forcing of process Y by

process X under most cases considered for all three plot

lengths that we tested, particularly when observation

error and process noise were small (Fig. 2a). It also
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FIG. 2. Failure rates of multispatial CCM. Panel (a) shows the failure to detect an existing causal effect (i.e., false positives
when a¼ 0, false negatives otherwise), while panel (b) shows the false detection of a nonexistent effect (i.e., false positives). Colors
indicate failure rate, the proportion of simulations for which the algorithm gave the incorrect result, with orange indicating 0–5%
failures, blue indicating 5–80%, and gray/black indicating 80–100%. The horizontal axis in all panels shows increasing rates of
process noise (rP) at five evenly spaced levels between 0 and 0.2. The vertical axis in all panels shows increasing rates of observation
error (rO) at five evenly spaced levels between 0 and 0.2. From left to right, panels vary in forcing strength (a) of Y by X at five
evenly spaced levels between 0 and 2.5. From top to bottom, panels vary in number of time steps included in the simulation (100
plots with 5, 10, and 20 observation time steps each).
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performed well for both real-world examples, correctly

detecting the presumed direction of causal association

for both systems (Fig. 1b, c).

When no observation error or process noise were

present, the test correctly indicated causal relations in

almost every instance. In most cases where rO (strength

of observation error) was less than or equal to 0.05,

failures to detect causal signals were below 5% (and were

generally around 0%), though for very high observation

error (rO ¼ 0.2), causal signals were almost never

detected. Detection strength also declined in most cases

with process noise, though the effect was not as large as

for observation error. In general, detection rates

remained higher even with process noise when time

series were long (maximum library length, 20) and for

moderately strong forcing (a ¼ 1.875). Performance for

bidirectional simulations was similar (Appendix: Fig.

A16).

The multispatial algorithm correctly indicated no

forcing of process X by process Y (i.e., in the wrong

direction) in most cases, as well (Fig. 2b). For weak

forcing (a ¼ 0.625), error rates were around 0% for all

levels of observation error and process noise. For

systems with stronger forcing, false detection rates rose

when observation error was not present, particularly

when process noise was high, reaching 60–100% for the

case with the strongest forcing (a ¼ 2.5). When no

forcing was present (a ¼ 0), the test correctly indicated

no causal forcing in most cases. In all cases with any

observation error (rO . 0), failure rates were below 5%.

Without observation error or process noise, failure rates

were somewhat higher, but remained below 20%. The

test performed worst when there was no observation

error, but process noise was strong and showed failure

rates as high as 80% in both directions, particularly for

long libraries.

DISCUSSION

Multispatial CCM appears to perform well for

moderately short and very short time series (20, 10,

and 5 observations per plot) when there is no

observation error or process noise and when forcing is

weak. Without error or noise, false detection rates (type

I error) were less than 5% for all forcing strengths

considered, except for the strongest forcing strength

tested. Failures to detect causal links (type II error) were

also around 0% when process noise and observation

error were absent. These results indicate that multi-

spatial CCM performs best under the same sort of

circumstances that classical CCM does: low observation

error and process noise relative to forcing strength

(Sugihara et al. 2012). Encouragingly, errors only

increased moderately as observational periods de-

creased, suggesting that short time series can be

analyzed without a large decrease in test performance.

Note that shorter observational periods in our simula-

tions also lead to shorter L (i.e., total number of

observations), as we retained the same number of spatial

replicates among all tests. Some of the decrease in

algorithm performance could therefore be alleviated by

increasing spatial replication to compensate for decreas-

ing observational period.

The test is conservative when observation error and

process noise are present, and thus, failures to detect

causal links in systems where large observation error is

suspected should not necessarily be taken as evidence for

a lack of causal relationship. When observation error

and process noise are present, there appears to be a

trade-off between type I and type II errors. Increased

observation error decreases correct detections of cau-

sality, but also decreases spurious detections. Process

noise slightly decreased the rate of detection of causal

signals, but only when forcing was strong and had mixed

effects on false detection rates. Our results suggest a

steep decline in algorithm performance around rO¼ 0.1,

which represents roughly an 11.4% difference between

true and observed values in our system.

The test is anticonservative when there is strong

forcing, particularly in the absence of error and noise,

and thus, detection of apparently bidirectional causality

in systems where strong forcing is suspected might

instead simply be unidirectional causality. These detec-

tion failures are demonstrative of a failure of our

convergence detection method, not necessarily of the

CCM algorithm itself and are likely a result of

synchrony. As processes become tightly coupled, each

tends to become a good estimators of the others’

dynamics even though causation is unidirectional

(Sugihara et al. 2012). Signals that are confounded by

synchrony are characterized by a sharp rise in q over the

first few time steps, followed by a long flat plateau (see

Fig. 3e in Sugihara et al. 2012), which is therefore a

useful diagnostic that can warn of confounding. When

synchrony is the product of an exogenous variable (e.g.,

joint response to temperature), it can often be minimized

by taking first differences of the cross-correlated

variables, where the preceding observation is subtracted

from each observation prior to analysis (Granger and

Newbold 1974). Where it cannot be eliminated (i.e., very

strong forcing), synchrony may preclude data from

CCM analysis.

The performance of multispatial CCM, based on a

simple simulation of competing species, does indicate

that algorithm performance is sensitive to properties of

the dynamical systems under investigation. We chose

this functional form because of its computational

simplicity and because it makes the direction and

strength of interactions, process noise, and observation

error easy to interpret and quantify. However, a variety

of other dynamical forms were considered by Sugihara

et al. (2012) with very little variation in algorithm

performance for classical CCM. Encouragingly, the

algorithm performs well for a number of real-world

cases, suggesting that at least some real systems meet the

assumptions required for CCM analysis. In particular,

synchrony is rarer than in the simple simulated system

ADAM THOMAS CLARK ET AL.1180 Ecology, Vol. 96, No. 5
R

ep
o
r
ts



that we consider. Nevertheless, where the assumptions

of multispatial CCM are not met or where manifolds are

sparsely sampled (e.g., a system with an exogenous time

trend or nonstationary processes), the method is unlikely

to work. In the Appendix, we include five examples that

our diagnostic tests show do not meet all the required

assumptions and show how these problems lead to

method failures (in addition to five examples where the

method performs well).

For a wide range of forcing strengths, and for

moderate levels of observation error and process noise,

multispatial CCM performs well in detecting causality,

even for time series as short as five observations per plot.

Our findings suggest that multispatial CCM is a useful

analytical tool for empirical studies and can help inform

questions about causal links in systems where experi-

mental studies are not possible or available or where the

results from experiments are difficult to interpret. Based

on our experience with the technique and the results that

we present here, we suggest that multispatial CCM can

be applied as a useful analytical method, but caution

that results based on the convergence detection algo-

rithm that we present here are often very conservative.

Further study with other dynamical systems will be

important for determining the general applicability of

multispatial CCM and for identifying convergence

detection algorithms that are less conservative for a

wide variety of applications. We look forward to future

examples of multispatial CCM applications and to

corresponding with parties that are interested in

applying it to novel systems.
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Abstract

This Appendix contains detailed information for the real world ex-
amples provided in the text, along with some additional examples.
The first section describes how to interpret results and diagnostic
statistics (Diagnostics and interpretation). The second section
includes information about the data and methods for each real world
example (Data and methods). The third section presents the real
world examples and interprets relevant results and diagnostic statistics
(Real world examples). The fourth and final section shows simu-
lation methods and results for a system with bi-directional causality
(Bi-directional causality).

1 Diagnostics and interpretation

Here, we show how to interpret the results from the same simulated system
described in the text in Figure 1, and in the example files for the R package
multispatialCCM. In this system, the dynamics of process X influence the
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dynamics of process Y , but the reverse is not true. Before we can commence
with running the actual CCM test, we first need to find the best embedding
dimension for the system (as described in step (1) in the methods section
in the main manuscript), and determine whether the system has sufficient
information for analysis (step (2) in the methods section) (Figure A1a and
A1b respectively). Once the diagnostic requirements have been met, we can
move on to implementing the bootstrapped CCM algorithm (steps 3-4 in the
methods section of the main manuscript). In order to interpret the results, we
also need to ensure that we have completed sufficient bootstrapped iterations
to generate stable estimates of the relationship between ρ and library length
L (Figures A1c-d).
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Figure A1: Results from the same simulated example from Figure 1a in the
main text. Pearson Correlation coefficient ρ describes the ability of the algo-
rithm to predict system dynamics. Shows test for best embedding dimension
E (a), fit vs. prediction time step (b), and CCM results based on 100 boot-
strapped iterations (c) and 1000 bootstrapped iterations (d). Solid lines show
mean, and shaded region shows +/- 1 standard deviation. See main text for
details.

Embedding dimension When choosing the best embedding dimension,
we are looking for the dimension corresponding to the highest predictive
power for one time step into the future. Ideally, this will either be at the
lowest dimension tested (as for process X here, with E = 3, Figure A1a), or
at an intermediate dimension representing a “hump” in predictive abilities
between higher and lower dimensionalities (as for process Y here, with E = 2,
Figure A1a). However, it is also important not to over-fit the model, and in
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some cases it may be prudent to choose a smaller embedding dimension that
has moderately lower predictive power than a higher dimensional model. We
will discuss this further in the “Real world examples” section.

Prediction steps We conduct this test for two reasons. First, we wish to
ensure that we have reasonable predictive ability for short time steps, or else
there is likely not enough information (or too much stochastic noise) present
in the data for CCM to work. Second, the predictive power should drop as the
length of the prediction time step increases. Both of these conditions are met
for the simulated data (Figure A1b). If this is not the case, then the system
is probably purely linear, and CCM should not be used (see manuscript for
other suggestions). Particularly bad is a system where predictive ability
decreases, and then increases with prediction time step (a “U-shaped” ρ

vs. time plot), as this suggests either some form of periodicity in system
dynamics, or more likely, that data are not uniformly sampled, such that
only a few observations are being predicted for longer prediction intervals.
We will discuss this further in the “Real world examples” section. It should
be noted that this is a “necessary but insufficient” test for non-linearity,
since a linear system dominated by stochastic noise could still show the same
response. In cases dominated by stochastic noise, CCM should (correctly)
return “no causal link in either direction”, since increasing information about
the system will not increase predictive power.

Bootstrap iterations We increase the number of bootstrapped iterations
for two reasons. First, it increases the precision of p-value estimates, as the
lower detection limit is determined by 1/(number of iterations). This is not
so important for the tests that we present here, as we only need to show
p<0.05 for significance tests. Second, and more importantly, we need to
increase iteration number in order to reduce Monte Carlo stochasticity (i.e.
significantly different results from the same simulation parameters). The
“best practice” for testing this is to increase the number of iterations until
the mean and standard deviation estimates for ρ stabilize. Here, we show
results for 100 and 1000 bootstraps (Figures A1c and A1d respectively).
Though 1000 replicates provides a smoother estimate, there is no significant
change in the distribution of rho estimates between the two iterations, so we
chose to use only 100 iterations for our simulated performance tests in the
manuscript. For real data, more iterations are generally required.
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2 Data and methods

All data and detailed methods for the real world examples that we present
in the main text and below are available on the Cedar Creek LTER data
webpage at
www.cbs.umn.edu/explore/field-stations/cedarcreek/research/data.
Here, we give brief descriptions of each dataset that we use, and discuss exist-
ing findings and knowledge about the direction of causality for those systems.
The experiment numbers that we reference can be used to look up each data
set in the Cedar Creek webpage. For convenience, we also include “.csv” files
that pre-collate relevant data tables and insert gaps in the time series be-
tween plot observations. These files can be used without further modification
to run the analyses that we present here.

E001: Nitrogen addition experiment This experiment was established
in 1982 to test how long-term nitrogen addition would alter plant species
composition in an old field community. For full methods, see [8]. We analyze
data from three fields (A, B, and C) and four nitrogen treatment levels,
which we have grouped into “low” (0 gNH4NO3yr

−1, with and without micro-
nutrients), and “high” (25 and 40 gNH4NO3yr

−1) treatments. Each field
contained 12 plots in each treatment category. Above-ground species-level
biomass in one field (C) was sampled annually from 1982-2011, while the
others were sampled annually from 1982-2004. Because of some missing
data, we retained 11 “plots” with 30 sequential measurements each, and 24
“plots” with 23 measurements each for the analyses presented here.

We focus on the dynamics of two of the most common species in the exper-
iment, the cool-season, early-successional grass Elymus (Agropyron) repens,
and the warm-season, late-successional grass Schizachyrium scoparium. In
the absence of nitrogen fertilization, A. repens typically arrives early in suc-
cession, but is replaced by S. scoparium in the first 30 years of succession
(see Figure 1 in [9]), because S. scoparium is a superior competitor for ni-
trogen [16]. However, in the presence of high levels of nitrogen addition,
A. repens tends to re-colonize plots and out-compete S. scoparium, either
for light or through indirect effects of leaf litter accumulation [3]. Fields A,
B, and C were abandoned around 1968, 1957, and 1934 respectively. Thus,
in “low” addition plots, we would expect to find that A. repens should be
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disappearing or absent in all fields, and that its dynamics should be forced
by those of S. scoparium. Conversely, in “high” addition plots, we expect
that S. scoparium should be declining through time, and that its dynamics
should be forced by A. repens.

Considerations for E001 analysis

• System is non-stationary (Figures A4, A6)

• Accurate prediction requires high embedding dimensions (Figures A3,
A5)

• “U-shaped” prediction strength vs. interval relationship (Figures A3,
A5)

• Conclusion: CCM should not be applied to these data, results are
suspect

E026: Competition plots on a soil gradient This experiment was es-
tablished in 1986 to test resource reduction and competitive outcome for
monoculture and two-species prairie plant mixtures grown across a soil ni-
trogen fertility gradient. Full methods are available in [16]. Here, we focus on
two soil fertility levels (“high” and “high + NH4NO3 fertilizer”) in monocul-
ture plots of the cool-season, early-successional grass Agrostis scabra. Above-
ground biomass data for both species and leaf litter was collected annually
from subsets of plots between 1986 and 1993. For A. scabra grown in “high”
treatments, this included 12 plots with 8 sequential samples, 6 with 7, 3 with
4, and 9 with 3. For “high + NH4NO3 fertilizer” treatments, this included 4
plots with 8 sequential observations, 2 with 7, 1 with 4, and 3 with 3.

When grown on rich soils, A. scabra produces copious amounts of leaf
litter. Because plots in this experiment were never burned, populations grown
on very fertile soils (or soils with added fertilizer) show strong oscillations,
possibly following chaotic dynamics, and ultimately crash, likely because they
smother themselves in their own leaf litter [14]. Thus, we expect to find that
A. scabra forces litter dynamics in less rich soils, but that it should also be
forced by litter dynamics for very fertile soils.
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Considerations for E026 analysis

• Different soil treatments follow different dynamics (Figure A7)

• Suspect ρ vs. prediction steps relationship for leaf litter (Figure A9a)

• Insufficient data for the case with added fertilizer (Figure A8b)

• Conclusion: Analysis in Figure A8a is likely legitimate, analysis in
Figure A8b requires more data

E054: Plant biomass in old fields E054 is a subset of the long-term
observational E014 study of old field succession at Cedar Creek. Full methods
for E014 can be found in [2]. E054 includes annual species-level above-ground
biomass samples taken from 1988-2011, taken at four subplots in each of 15
fields. Fields were abandoned between 1927 and 1998. Mean successional
dynamics follow those described in [9]. Because of incomplete sampling and
staggered abandonment of fields across years, we include data for 45 plots
with 24 sequential samples, 2 with 23, 3 with 22, 4 with 20, 1 with 15, 4 with
11, 1 with 8, and 2 with 3.

Though there are many potential ecological questions to test in this sys-
tem, we use these data to test a rather simple hypothesis about precipitation.
Using total summer annual precipitation data (June - August), we test the
extent to which A. repens and S. scoparium are forced by (or force) precipi-
tation patterns at Cedar Creek. Because A. repens is a cool-season drought-
intolerant species, its dynamics should strongly depend on water availability,
and it should therefore be forced by precipitation. S. scoparium is a warm-
season drought-tolerant species, and should therefore be more resistant to
water stress, and its dynamics should not be as strongly forced by precipita-
tion [11]. In both cases, precipitation should be an exogenous process, and
its dynamics should not be forced by those of either species.

Considerations for E054 analysis

• Embedding dimension for both A. repens and S. scoparium should be
reduced below the “best-fitting” E to preserve sample size and avoid
over-fitting (Figure A10a-b)

• Conclusion: Both analyses in Figure A11 are likely legitimate
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E120: “Big Biodiversity” experiment This experiment is the longest-
running randomized test for the effects of plant diversity on ecosystem func-
tions. Plots were established in 1994 and planted with 1, 2, 4, 8, or 16
species, and have since then been sampled annually for above-ground plant
biomass. Full methods are described in [12]. The most well-known result
from the experiment is that planted species number strongly, positively in-
fluences above-ground biomass production. However, because the diversity
treatments are fixed, rather than dynamical variables, they do not lend them-
selves to CCM analysis. Instead, we focus on three other published results
from the experiment: soil nitrate effects on invasion by non-planted species,
biomass effects on soil nitrate, and biomass effects on insect abundance and
diversity.

A number of studies in E120 have found significant increases in insect
diversity as a function of increased planted species richness [4, 5]. A posited
cause of this is that increased plant diversity increases above-ground biomass,
which in turn increases the foraging space and habitat structure available to
insect species. Interestingly, results do not agree on the effects of above-
ground biomass on insect abundance. In one case [5], diversity was found to
have no significant influence on insect abundance, whereas another study [4]
found significant effects of both planted diversity and above-ground biomass
on insect abundance. Here, we test for the causal relationships between
above-ground plant biomass and both insect species richness and abundance.
Across all diversity levels, we included 162 plots with 5 observations each,
136 with 4, and 24 with 3.

Though soil nitrate was not sampled as frequently as above-ground biomass,
most plots were measured for 7 sequential years between 1996 and 2002. Em-
pirical and theoretical results show that soil nitrate levels should be reduced
in high diversity mixtures compared to low diversity mixtures because of more
complete utilization of niche space [12, 13]. Additionally, increased biomass
is associated with decreases in soil nitrate levels, even in monocultures [15].
Consequently, we expect that above-ground biomass dynamics should influ-
ence soil nitrate dynamics. However, because species are hypothesized to
maintain soil nitrate at a relatively constant level regardless of their own
biomass, classical models of resource competition [6, 7] suggest that above-
ground biomass should not be influenced by soil nitrate dynamics. Across all
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diversity levels, we included 132 plots with 7 sequential observations, 4 with
5, and 41 with 4.

High diversity has long been associated with decreases in invasion success.
Though there is much debate about this relationship in natural systems, de-
creased invasion by non-planted species as a function of increased planted
species richness has been described by a number of studies in E120 [1, 4]. A
posited mechanism for this is soil nitrate: increased diversity leads to de-
creased soil nitrate, which in turn reduces invader success [10]. Based on
diagnostic plots of system dynamics (details in the “Real world examples”
section), we combined planted diversity treatments into “low diversity” (1-
2 species), “intermediate diversity” (4-8 species), and “high diversity” (16
species) for this analysis. The “low diversity” treatments had 7 sequential
samples in 57 plots, 5 in 4, and 4 in 11. The “intermediate diversity” treat-
ments had 7 in 45, and 4 in 13. The “high diversity” treatments had 7 in 27,
and 4 in 7.

Considerations for E120 analysis

• Time series for soil nitrate and insects are too short to test prediction
power vs. interval

• Only some combinations of diversity treatments combine to form tractable
manifolds for multispatial CCM analysis

• Analyses in Figure A12b and A14a show decrease in predictive ability
with library length, suggesting that plots combined in the analysis may
be too dissimilar

• Conclusion: Analyses in Figures A12a and A14b are likely legitimate.
Analyses in Figure A12b and Figure A14a are suspect.

3 Walk-through of real world examples

For the following examples, we used 1,000 bootstrapped iterations of the
multispatial CCM algorithm, after testing for both 100 and 1,000 iterations
and finding no significant difference in the mean or distribution of ρ. In each
case, we walk through the diagnostic statistics that we used to validate the
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CCM analysis, and discuss whether or not the results of the analyses are to
be believed. We hope that this section demonstrates that naively applying
the multispatial CCM algorithm without checking for continuity of manifolds
across plots, proper embedding dimensions, and predictive abilities will rarely
yield meaningful results. Just as with any other analysis technique, making
sure to meet the assumptions of the method is half the battle.

E001: Nitrogen addition experiment Based solely on the relationship
between L and ρ, results for this CCM test suggest that S. scoparium dy-
namics force A. repens dynamics in non-fertilized plots (Figure A2a), while
neither process forces the other in fertilized plots (Figure A2b). However,
both of these analyses have a number of problems that we can pick up with
a few diagnostic tests, and both of these results should probably not be
believed.
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Figure A2: Test of causal forcing between Agropyron repens and
Schizachyrium scoparium above-ground biomass dynamics in (a) unfertilized
control plots, and (b) fertilized plots receiving 25 or 40 gNH4NO3yr

−1.

First, let us consider the diagnostic plots for the non-fertilized case (Fig-
ure A3). For A. repens, the embedding dimension plot looks alright, with a
relatively high predictive power achieved with 6 embedding dimensions. S.
scoparium is somewhat more problematic because such a high embedding di-
mension is required to achieve moderate predictive power (Emax = 14). Even
more problematic is the increase in predictive power with prediction interval.
Both plots suggest that we can better predict plot dynamics 15 years into
the future than we can 10 years into the future, which suggests either cyclical
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patterns in the data, or a temporal trend in the data. Separating data by
field (not shown) does not alleviate this problem.
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Figure A3: Diagnostic plots for test in Figure A2a (unfertilized control plots),
showing relationship between predictive power ρ and embedding dimension
E, or length of prediction interval.

To investigate, we can plot the dynamics of each process in two lagged
dimensions (i.e. A. repens population this year, vs. next year, Figure A4).
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Figure A4: Lagged population dynamics for unfertilized plots in two dimen-
sions.

This reveals a potential cause of the problem – both dynamics have a
slight temporal trend. A. repens is abundant only early and late in the time
series (in the early 1980’s, and again in the 2000’s). Similarly, S. scoparium
is relatively rare late in the time series (after about 2000). Consequently,
dynamics are much easier to predict across long intervals, as long intervals
always predict population sizes late in the time series. The problem is even
more apparent in the fertilized plots. Here, we find similar patterns in the
diagnostic plots (Figure A5), and an even more rapid decline in S. scoparium
(Figure A6).
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Figure A5: Diagnostic plots for test in Figure A2b (fertilized plots), showing
relationship between predictive power ρ and embedding dimension E, or
length of prediction interval.
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(b) S. scoparium

Figure A6: Lagged population dynamics for fertilized plots in two dimen-
sions.

In cases where the time trend is caused by an exogenous variable (e.g.
climate change), this problem might be alleviated by detrending the data.
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However, in this case the dynamics are likely driven by simple interactions
between the variables that we are testing. For A. repens, the temporal trend
means that we have very low sampling density across the manifold (i.e. we
have many samples along the time trend, but we do not have a lot of sam-
ples for any particular location along the time trend). For S. scoparium,
the systems both collapse to a population size near zero, leaving minimal
meaningful dynamics for the algorithm to test. Ultimately, our diagnostics
suggest that these data should not be analyzed using CCM.

E026: Competition plots on a soil gradient In order to properly an-
alyze this system, we first need to determine which plots can be included
together as part of a single manifold. To do this, we again plot the dynamics
of A. scabra in two lagged dimensions (Figure A7).
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Figure A7: Lagged population dynamics Agrostis scabra in two dimensions.

This reveals substantially different dynamics among plots depending on
total soil nitrogen, suggesting that we should analyze each soil mixture sep-
arately. Furthermore, because plots differ greatly in their above-ground
biomass, we do not standardize the time series, as this could distort the
manifold.
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Figure A8: Test of causal forcing between Agrostis scabra above-ground
biomass and Leaf Litter biomass dynamics in (a) fertile soil, and (b) fer-
tile soil with added NH4NO3.

Based on the same diagnostic tests as we used above, we find two nitrogen
treatments with sufficiently similar dynamics among plots for us to apply
mutlispatial CCM. These tests suggest that in fertile soil, litter dynamics are
forced by A. scabra dynamics (Figure A8a), but not the other way around.
When additional fertilizer is added to plots, the causal direction appears to
reverse, with A. scabra becoming forced by litter (Figure A8b). However,
this second signal is not significant, likely because there are fewer plots with
added fertilizer (note the shorter L).
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Figure A9: Diagnostic plots for Figure A8.

Note that in the diagnostic plot for leaf litter in fertile soil (Figure A9a),
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ρ follows a somewhat ambiguous trend as a function of prediction distance.
Similarly, it is not clear that we have found the “best” embedding dimension
for A. scabra in fertile soils with added fertilizer (Figure A9b), as the best fit
occurs at the highest embedding dimension that we can test. The predictive
power is also somewhat low across all diagnostic tests. While these are not
ideal results for the diagnostic tests, they are not as egregious as the results
for E001, and the resulting CCM tests show sensible patterns.

E054: Plant biomass in old fields This test shows some of the most
easily interpretable causal results that we present here. They also show
the importance of choosing a sensible embedding dimension. Though it is
usually prudent to choose E that maximizes predictive ability, for both A.
repens and S. scoparium we chose somewhat smaller embedding dimensions
with predictive powers that are comparable to, but slightly smaller than, the
“best fitting” E (Figure A10, using E = 2 rather than E = 7 and E = 4
rather than E = 10 respectively). We do this both to prevent over-fitting the
model, and to retain a longer time series, as increasing E necessarily reduces
the maximum library length that we can test.
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Figure A10: Diagnostic plots for Figure A11.
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Figure A11: Test of causal forcing between total summer precipitation and
population dynamics for (a) Agropyron repens and (b) Schizachyrium sco-
parium.

Sensibly, we find that plant population dynamics do not influence precipi-
tation dynamics for either species. For A. repens, the more drought-sensitive
of the two species, we find significant causal forcing by annual summer pre-
cipitation, as expected (Figure A11a). Note that this is the test presented
in Figure 1c in the main text. For the more drought-tolerant S. scoparium,
we find a trend that suggests forcing by summer precipitation, but it is not
significant (Figure A11b). This is consistent with a weaker forcing effect,
which would take somewhat more data to detect as significant.

E120: “Big Biodiversity” experiment Our results for insect abundance
and richness partially match those for existing studies. For richness, we
find a clear trend across all diversity treatments showing that above-ground
plant biomass influences insect abundance dynamics, but not the other way
around (Figure A12a). Insect richness and plant biomass do not appear to
be significantly causally related, though the ρ vs. L relationship is somewhat
strange (Figure A12b).
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Figure A12: Test of causal forcing between total above-ground biomass and
(a) insect abundance and (b) insect species richness.

Diagnostics are somewhat less useful in this case, because we don’t have
sufficiently long time series within each plot to show how predictive power
varies with prediction interval for insect abundance or richness (Figure A13).
Since we only have five sequential observations and an embedding dimension
of 2, we can only predict three time steps into the future. While diagnostics
for above-ground biomass seem okay, we cannot really determine whether the
insect dynamics are appropriate for CCM analysis.

The CCM plot itself (Figure A12b) offers some possible information. Be-
cause ρ increases, but then decreases, with library length, our analysis shows
that increasing the amount of information we have about the system (by
adding more plots) decreases our ability to predict its dynamics. This sug-
gests that the plots that we have combined for the analysis are not all well-
predicted by the manifold we have constructed. However, separating plots
by diversity treatment does not yield meaningful results either (analyses not
shown). This suggests that insect richness dynamics differ among plots for
some other reason. In the case of insect abundance, however, the CCM plot
shows a more or less monotonic increase with library length, suggesting that
the plots can be well-described by our estimated manifold. Thus, our results
for insect abundance are probably believable, whereas our results for richness
are likely confounded.
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Figure A13: Diagnostic plots for Figure A12.

Next, we consider causal relationships between soil nitrate dynamics and
above-ground biomass (Figure A14a). There is a clear signal that above-
ground biomass forces nitrate dynamics, matching our expectations. How-
ever, results for the effects of soil nitrate on above-ground biomass are some-
what more ambiguous. The p-value suggests that soil nitrate does not force
biomass dynamics, but there is again an increase in ρ, followed by a decrease.
Since the nitrate time series is relatively short (at most 7 sequential observa-
tions per plot) while the best embedding dimension is rather large (E = 5, or
potentially higher), we cannot glean much information from the relationship
between predictive power and number of prediction steps. Separating plots
by diversity treatment does not provide a clearer pattern either (analysis not
shown). Possibly, species differ sufficiently in their effect on soil nitrate that
plots cannot be combined using our method.
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Figure A14: Test of causal forcing between soil nitrate and (a) total biomass
or (b) species richness of invading (non-planted) plant species.
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Figure A15: Diagnostic plots for Figure A14.

Results for the relationship between invader richness and soil nitrate are
somewhat clearer. Here, we are able to find a subset of diversity treatments
that appeared to share a single low-dimensional manifold (4 and 8 species
treatments). While predictive power vs. prediction steps is still unclear in
this case because of short time series (Figure A15b), the CCM analysis itself
shows relatively clear signals (Figure A14b). In this case, the results sug-
gest that invader richness does not force nitrate dynamics, whereas nitrate
dynamics do influence plant invader species richness, matching our expec-
tations from previous research. Note that this is the same as the analysis
presented in Figure 1b in the main text.
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4 Bi-directional causality

In order to test algorithm performance when bi-directional forcing exists, we
repeated the simulations described in the manuscript, except with β = 1.25
(i.e. effect of process Y on process X, which was 0 for all other analyses).
We include results from 160 simulations of the parameter ranges discussed in
the main manuscript. Results show similar performance as reported in the
uni-directional case for both directions of forcing (Figure A16).
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Figure A16: Multispatial CCM performance for bi-directional causal simula-
tions for forcing of Y by X (a), and forcing of X by Y (b). We also include
performance from the uni-directional test for forcing of Y by X (c), and
forcing of X by Y (d) in the main text (where Y does not influece X) for
comparison (Figure 2 in the main text). See Figure 2 caption in the main
text for details.
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