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Spatial correlation as leading indicator of catastrophic shifts
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Abstract Generic early-warning signals such as increased
autocorrelation and variance have been demonstrated in time-
series of systems with alternative stable states approaching a
critical transition. However, lag times for the detection of such
leading indicators are typically long. Here, we show that
increased spatial correlation may serve as a more powerful
early-warning signal in systems consisting of many coupled
units. We first show why from the universal phenomenon of
critical slowing down, spatial correlation should be expected
to increase in the vicinity of bifurcations. Subsequently, we
explore the applicability of this idea in spatially explicit
ecosystem models that can have alternative attractors. The
analysis reveals that as a control parameter slowly pushes the
system towards the threshold, spatial correlation between

neighboring cells tends to increase well before the transition.
We show that such increase in spatial correlation represents a
better early-warning signal than indicators derived from time-
series provided that there is sufficient spatial heterogeneity
and connectivity in the system.
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Introduction

Abrupt extensive changes have been identified in a range of
ecosystems (Scheffer et al. 2001). Some of these shifts are
suggested to be critical transitions between alternative states
(Scheffer and Carpenter 2003). Such critical transitions
have been described, among others, for lakes (Scheffer
1998; Carpenter 2005), for marine and coastal environ-
ments (Petraitis and Dudgeon 1999; Daskalov et al. 2007),
for terrestrial communities (Handa et al. 2002; Schmitz
et al. 2006), and for semi-arid ecosystems (Rietkerk et al.
2004; Narisma et al. 2007).

Predicting critical transitions is a difficult task (Clark et al.
2001). However, recent theoretical work suggests that there
may be generic leading indicators for critical transitions even
when mechanistic insight is insufficient to build reliable
predictive models (Scheffer et al. 2009). The underlying
principle of most of these indicators is a phenomenon known
in dynamical systems theory as ‘critical slowing down’
(Strogatz 1994). Critical slowing down occurs in most
bifurcation points when the dominant eigenvalue character-
izing the rates of change around the equilibrium becomes
zero. This implies that approaching such critical points, the
system becomes slower in recovering from perturbations
(Wissel 1984; Held and Kleinen 2004; van Nes and Scheffer
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2007). In reality, all systems are permanently subject to
disturbances. It has been shown in models that in such
situations, one should expect that there is an increase in
autocorrelation (Ives 1995; Kleinen et al. 2003; Held and
Kleinen 2004) and in variance (Carpenter and Brock 2006)
in the pattern of fluctuations as a bifurcation is approached.

A major drawback of such signals is that in practice,
real-time detection may come too late to take action, as
long time-series of good quality and resolution are needed
(Biggs et al. 2009; Scheffer et al. 2009). In theory, spatial
patterns may provide more powerful leading indicators, as
they contain more information than a single data point in a
time-series (Guttal and Jayaprakash 2009; Donangelo et al.
2009). Indeed, various studies have shown spatial signa-
tures of upcoming transitions. For systems that have self-
organized pattern formation, there are specific signals (von
Hardenberg et al. 2001; Rietkerk et al. 2004; Kéfi et al.
2007). However, these signals tend to be specific to the
particular mechanism involved (Pascual and Guichard
2005) and cannot be generalized to other systems. In a
stochastic extinction–colonization model, Oborny et al
(2005) showed that spatial variance of population densities
increases near the critical extinction threshold. In similar
stochastic spatial metapopulation models, spatial correlation
increases prior to species extinction as a function of
occupied patches (Bascompte 2001), transient time to
extinction diverges near the spatial threshold (Gandhi
et al. 1998; Ovaskainen et al. 2002), and the size of maxi-
mum patches declines as habitat fragmentation increases
(Bascompte and Sole 1996). Recently, it has been shown
that rising variance accompanied by a peak in skewness
preludes the transition of an underexploited resource to
overexploitation in a spatial model with local alternative
stable states (Guttal and Jayaprakash 2009).

Here, we first explore whether critical slowing down
might in theory generate spatial signals in spatially
heterogeneous ecosystems that can go through a critical
transition. In particular, we propose a direct link between
critical slowing down and increasing spatial correlation
prior to a transition, analogous to what has been demon-
strated in non-spatial systems (Scheffer et al. 2009). We
show that an increase in spatial correlation can serve as an
early-warning signal prior to a bifurcation point. Even
though such divergence in long-range coherence has been
shown in phase transitions (Stanley 1971; Fisher 1974; Solé
et al. 1996), to our knowledge, there is no work that
investigates this phenomenon in spatially explicit ecologi-
cal models of alternative stable states as the ones we use in
this study. Furthermore, we compare spatial and temporal
correlation as leading indicators of transitions in three
different spatially explicit models and we show that their
performance depends on the assumptions over the underly-
ing connectivity and heterogeneity of the landscape.

Spatial consequences of critical slowing down

In models, bifurcations represent thresholds where a tiny
change in a parameter can lead to a qualitative change in the
behavior of the system (Strogatz 1994). At such critical
points, the dominant eigenvalue characterizing the rates of
change around the equilibrium becomes zero. This implies
that approaching such bifurcation points, the system
becomes increasingly slow in recovering from small pertur-
bations back to its equilibrium. In the case of the classical
fold bifurcation, the consequences can be seen intuitively
from stability landscapes (Fig. 1). The size of the basin of
attraction around an equilibrium shrinks as the bifurcation
point is approached by slowly tuning a control parameter
(until the basin of attraction of one of the two equilibria
disappears; Fig. 1a, b). However, also the slopes of the
stability landscape representing the return rate to equilibrium
(engineering resilience) change. As the basin shrinks, these
slopes become less steep before they eventually flatten out at
the threshold. The corresponding smooth decline in return
rates represented by eigenvalues happens in any continuous
model approaching a fold bifurcation (Wissel 1984), and
analysis of various models shows that such slowing down
typically starts already far from the bifurcation point (van
Nes and Scheffer 2007; Chisholm and Filotas 2009). If one
exposes such a system to stochastic perturbations which are
normally distributed and in the limit of the equilibrium so
that the linear approximation still holds, slowing down
implies that the state of the system at any given moment
becomes more and more like its past state, as the return rate
to equilibrium goes to zero at the bifurcation (Fig. 1d, f).

What might be the consequence of critical slowing down
in a system where we have many coupled units, each with
alternative stable states? This may correspond for instance
to a spatial grid of an ecosystem model with alternative
stable states. If we assume that the conditions are different
for each grid cell, i.e., the intrinsic equilibrium states of the
units in isolation are different for each grid cell for instance
due to different environmental conditions, then the diffusive
exchange between the units will continuously tend to
reduce such variation between cells. More precisely, the
dynamics between two neighboring units (x1 and x2) will be
governed by a reaction part (f) and a diffusion part
governed by a dispersion rate (D):

dx1
dt

¼ f x1; p1; cð Þ þ D x2 � x1ð Þ ð1Þ

dx2
dt

¼ f x2; p2; cð Þ þ D x1 � x2ð Þ ð2Þ

where pi is a parameter that defines heterogeneity between
the two units and c is the control parameter that drives the
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system to the transition point. The Jacobian matrix of this
system at equilibrium x*1 ; x

*
2
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When connectivity is very low, we may assume that D <<

f 0ðx*i ; pi; cÞ which renders the eigenvalues of the system
equal to: l1 � f 0ðx*1 ; p1; cÞ and l2 � f 0ðx*2 ; p2; cÞ. This
assumption basically implies that the two units can be
regarded as being disconnected. Under these conditions,
each unit is governed by its own dynamics and shifts at a
different critical threshold ci. Changes in each unit are
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Fig. 1 Time: balls and cups representation of the stability properties
of a system exhibiting alternative stable states. a At high resilience,
small disturbances to the equilibrium are counterbalanced by high
recovery rates back to equilibrium. As a result, when monitoring the
state variable in time, the collected time-series is characterized by low
correlation between subsequent values (panels c, d). b At low
resilience, the basin of attraction shrinks and the system is closer to
the transition point. Small disturbances not only increase the chance of
pushing the system to the alternative state, but they are not anymore

effectively damped due to low recovery rates back to equilibrium. The
resulting time-series is highly autocorrelated (panels e, f). Space:
dynamics of two strongly connected units embedded in a hypothetical
spatial system. When the system is far away from the transition (high
resilience), dynamics in each unit are defined more by their own
reaction processes than by dispersion (panel g) and appear weakly
correlated (panel h). Close to the transition (low resilience), reaction
processes are minimized due to critical slowing down and dispersion
dominates (panel i). Units now are strongly correlated (panel j)
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independent from each other. As a consequence, one would
expect to find no correlation between units.

When there is exchange between the units, units are no
longer independent. If connectivity is strong, the critical
thresholds at which each unit shifts converge (c1≈c2≈c*).
When the system is far away from the transition, units are
governed by both ‘reaction’ and diffusion processes (Eqs. 3
and 4). Close to the transition point, ‘reaction’ within each
unit becomes smaller due to critical slowing down
ð f 0ðx*i ; pi; c*Þ ! 0Þ. On the contrary, diffusion is indepen-
dent of the proximity to the transition but depends only on the
gradient between the two units ðx*1 � x*2 Þ. We may thus
assume that at this point D >> f 0ðx*i ; pi; c*Þ, and we may
neglect f 0ðx*i ; pi; c*Þ: the eigenvalues of the system ap-
proach: l1≈0 and l2≈−2D. This means that the system slows
down each unit and diffusion will dominate, equalizing
differences between units with rate 2D (the second eigenvalue
characterizes the dynamics between the two units). Now, the

state in a unit will be strongly dependent on that of its
neighbor. As a result, units will become more strongly
correlated close to the transition (Fig. 1g–j).

Methods

Models description

We adapt three well-studied minimal models that can have
alternative stable states (Table 1). The first model describes
a logistically growing resource with fixed grazing rate
(Noy-Meir 1975; May 1977). It describes the transition of
an underexploited system to overexploitation as grazing
pressure crosses a threshold. The second model describes
the nutrient dynamics of a eutrophic lake (Carpenter et al.
1999). At low nutrient input rates, the lake remains oligo-
trophic through nutrient losses to sediment or hypolimnion.

Table 1 Models, parameters and their values used in this study

Model and Parameter Definition and value

dXi;j

dt ¼ rXi;j 1� Xi;j

K

� �
� c

X 2
i;j

X 2
i;jþ1

þ D Xiþ1�j þ Xi�1�j þ Xi;jþ1 þ Xi;j�1 � 4Xi;j

� �þ sdWi;j

Xi,j Resource biomass; state variable

K Carrying capacity, (10)

ri,j Maximum growth rate, parameter introducing spatial heterogeneity at gridcell (i,j), (range, 0.6–1)

c Maximum grazing rate; control parameter, (1–3)

D Dispersion rate, (range, 0–1)

σ SD of white noise, (0.1)

dWi,j White noise; uncorrelated in each gridcell (i,j)

Eutrophication model (Carpenter et al. 1999)
dXi;j

dt ¼ a� bXi;j þ c
Xp

i;j

X p
i;jþ1 þ D Xiþ1�j þ Xi�1�j þ Xi;jþ1 þ Xi;j�1 � 4Xi;j

� �þ sdWi;j

Xi,j Nutrient concentration; state variable

α Nutrient loading rate; control parameter, (0.1-0.9)

r Maximum recycling rate, (1)

bij Nutrient loss rate; parameter introducing spatial heterogeneity at gridcell (i,j), (range, 0.8–1.2)

p Hill coefficient, (8)

D Dispersion rate (range, 0–1)

σ SD of white noise, (0.01)

dWi,j White noise; uncorrelated in each gridcell (i,j)

Vegetation–turbidity model (Scheffer 1998)
dVi; j

dt ¼ rvVi; j 1� Vi; j
h p

EþE p
i;j

h p
E

� �
þ D Viþ1�j þ Vi�1�j þ Vi;jþ1 þ Vi;j�1 � 4Vi;j

� �þ sdWi;j

Ei;j ¼ Eohv
hvþVi;j

Vi,j Vegetation cover; state variable

hE,ij Half-saturation turbidity constant, parameter introducing spatial heterogeneity at gridcell (i,j), (range, 1–3)

Eo Background turbidity; control parameter, (2–12)

rV Maximum vegetation growth rate, (0.5)

hV Half-saturation vegetation cover constant, (0.2)

p Hill coefficient, (4)

D Dispersion rate, (range, 0–1)

σ SD of white noise, (0.01)

dWi,j White noise; uncorrelated in each gridcell (i,j)
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At increased nutrient loading, there is a high recycling of
nutrients from the sediment or hypolimnion back to the
water column due to lower oxygen levels and the lake may
suddenly become eutrophic. The third model describes the
transition of a clear water shallow lake dominated by
macrophytes to a turbid water state where macrophytes are
practically absent (Scheffer 1998). It models the interac-
tions between macrophyte coverage and turbidity of a
shallow lake.

By adding a dispersion term, we can extend the models
in two-dimensional space (Okubo 1980). As ecosystems are
usually patchy, we assume that space is discrete (Keitt et al
2001), by assuming that the dynamics take place in a n×n-
squared lattice which consists of evenly spaced coupled
cells (Keitt et al. 2001; van Nes and Scheffer 2005). Each
cell can individually switch to its alternative state and is
connected with its four neighboring cells. Connectivity is
modeled as exchange of matter or biomass among neigh-
boring cells mimicked through a simple diffusive process.
Spatial heterogeneity in the landscape (e.g., topographic
situation, local hydrological differences) is introduced in
the model by randomly and independently setting a
parameter pi,j in each cell (Table 1). We also assume there
are random independent disturbances in each cell. Thus, the
general form of our models is:

dXi;j

dt
¼ f Xi;j; pi;j; c

� �

þ D Xiþ1;j þ Xi�1;j þ Xi;jþ1 þ Xi;j�1 � 4Xi;j

� �

þ s
dWi;j

dt
; ð5Þ

where f is the deterministic equation of the non-spatial
model that governs the dynamics of the state variable Xi,j at
each cell as a function of parameter pi,j which introduces
heterogeneity among cells, and as a function of c, the
control parameter which causes each cell individually to
switch between alternative states. D is the dispersion
coefficient and dWi,j/dt, a white noise process independent-
ly added to each cell with a scaling factor σ (Table 1). To
prevent edge effects, we define periodic boundaries for the
total lattice.

Models analysis

All simulations started with random initial conditions,
where all cells were in the same state. We then increased
a control parameter in small steps until a critical value
where the shift occurs. After each stepwise change in the
control parameter, we ran the model for 1,000 time steps to
minimize transient effects. At the end of the 1,000 time
steps, we used the last achieved local values of the state
variables in each cell of the whole grid (50×50 cells) to

calculate the spatial correlation of neighboring cells. This
index was defined as the two-point correlation for all pairs
of cells separated by distance 1, using the Moran’s
coefficient (Legendre and Fortin 1989):

C2 dð Þ ¼
n
Pn
i¼1

Pn
j¼1

wi;j xi � xð Þ xj � x
� �

W
Pn
j¼1

xi;j � x
� �2 ; ð6Þ

in which we associated a weight wi,j to each pair of cells
(xi, xj) which takes the value of 1 for neighboring cells and
0 otherwise. W is the total number of pairs of neighboring
cells. To test how parsimonious spatial correlation between
neighboring cells for indicating the proximity to a transition
is compared to spatial correlation between cells at higher
distances, we also estimated spatial correlation at higher lags
(δ up to 25). We quantified the increase of spatial correlation
at higher distances by estimating the correlation length y
from the exponential fit exp(−δ/y). The correlation length y
describes the distance over which the behavior of a
macroscopic variable is affected by the behavior of another
(Solé et al. 1996). A growing correlation length y indicates
that spatial correlation increases at longer distances.

Since we were interested in comparing changes in the
spatial correlation between cells to changes in the temporal
autocorrelation within cells (another potential early-warning
signal), we also tracked 25 randomly chosen cells (1% of the
total lattice) over the last 100 time steps of each run to estimate
the temporal autocorrelation at-lag-1 (Held and Kleinen
2004). We thus used an equal amount of information for
comparison of the spatial and temporal indicators: 1×2,500
cells versus 100×25 cells. We calculated temporal autocor-
relation using the mean of the autocorrelation at-lag-1
estimated at each of the 25 sampled cells (see simulation
scheme in Electronic Supplementary Material Fig. 1). To
compare the performance of the spatial and temporal
indicators, we quantified their trend using the nonparametric
Kendall t rank correlation of the control parameter and the
spatial and temporal correlation estimates.

We explored three different levels of heterogeneity
(Table 1): (1) no spatial heterogeneity (pi,j equal in all
cells), (2) low spatial heterogeneity (pi,j drawn from a
uniform distribution with low variance), and (3) high spatial
heterogeneity (pi,j drawn from a uniform distribution with
high variance). In each of these settings, we studied the
effect of different levels of connectivity (mimicked by the
diffusive exchange term D=[0, 0.001, 0.0025, 0.005, 0.01,
0.025, 0.05, 0.1, 0.25, 0.5, 1]).

Since we are interested in signals that warn before the
shift, we excluded the dynamics during the transition from
our analysis. In spatial heterogeneous systems, different
cells may shift at different times. Therefore, it is not
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obvious how a threshold point should be determined.
Here, we defined a threshold simply as the point when the
first cell shifted to the alternative state (see Electronic
Supplementary Material Fig. 2). This ensures that we are
really focusing on early-warning signals rather than detect-
ing changes that occur during the shift itself.

All simulations and statistical analyses were performed
in MATLAB (v. 7.0.1). We solved the stochastic equations
using a Euler–Murayama integration method with Ito
calculus (Grasman J. van Herwaarden OA 1999).

Results

A simplified spatial scenario

To see how critical slowing down affects dynamics in space
in a transparent way, we first implemented the over-
harvesting model of May (1977) in only two cells. In this
oversimplified spatial scenario, the two cells have different
carrying capacities and are harvested with the same rate.

When connectivity is low, each cell shifts at a different
harvesting rate. When the system is strongly connected, the
two cells shift at the same harvesting pressure (Fig. 2a, b).

We tested whether critical slowing down occurs despite
high connectivity by performing a perturbation experiment
(van Nes and Scheffer 2007). Indeed, biomass in the
perturbed cell 1 recovered slower before the transition
compared to a situation far from the transition (Fig. 2c, d).
Note that changes in cell 1 strongly affect dynamics of cell
2 (Fig. 2c). This is in line with our theoretical prediction
that close to the transition, units become less responsive to
their own dynamics and more influenced by the dynamics
of neighboring units. Also, it can be seen that there is a
conspicuous increase in similarity as the system approaches
the transition provided that there is sufficient connectivity
(D; Fig. 3a), and spatial heterogeneity (δ; Fig. 3b).

Correlation in space and time

In the previous analysis, we showed that critical slowing
down causes the state of two cells to converge close to a
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transition. We now explore the effect of critical slowing
down in the complete spatial models. Simulations show that
indeed, spatial correlation between neighboring cells
increased prior to the transition in a wide range of con-
ditions for all three models (see Electronic Supplementary
Material Fig. 3). For example, in the vegetation–turbidity
model spatial correlation between neighboring cells started
to increase well before the shift (Fig. 4a, b). As expected,
with weakly connected cells (Fig. 4c, d), spatial correlation
between neighboring cells did not show a strong increase
before the transition.

Interestingly, temporal autocorrelation performed in a
somehow complementary way compared to spatial correla-
tion (see also Electronic Supplementary Material Fig. 4);
when connectivity was high, temporal autocorrelation
showed a weaker trend with the control parameter (Kendall
t=0.26, P<0.05) than its spatial analog (Kendall t=0.83,
P<0.05; Fig. 4b). However, trends in temporal autocorre-
lation (Kendall t=0.31, P<0.05) outperformed trends in
spatial correlation when connectivity was low (Kendall t=
0.1, P>0.05; Fig. 4d).

To check how generic these results are, we systemati-
cally analyzed the trends in the spatial and temporal
correlations up to the transition for a range of dispersion
and heterogeneity conditions (Fig. 5). The Kendall t
correlation statistic was used to quantify the strength of
the trend of the correlation indicators for every level of
dispersion rate. A higher value of this trend-statistic implies
a more significant increase in the indicator prior to the
transition. Despite some differences in the three models,
two general patterns emerged: (1) high connectivity
between patches favored a strong increase in the spatial
correlation of neighbors, especially when there was
inherent heterogeneity in the environment; (2) high envi-

ronmental heterogeneity reduced the strength of the
temporal correlation. The latter pattern is due to the fact
that in this situation, each cell shifts at a different level of
the control parameter, implying that the autocorrelation
measured at each cell is different, and consequently the
estimate of their mean is noisy. Connectivity had no
apparent effect on the trends in temporal autocorrelation.

We checked whether an increase in spatial correlation
between neighboring cells for indicating the proximity to a
transition is more parsimonious compared to changes in
spatial correlation between cells at higher distances. We
found that spatial correlation also at higher lags does indeed
tend to increase prior to a transition, whereas after the
transition, the correlation is limited only to a few neigh-
boring cells (see Electronic Supplementary Material
Fig. 5a, b). Such increase in long-range coherence is
reflected in the growing correlation length y which can
also serve as leading indicator of an imminent shift
(Electronic Supplementary Material Fig. 5c) However, the
almost 1:1 relationship between the trends of both signals
strongly implies that spatial correlation between neighbors
is a parsimonious indicator of an upcoming transition
(Electronic Supplementary Material Fig. 6).

Discussion

Our analysis suggests that an increase in spatial correlation
may be a leading indicator for an impending critical
transition. Although we explored only three models
explicitly, the fact that increased spatial correlation follows
from the universal phenomenon of critical slowing down at
bifurcations implies that it may be a generic phenomenon
for a wide class of transitions (van Nes and Scheffer 2007).
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b Such increase in similarity is greater the more inherently
heterogeneous the cells are (δ>0)
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Our results also indicate that given the same number of
data-points, spatial correlation may generally outperform
indicators derived from time-series as early-warning signal,
corroborating to the suggestion that spatial indicators may
be more reliable then temporal indicators (Guttal and
Jayaprakash 2009). However, we note that the performance
of both spatial and temporal indicators depends on the
underlying connectivity and heterogeneity of the landscape.
For instance, temporal autocorrelation is likely to be better
only in homogeneous environments or extremely well-
‘mixed’ (connected) systems which effectively start behaving
as a single unit (see Electronic Supplementary Material
Fig. 7). Also, spatial correlation does not work well in
systems with very little connectivity (Fig. 4c, d). However, it
should be noted that if the environment is heterogeneous in
such unconnected systems, temporal information from a
single location will not be sufficient to warn for a critical
transition on a large scale either, as the monitored patch
might shift earlier or later than average. Thus, monitoring
many patches is still required in such situations. A practical
issue when it comes to optimizing monitoring strategies is

that, using remote sensing, it may typically be much easier to
obtain information for numerous points in space than for the
same amount of points in time (e.g., 1,000 spatially spread
sampling points versus 1,000 weekly measurements at the
same spot). Still, even if spatial data are easier to obtain, the
typical spatial and temporal resolution needed to acquire
reliable estimates of the leading indicators remains an open
question. This is because such scale will tend to be system-
specific. The spatial unit at which information is gathered in
order to estimate spatial correlation will be determined by the
scale to which processes in the landscape operate. Similarly,
temporal dynamics are governed by specific timescales. For
instance, had we been monitoring plankton transitions, we
should be monitoring the dynamics in days (the generation
time for most phytoplankton species).

Clearly, our analysis is merely a starting point when it
comes to exploring the possibility of using an increase in
spatial correlation as leading indicator for systemic shifts. In
most cases, the dispersal of seeds or animals is not only limited
to neighboring cells as we assumed in our work. Guttal and
Jayaprakash (2009) showed that the performance of spatial
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Fig. 4 An example of the evolution of spatial and temporal
correlation between neighboring cells in the vegetation turbidity
model (Scheffer, 1998). Panels a, c show the spatial mean of the
system’s state variable following the slow change in the control
parameter. The gray-shaded area indicates the period before the
system starts flipping. c Note the shift in the case of low connectivity
is gradual, as each cell shifts almost independently from its neighbor.
a The shift is abrupt when connectivity is high and the system reaches

the transition globally. b Spatial correlation signals well in advance
the shift of the lake to turbid conditions, outperforming the increase in
temporal autocorrelation. d At low connectivity, spatial correlation
hardly changes before the onset of transition, but the trend in temporal
autocorrelation is stronger. Top panels are snapshots of the spatial
distribution of vegetation cover far from the transition (high
resilience), and just before the transition (low resilience; parameter
values as in Table 1 for high heterogeneity in hE)
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variance and spatial skewness as indicators of transitions in
the same type of systems is insensitive to different dispersal
patterns. We expect that the same will also hold for our
results. Another simplified assumption in our models is that
we have ignored that landscape characteristics are usually
spatially correlated due to the underlying physical morphol-
ogy or to the ecological memory that shapes the landscape
(Peterson 2002). Therefore, for instance, dispersion rates are
not expected to be constant across space. Nor growth rates of
a particular resource will be uncorrelated in space. Instead
connectivity will differ due to fragmentation in the landscape
or there will be “islands” of high fertility where growth rates
will be higher. We tested these two assumptions and we
found that they do not affect the performance of spatial
correlation as leading indicator of upcoming transitions (see
Electronic Supplementary Material Figs. 8, 9).

One aspect to explore further is the likelihood of false
positives (false alarms) or false negatives (no warning). For
instance, it could well be that spatial correlation would also
rise in situations which are unrelated to the proximity to a
critical point (false alarms). As we showed, spatial correlation
is dependent on the existing connectivity and environmental
heterogeneity. This means for instance that if connectivity
increases (e.g., because of stronger currents, increased mixing,
etc), spatial correlation also becomes stronger (Fig. 6a).
Similarly, false alarms could result from changes in
heterogeneity: if heterogeneity in the environment is accen-
tuated as conditions change through time or as small-scale
disturbances increase patchiness in the landscape, this could
potentially lead to an increase in spatial correlation producing
a false warning of an impending shift (Fig. 6b). Just as any
early-warning signal, correlation is obviously likely to fail in
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Fig. 5 Summary of the Kendall t rank correlation coefficients of the
temporal and spatial leading indicators estimated for all dispersion
levels and heterogeneity conditions for all three models. The Kendall t
statistic measures the strength of the trend of the leading temporal and

spatial indicators before the shift of the spatial system. Significance
levels for each statistic are summarized in Electronic Supplementary
Material Table 1
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providing early-warning (false negatives), if systems are hit
by large disturbances. A global strong disturbance (compared
to a local strong disturbance) may well tip the whole system
to the alternative state, leaving no space for warning. To
obtain a better feeling for the reliability of leading indicators,
it would clearly be important to study their performance in
more realistic scenarios of spatially correlated disturbances of
multiple scales.

In this study, we explicitly explored only one class of
models, e.g., the ones that have a fold bifurcation on a local
level. In view of the connection to critical slowing down, we
expect spatial correlation to increase also prior to systemic
shifts in systems with other bifurcations. For instance, the
Hopf bifurcation, marking the transition of a stable to an
oscillatory system is associated to critical slowing down
(Chisholm and Filotas 2009) and so is the phenomenon of
phase locking between coupled oscillators (Leung 2000). On
the other hand, sharp transitions are also described in
systems with self-organized spatial patterns (von Hardenberg
et al. 2001; Rietkerk et al. 2004; Kéfi et al. 2007) for which
it is unclear whether they display slowing down. In these
systems, Turing instability points give birth to regular pattern
formation (HilleRisLambers et al. 2001) or long-range
correlations characterized by power law relationships emerge
before the transition due to short range interactions (Pascual
and Guichard 2005). Clearly, it would be worthwhile
exploring the applicability of the correlation indicators
presented in this work to a wider class of models.

Finally, we should acknowledge that although early-
warning signals for regime shifts are potentially useful for
managing transitions of real ecosystems, they still remain
elusive in their application. Most of the proposed indicators
are developed in simple ecological models and have not yet
been tested in the field (Scheffer et al. 2009). Modeling

exercises demonstrate that they may well fail to be used
successfully in averting impending transitions (Biggs et al.
2009; Contamin and Ellison 2009). One problem is the large
amount of data needed (Carpenter et al. 2008; Dakos et al.
2008; Guttal and Jayaprakash 2008). Another drawback is
that generic early-warning signals typically do not indicate
the proximity to the critical threshold in absolute terms (van
Nes and Scheffer 2007). Instead, they can only be used to
indicate a relative change of the system’s resilience. Finally,
there is the difficulty of moving from science to policy in a
swift way (Scheffer et al. 2003; Biggs et al. 2009).
Management actions usually take years to implement due
to institutional inertia or stakeholders’ conflicting interests.
Nonetheless, it is encouraging that there is an increasing
number of examples where leading indicators have been
identified for real systems (Scheffer et al. 2009), like the
marine environment (Beaugrand et al. 2008), semi-arid
ecosystems (Kéfi et al. 2007), or even climate (Livina and
Lenton 2007; Dakos et al. 2008).

Our results resonate with earlier findings that long-range
coherence increases in percolating systems close to phase
transitions (Stanley 1971; Solé et al. 1996; Pascual and
Guichard 2005), suggesting that changes in spatial correlation
may well turn out to be rather generic indicators of shifts in a
variety of spatio-temporal systems, like the ones in this study
with fold bifurcations. Potential applications might range
from anticipating epidemic outbreaks (Davis et al. 2008) and
the collapse of metapopulations (Bascompte and Sole 1996)
to warning for epileptic seizures (Lehnertz and Elger 1998)
or large-scale climate transitions (Tsonis et al. 2007).

Acknowledgments We would like to thank Sasha Panfilov and
Notubo Takeuchi for valuable discussions. We also thank Sonia Kéfi,
Andrea Downing, Reinette Biggs, and Jordi Bascompte, as well as

a b

Fig. 6 False positives in the performance of spatial correlation
between neighbors for indicating the proximity to an upcoming
transition in the overharvesting model of May (1977). a Spatial
correlation increases as connectivity in the landscape becomes
stronger both when the system is far (c=1) or closer to the transition

(c=1.6; parameter values as in Table 1 for high heterogeneity in r).
b Spatial correlation also increases as heterogeneity in the landscape
becomes stronger regardless of the proximity to the transition
(parameter values as in Table 1 for D=0.5)

172 Theor Ecol (2010) 3:163–174



Alan Hastings and the three anonymous reviewers whose comments
helped improve the manuscript. H.F and R.D. are supported by project
PDT 63/13 and PEDECIBA-Uruguay. V.D. is supported by a Nether-
lands Organization for Scientific Research grant (NWO).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Bascompte J (2001) Aggregate statistical measures and metapopula-
tion dynamics. J Theor Biol 209:373–379

Bascompte J, Sole RV (1996) Habitat fragmentation and extinction
thresholds in spatially explicit models. J Anim Ecol 65:465–473

Beaugrand G, Edwards M, Brander K, Luczak C, Ibanez F (2008)
Causes and projections of abrupt climate-driven ecosystem shifts
in the North Atlantic. Ecol Lett 11:1157–1168

Biggs R, Carpenter SR, Brock WA (2009) Turning back from the
brink: detecting an impending regime shift in time to avert it.
Proc Natl Acad Sci USA 106:826–831

Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability
and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

Carpenter SR, Brock WA (2006) Rising variance: a leading indicator
of ecological transition. Ecol Lett 9:311–318

Carpenter SR, Ludwig D, Brock WA (1999) Management of
eutrophication for lakes subject to potentially irreversible change.
Ecol Appl 9:751–771

Carpenter SR, Brock WA, Cole JJ, Kitchell JF, Pace ML (2008)
Leading indicators of trophic cascades. Ecol Lett 11:128–138

Chisholm RA, Filotas E (2009) Critical slowing down as an indicator
of transitions in two-species models. J Theor Biol 257:142–149

Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA,
Lodge DM, Pascual M, Pielke R, Pizer W, Pringle C, Reid WV,
Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D (2001)
Ecological forecasts: an emerging imperative. Science 293:657–660

Contamin R, Ellison AM (2009) Indicators of regime shifts in
ecological systems: what do we need to know and when do we
need to know it? Ecol Appl 19:799–816

Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H
(2008) Slowing down as an early warning signal for abrupt
climate change. Proc Natl Acad Sci USA 105:14308–14312

Daskalov GM, Grishin AN, Rodionov S, Mihneva V (2007) Trophic
cascades triggered by overfishing reveal possible mechanisms of
ecosystem regime shifts. Proc Natl Acad Sci USA 104:10518–10523

Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JAP (2008) The
abundance threshold for plague as a critical percolation phenom-
enon. Nature 454:634–637

Donangelo R, Fort H, Dakos V, Scheffer M, van Nes EH (2009) Early
Warning Signals for catastrophic shifts in ecosystems: Compar-
ison between spatial and temporal indicators. Int J Bifurcation
Chaos in press

Fisher ME (1974) Renormalization group in theory of critical
behavior. Rev Mod Phys 46:597–616

Gandhi A, Levin S, Orszag S (1998) "Critical slowing down" in time-
to-extinction: an example of critical phenomena in ecology. J
Theor Biol 192:363–376

Grasman J. van Herwaarden OA (1999). Asymptotic methods for the
Fokker-Planck equation and the exit problem in applications.
Springer, New York.

Guttal V, Jayaprakash C (2008) Changing skewness: an early warning
signal of regime shifts in ecosystems. Ecol Lett 11:450–460

Guttal V, Jayaprakash C (2009) Spatial variance and spatial skewness:
leading indicators of regime shifts in spatial ecological systems.
Theor Ecol 2:3–12

Handa IT, Harmsen R, Jefferies RL (2002) Patterns of vegetation
change and the recovery potential of degraded areas in a coastal
marsh system of the Hudson Bay lowlands. J Ecol 90:86–99

Held H, Kleinen T (2004) Detection of climate system bifurcations by
degenerate fingerprinting. Geophys Res Lett 31

HilleRisLambers R, Rietkerk M, Van den Bosch F, Prins HT, De
Kroon H (2001) Vegetation pattern formation in semi-arid
grazing systems. Ecology 82:50–61

Ives AR (1995) Measuring resilience in stochastic systems. Ecol
Monogr 65:217–233

Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, ElAich A,
de Ruiter PC (2007) Spatial vegetation patterns and imminent
desertification in Mediterranean arid ecosystems. Nature 449:
213–217

Keitt TH, Lewis MA, Holt RD (2001) Allee effects, invasion pinning,
and species’ borders. Am Nat 157:203–216

Kleinen T, Held H, Petschel-Held G (2003) The potential role of
spectral properties in detecting thresholds in the Earth system:
application to the thermohaline circulation. Ocean Dynam 53:
53–63

Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis.
Plant Ecol 80:107–138

Lehnertz K, Elger CE (1998) Can epileptic seizures be predicted?
Evidence from nonlinear time series analysis of brain electrical
activity. Phys Rev Lett 80:5019–5022

Leung HK (2000) Bifurcation of synchronization as a nonequilibrium
phase transition. Physica A 281:311–317

Livina VN, Lenton TM (2007) A modified method for detecting
incipient bifurcations in a dynamical system. Geophys Res Lett
34

Noy-Meir I (1975) Stability of grazing systems an application of
predator prey graphs. J Ecol 63:459–482

May M (1977) Thresholds and breakpoints in ecosystems with a
multiplicity of stable states. Nature 269:471–477

Narisma GT, Foley JA, Licker R, Ramankutty N (2007) Abrupt
changes in rainfall during the twentieth century. Geophys Res
Lett 34

Oborny B, Meszena G, Szabo G (2005) Dynamics of populations on
the verge of extinction. Oikos 109:291–296

Okubo A (1980) Diffusion and ecological problems: mathematical
models. Springer, Berlin

Ovaskainen O, Sato K, Bascompte J, Hanski I (2002) Metapopulation
models for extinction threshold in spatially correlated landscapes.
J Theor Biol 215:95–108

Pascual M, Guichard F (2005) Criticality and disturbance in spatial
ecological systems. Trends Ecol Evol 20:88–95

Peterson GD (2002) Contagious disturbance, ecological memory, and
the emergence of landscape pattern. Ecosystems 5:329–338

Petraitis PS, Dudgeon SR (1999) Experimental evidence for the origin
of alternative communities on rocky intertidal shores. Oikos
84:239–245

Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-
organized patchiness and catastrophic shifts in ecosystems.
Science 305:1926–1929

Scheffer M (1998) Ecology of shallow lakes, 1st edn. Chapman and
Hall, London

Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in
ecosystems: linking theory to observation. Trends Ecol Evol
18:648–656

Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001)
Catastrophic shifts in ecosystems. Nature 413:591–596

Scheffer M, Westley F, Brock W (2003) Slow response of societies to
new problems: causes and costs. Ecosystems 6:493–502

Theor Ecol (2010) 3:163–174 173



Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR,
Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009)
Early-warning signals for critical transitions. Nature 461:53–59

Schmitz OJ, Kalies EL, Booth MG (2006) Alternative dynamic regimes
and trophic control of plant succession. Ecosystems 9:659–672

Solé RV, Manrubia SC, Luque B, Delgado J, Bascompte J (1996)
Phase transitions and complex systems. Complexity 1:13–26

Stanley E (1971) Introduction to phase transitions and critical
phenomena. Clarendon, Oxford

Strogatz SH (1994) Nonlinear dynamics and chaos with applications to
physics, biology, chemistry and engineering. Perseus, New York

Tsonis AA, Swanson K, Kravtsov S (2007) A new dynamical
mechanism for major climate shifts. Geophys Res Lett 34

van Nes EH, Scheffer M (2005) Implications of spatial heterogeneity
for regime shifts in ecosystems. Ecology 86:1797–1807

van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a
generic indicator of a nearby catastrophic shift. AmNat 169:738–747

von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of
vegetation patterns and desertification. Phys Rev Lett 8719 Art
No 198101

Wissel C (1984) A universal law of the characteristic return time near
thresholds. Oecologia 65:101–107

174 Theor Ecol (2010) 3:163–174


	Spatial correlation as leading indicator of catastrophic shifts
	Abstract
	Introduction
	Spatial consequences of critical slowing down

	Methods
	Models description
	Models analysis

	Results
	A simplified spatial scenario
	Correlation in space and time

	Discussion
	References


