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Abstract—Starting from a continuous plane-wave representation of
the electric and magnetic fields, spatial auto- and cross-correlation
functions for field components and their modulus are derived in the
three-dimensional Rayleigh channel case. It is shown that existing
results, generally relying on two-dimensional or isotropic models, can
significantly differ from those obtained thanks to a three-dimensional
approach.
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1. INTRODUCTION

Spatial correlation for fields plays an important role in wireless
communication systems and it has been extensively studied in the
framework of outdoor mobile networks. In the early works [1, 2], the
correlation functions for fields were investigated either as a function
of time while the mobile unit moves, or as a function of base station
position. The waves impinging the receiver were in both cases assumed
to have equal energy (Rayleigh channel) and to propagate in the
receiver plane (two-dimensional hypothesis), leading to the well-known
Bessel correlation function J0(kd) at the mobile unit (k is the signal
wave number and d the spatial lag) [1–3].

In recent years, further attention has been paid to spatial
correlation due to the multi-element antenna systems development
and performance analysis of various communication systems has been
carried out relying on the same two-dimensional assumption [4–7].
This hypothesis seems however too restrictive in situations where the
receiver is uniformly surrounded by scatterers, as in closed systems,
and, till now, only few attention has been given to three-dimensional
Rayleigh channel correlations. Closed systems are mostly encountered
in electromagnetic compatibility where the interactions of waves with
electronic devices are studied in enclosures or reverberating chambers
[8], but it seems obvious that in certain circumstances the usual two-
dimensional assumption could also be misleading in communication
system analysis, namely in indoor environment.

In the three-dimensional case, the existing studies generally do not
take into account the wave polarization, leading to a general isotropic
sin kd/kd spatial correlation [8–10]. As will be shown later, the
spatial correlation functions for field components are not isotropic, so
that using approximate correlation functions could have an important
impact, for instance on multi-element linear antenna system design.
To the author’s knowledge, the only work dealing with polarization
has been carried out by Hill in the reverberating chamber framework
[9, 11, 12] but it does not give a complete overview of the problem and
its formalism is restricted to reverberating chamber analysis. The aim
of our study is to collect all existing results in a unified formalism, and
to provide new correlation functions to fill in the gaps in the existing
literature. In the first part of this paper, Hill’s reverberating chamber
formalism will be adapted to the most general Rayleigh channel study.
Next, step by step, all the correlation functions for the field components
will be derived to obtain a full picture of the problem. In the next
sections, a time dependence ejωt is assumed and suppressed.
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2. INTEGRAL REPRESENTATION OF THE RAYLEIGH
CHANNEL

Let D be a source-free region where the mean electric and magnetic
fields level can be supposed constant. In an indoor or outdoor com-
munication channel, or in an enclosure or reverberating chamber, the
fields are made up of many waves arriving from the various scatterers
surrounding D, so that it is reasonable on physical grounds to write at
any point the fields as a discrete sum of propagating plane waves [1].
Such a sum representation does not lend itself well to simple closed-
form expressions for correlation functions and for sake of simplicity, it
is more advisable to pass to the continuous limit, defining an integral
representation for the electric field in D as:


E =
∫

Ω


F (Ω)e−j�k·�rdΩ (1)

where the integration is performed over all real angles Ω = (θ, φ) and
where 
F (Ω) is the complex plane wave spectrum of 
E. If k̂ is the
unit vector pointing in the 
k direction and noting η the free-space
impedance, a similar expression for the magnetic field can be inferred
from Maxwell equations:


H =
1
η

∫
Ω
k̂ × 
F (Ω)e−j�k·�rdΩ (2)

It is important to note that in (1) and (2), waves coming from all angles
around D are considered.

All the spatial characteristics of 
E and 
H can be deduced from
the plane wave spectrum 
F (Ω) and from the spatial dependence e−j�k·�r.
Equation (1) corresponds to one realization of 
E, and to deduce general
statistical characteristics, a set of realizations is to be considered. In
the remaining of this text, the ensemble average over these realizations
will be denoted 〈 〉. To each realization corresponds a given plane wave
spectrum, and, under these assumptions, 
F (Ω) is a random function
whose statistical properties have to be defined.

In a spherical coordinate system, 
F (Ω) can be written as


F (Ω) = Fθ(Ω)
1θ + Fφ(Ω)
1φ (3)

where both Fθ and Fφ are complex

Fθ = Fθr + jFθi
Fφ = Fφr + jFφi

(4)
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Following [1] and [11], the plane wave spectrum properties can be
deduced from the Rayleigh channel assumption. First, since the electric
field is made up of many waves having random phases, in a Rayleigh
channel, 〈 
E〉 = 0, which implies

〈Fθ〉 = 〈Fφ〉 = 0 (5)

Next, each wave results from multiple independent bounces on the
surrounding obstacles so that two waves arriving from different
directions are supposed to be uncorrelated:

〈Fθr(Ω1)Fθr(Ω2)〉 = 〈Fθi(Ω1)Fθi(Ω2)〉
= 〈Fφr(Ω1)Fφr(Ω2)〉
= 〈Fφi(Ω1)Fφi(Ω2)〉 = Cδ(Ω1 − Ω2)

(6)

Since in a Rayleigh channel all the waves are supposed to have equal
energy, C is independent of Ω, and with (1) it can be linked to the
electric field mean power 〈| 
E|2〉 = E2

0 :

C =
E2

0

16π
(7)

Finally, the real and imaginary parts of the plane wave spectrum and
its θ and φ components are supposed to be uncorrelated:

〈Fθr(Ω1)Fθi(Ω2)〉 = 〈Fφr(Ω1)Fφi(Ω2)〉
= 〈Fφr(Ω1)Fθr(Ω2)〉
= 〈Fφi(Ω1)Fθi(Ω2)〉
= 〈Fφr(Ω1)Fθi(Ω2)〉
= 〈Fφi(Ω1)Fθr(Ω2)〉 = 0

(8)

Equations (5)–(8) are the usual basic properties of Rayleigh channels
written in terms of 
F (Ω). From these equations, two other useful
expressions can be deduced:

〈Fθ(Ω1)F ∗φ(Ω2)〉 = 0 (9)

and

〈Fθ(Ω1)F ∗θ (Ω2)〉 = 〈Fφ(Ω1)F ∗φ(Ω2)〉 = 2Cδ(Ω1 − Ω2) (10)

where ∗ denotes complex conjugates.
The statistical properties of the fields can be inferred from (5)–

(10). We will here focus on the spatial correlation function which is
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defined for two complex random variables u and v by [13]

ρ(
r1, 
r2) =

〈(
u(
r1)− 〈u(
r1)〉

)(
v∗(
r2)− 〈v∗(
r2)〉

)〉
√〈
|u− 〈u〉|2

〉〈
|v − 〈v〉|2

〉 (11)

We will see later that the spatial correlation function will only depend
on the distance d = |
r1 − 
r2| (eventually taken along one particular
axis) and it will be noted ρ(d).

3. THE SPATIAL CORRELATION FUNCTIONS

3.1. Spatial Correlation for Fields

In a first step, let us consider the spatial auto-correlation function for
the electric field (〈 
E〉 = 0):

ρ(
r1, 
r2) =
〈 
E(
r1) · 
E∗(
r2)〉

〈| 
E|2〉
(12)

Using (1):

ρ(
r1, 
r2) =
1
E2

0

∫
Ω1

∫
Ω2

〈
F (Ω1) · 
F ∗(Ω2)〉e−j(
�k1·�r1−�k2·�r2)dΩ1dΩ2 (13)

With the help of (10) it can be shown that

〈
F (Ω1) · 
F ∗(Ω2)〉 = 4Cδ(Ω1 − Ω2) (14)

and (13) becomes

ρ(
r1, 
r2) =
1
4π

∫
Ω
e−j

�k·(�r1−�r2)dΩ (15)

Without lost of generality it can be supposed that 
r1 − 
r2 = d
1z and

ρ(
r1, 
r2) =
1
4π

∫
Ω
ejkd cos θdΩ (16)

so that the classical result is derived:

ρ(d) =
sin kd
kd

(17)

The same kind of procedure can be used to derive the spatial corre-
lation for the magnetic field starting from (2). The same correlation
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function is obtained and (17) will be considered in the remaining of the
text as the reference function with which the other spatial correlation
functions will be compared. The correlation length lc is defined as
the distance d corresponding to the first zero of the spatial correlation
function. For the fields, we see that this correlation length lc = 0.5λ.

3.2. Spatial Correlation for Spherical Components

From (1), the θ component of 
E is given by

Eθ =
∫

Ω
Fθ(Ω)e−j�k·�rdΩ (18)

Its square modulus mean value is:

〈Eθ(
r)E∗θ (
r)〉 =
∫

Ω1

∫
Ω2

〈Fθ1(Ω1)F ∗θ2(Ω2)〉e−j(
�k1−�k2)·�rdΩ1dΩ2 (19)

so that, using the same procedure for Eφ and with (10)

〈|Eθ|2〉 = 〈|Eφ|2〉 =
E2

0

2
(20)

Let us now derive the spatial correlation function for Eθ

ρ(
r1, 
r2) =
1

E2
0/2

∫
Ω1

∫
Ω2

〈Fθ1(Ω1)F ∗θ2(Ω2)〉e−j(
�k1·�r1−�k2·�r2)dΩ1dΩ2 (21)

using (10):

ρ(
r1, 
r2) =
1
4π

∫
Ω
e−j

�k·(�r1−�r2)dΩ (22)

By symmetry consideration, it can be supposed without lost of
generality that 
r1 − 
r2 = d
1z

ρ(d) =
1
4π

∫
Ω
ejkd cos θdΩ (23)

and finally, for the θ and φ components of the electric field, the spatial
correlation function is the same as for the fields:

ρ(d) =
sin kd
kd

(24)

The same expression can be obtained for the magnetic field, and the
classical expression (17) is valid for both the fields and their spherical
components.



Spatial correlation functions for fields 61

3.3. Spatial Correlation for Cartesian Components

In a first step, let us derive the spatial correlation function for the
real and imaginary parts of one cartesian component of 
E. By (1), all
three components are equivalent, and without lost of generality, the
spatial correlation function for the real and imaginary parts of Ez will
be derived. For instance, according to (1), the real part is given by

Ezr(
r) = −
∫

Ω
Fθr sin θ cos
k · 
r + Fθi sin θ sin
k · 
r dΩ (25)

so that using (6)–(8) and by symmetry:

〈E2
zr〉 = 〈E2

zi〉 =
E2

0

16π

∫
Ω

sin2 θdΩ =
E2

0

6
(26)

The spatial correlation function is now given by

ρ(
r1, 
r2) =
1

E2
0/6
〈Ezr(
r1)Ezr(
r2)〉

=
∫

Ω1

∫
Ω2

〈Fθ1rFθ2r〉 sin θ1 sin θ2 cos
k1 · 
r1 cos
k2 · 
r2dΩ1dΩ2

+
∫

Ω1

∫
Ω2

〈Fθ1iFθ2i〉 sin θ1 sin θ2 sin
k1 · 
r1 sin
k2 · 
r2dΩ1dΩ2

(27)

According to (6):

ρ(
r1, 
r2) =
3
8π

∫
Ω

sin2 θ cos
k · 
r1 cos
k · 
r2dΩ

+
3
8π

∫
Ω

sin2 θ sin
k · 
r1 sin
k · 
r2dΩ

=
3
8π

∫
Ω

sin2 θ cos
(

k · (
r1 − 
r2)

)
dΩ

(28)

The choice of one particular cartesian component Ez breaks down the
global spherical symmetry, and it is no more possible to derive a unique
isotropic correlation function. It is necessary to distinguish correlation
along the particular z-axis with correlation in the xy-plane.

3.3.1. Correlation in the xy-plane

In this case, the correlation must be isotropic in this plane, and without
lost of generality it can be supposed that 
r1 − 
r2 = d
1y for instance.
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(28) then becomes:

ρ(d) =
3
8π

∫
Ω

sin2 θ cos(kd sin θ sinφ)dΩ

=
3
8π

∫ π

0

∫ 2π

0
sin3 θ cos(kd sin θ sinφ)dθdφ

(29)

This integral computation is quite lengthy and it will not reported here
for conciseness. Basically sin3 θ can be developed in terms of sin θ and
sin 3θ and the following identities have to be used [14]:

∫ 2π

0
cos(z sinφ)dφ = 2πJ0(z)

∫ π

0
J0(z sin θ) sin θdθ =

√
2π
z
J1/2(z)∫ π

0
J0(2z sin θ) sin 3θdθ = −πJ3/2(z)J−3/2(z)

(30)

where Jν is the Bessel function of order ν.
Finally, it is possible to show that the spatial correlation function

for the real or imaginary part of Ez in the xy-plane is given by

ρ(d) =
3
2

sin kd
kd

(
1− 1

(kd)2

)
+

3
2

cos kd
(kd)2

(31)

As shown on Figure 1, this correlation function closely follows the
reference function (17) but the correlation length is now lc = 0.43λ.

3.3.2. Correlation along the z-axis

Along the z-axis, 
r1 − 
r2 = d
1z and (28) becomes

ρ(d) =
3
8π

∫
Ω

sin2 θ cos(kd cos θ)dΩ

=
3
8π

∫ π

0

∫ 2π

0
sin3 θ cos(kd cos θ)dθdφ

(32)

The computation of ρ(d) is again quite tedious and after a few
manipulations, the spatial correlation function for the real or imaginary
part of Ez along the z-axis is given by

ρ(d) =
3

(kd)2

(
sin kd
kd

− cos kd
)

(33)
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Figure 1. Correlation functions for Ezr, Ezi and Ez compared to the
reference solution (17).

This function is also drawn on Figure 1. It has of course the same
oscillating behaviour as the reference function but the correlation
length is lc = 0.71λ, 65% higher than in the xy-plane! Moreover it
decays much more rapidly to zero than the classical sin kd/kd solution.

3.3.3. Correlation for Ez

It is now possible to derive the correlation function for the complex
component Ez. According to (1):

Ez(
r) = −
∫

Ω
(Fθr + jFθi)e−j

�k·�r sin θdΩ (34)

Using (6)–(8) and by symmetry consideration

〈Ez〉 = 〈Ey〉 = 〈Ex〉 = 0

〈|Ez|2〉 = 〈|Ey|2〉 = 〈|Ex|2〉 =
E2

0

3

(35)

so that after a few manipulations without any particular difficulty, the
correlation function for Ez has the expression

ρ(
r1, 
r2) =
1

E2
0/3
〈Ez(
r1)E∗z (
r2)〉

=
3
8π

∫
Ω
sin2θ cos

(

k ·(
r1−
r2)

)
dΩ+j

3
8π

∫
Ω
sin2θsin

(

k ·

(

r1−
r2

))
dΩ

(36)
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The second integral is null both for correlation in the xy-plane and
along the z-axis. The correlation function for Ez has the same
expression (28) as for the real or imaginary parts, so that (31) and
(33) drawn on Figure 1 are also valid for the complex components.

3.3.4. Correlation for |Ez|
In a Rayleigh channel, both the real and imaginary parts of each field
component satisfy a Gaussian distribution with zero mean and equal
variances. Moreover, since |Ez| satisfy a Rayleigh distribution, (35)
implies that

〈|Ez|〉 = 〈|Ey|〉 = 〈|Ex|〉 =
√

π

12
E0 (37)

In this case, the correlation function for the modulus of a component
is given by [8, 13]:

ρm(d) =
2/π

(
ρ(d) arcsin(ρ(d)) +

√
1− ρ2(d)

)
− π/4

1− π/4 (38)

where ρm is the correlation function for the modulus and ρ the
correlation function for the component (31) or (33). This correlation
function computed using (31) and (33) is drawn on Figure 2. It presents
two major properties: first it does not oscillate around zero (as is
observed in the 2D case [1]) and next, it decays very rapidly near the
origin. The correlation lengths are lc = 0.21λ in the xy-plane and
lc = 0.31λ along the z-axis.

3.3.5. Correlation for |Ez|2

The correlation function for the square modulus of a component is
given by [8]:

ρsm(d) = ρ2(d) (39)

where ρsm is the correlation function for the square modulus and
ρ the correlation function for the component (31) or (33). This
correlation function computed using (31) and (33) is drawn on Figure 3.
Its oscillations are very low compared to the previous correlation
functions. The correlation lengths are lc = 0.43λ in the xy-plane and
lc = 0.71λ along the z-axis as for the complex components. Along the
z-axis, ρsm rapidly decays near zero and beyond 0.6λ, |Ez|2 values are
mostly uncorrelated.
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Figure 2. Correlation functions for |Ez|.

Figure 3. Correlation functions for |Ez|2.
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3.3.6. Correlation for the Magnetic Field

According to (2), since the unit vector k̂ points in the radial direction,
the magnetic field can be expressed as


H =
1
η

∫
Ω
(Fφ
1θ − Fθ
1φ)e−j

�k·�rdΩ (40)

It is essentially the same expression as for the electric field, except a
scaling factor which disappears in the correlation function normaliza-
tion and a swap of Fθ and Fφ. Since perfect symmetry is assumed in
the θ and φ components of 
E in a Rayleigh channel, this permutation
does not have any impact on the spatial characteristics of 
H and the
correlation functions derived for 
E can be used without any change for

H. This differs from the 2D approach where the symmetry between

E and 
H is artificially broken by choosing a particular invariance
axis with respect to which the fields are to be chosen transverse or
longitudinal [1].

3.4. Cross-Correlations

To derive the cross-correlation functions for the field components, it
is easier to start with the expression for the cross-correlation between
two field components along the ŝ1 and ŝ2 directions separated by an
angle γ [11]:

ρ(ŝ1, ŝ2) =
〈Es1(
r)E∗s2(
r)〉√
〈|Es1 |2〉〈|Es2 |2〉

= cos γ (41)

It can be deduced that the correlation between any pair of orthogonal
cartesian components of the same field ( 
E or 
H) is always null. In a
similar way, using (1), (2) and the uncorrelation between Fθ and Fφ
(9), the correlation between pairs of spherical orthogonal components
of 
E and 
H also vanishes:

〈EθH∗φ〉 = 〈EφH∗θ 〉 = 〈EθE∗φ〉 = 〈HθH
∗
φ〉 = 0 (42)

Let us now examine the cross-correlation between the cartesian
components of 
E and 
H. Considering or instance the z components of

E and 
H:

Ez = −
∫

Ω
Fθ sin θe−j�k·�rdΩ

Hz = −1
η

∫
Ω
Fφ sin θe−j�k·�rdΩ

(43)
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Figure 4. Cross-correlation between Ez and Hx along the y-axis.

Using (9) and by symmetry consideration:

〈EzH∗z 〉 = 〈EyH∗y 〉 = 〈ExH∗x〉 = 0 (44)

so that the spatial correlation between similar components of 
E and 
H
is always null, in any direction. To derive the correlation function for
dissimilar components, let us for instance consider the x component of

H. With the help of (9):

〈EzH∗x〉 = −1
η

∫
Ω1

∫
Ω2

〈Fθ1F ∗θ2〉 sin θ1 sinφ2e
−j(�k1·�r1−�k2·�r2)dΩ1dΩ2

(45)

so that the correlation function is given by

ρ(
r1, 
r2) = − 3
8π

∫
Ω

sinφ sin2 θe−j
�k·(�r1−�r2)dΩ (46)

If the spatial separation 
r1−
r2 lies on the x- or z-axis the integral over
φ vanishes, but for 
r1 − 
r2 = d
1y, it gives a first order Bessel function,
so that after a few manipulations, in this case:

ρ(d) =
3j
2

(
cos kd
kd

− sin kd
(kd)2

)
(47)

The imaginary part of this correlation function is drawn on Figure 4.
As found in the 2D case [1], ρ(d) is null at the origin and then oscillates
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around zero. The second zero correlation appears for a lag d = 0.71λ.
It is important to note that in contrary to the 2D case, the correlation
only exists along the axis orthogonal to both components. Otherwise,
two orthogonal cartesian components of 
E and 
H are uncorrelated.

4. CONCLUSION

In order to fill-in the gaps in the existing literature, the spatial
correlation functions for fields have been studied in the 3D Rayleigh
channel case. To obtain easy-to-handle closed forms expressions for
these functions, a continuous plane-wave spectrum representation of
the fields has been chosen. The auto- and cross-correlation functions
for the field components, their modulus and square modulus have been
derived from this representation. It has been shown that the global
fields or their spherical components satisfy the classical sin kd/kd
correlation function while the spatial correlation functions for the
cartesian components are anisotropic. In this last case, it has been
shown that the existing 2D or isotropic spatial correlation functions
involve important differences compared to the full 3D auto- or cross-
correlation functions, so that they must be used with care in practical
implementations.
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