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Abstract

We de!ne a generic correlation function that quanti!es the spatial correlation of single-particle
displacements in liquids and amorphous systems. We evaluate this function using computer
simulations of an equilibrium glass-forming liquid, and show that the displacements of particles
are spatially correlated over a range that grows with decreasing temperature as the glass transition
is approached. c© 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Systems containing both disorder and frustration, including simple and polymeric
glass-forming liquids [1,2], foams [3], colloids [4,5], and granular materials [6], are
known to exhibit complex relaxation behavior. The underlying particle dynamics
responsible for this behavior is assumed to be nontrivial, and qualitatively di"erent
from the particle dynamics at high temperatures or low densities where correlation func-
tions often relax exponentially. In all of these systems, the nature of individual particle
motions, the connection between these motions and the observed complex relaxation,
and the relationship between individual particle motion and local structure, are not well
understood.
In the particular case of supercooled, glass-forming liquids, an open question con-

cerns whether correlated particle motion arises, and if these correlated motions are
responsible both for the stretched exponential decay of the density–density autocorre-
lation function, and for the increasing time scales associated with the approach to
the glass transition. For example, it has been proposed that particles are at short
times trapped in cages formed by their neighbors, which break up slowly and co-
operatively to allow di"usion of the particles at long times. In the mode-coupling
theory of G#otze and Sjogren [7], this complicated dynamics is believed to be tied
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to very slow, strongly coupled, density $uctuations, which conspire to produce a
dynamical singularity where structural relaxation is arrested and relaxation times di-
verge. While experiments on supercooled liquids can readily test many of the pred-
ications of mode-coupling theory [8], they have been unable to directly investigate
phenomena associated with the motion of individual particles on long time
scales.
In this regard, simulation provides a unique window into the detailed particle mo-

tion which underlies the ubiquitous slow relaxation of glass-forming liquids. Indeed,
computer simulations have clearly demonstrated that the individual particle motions in
glass-forming systems are highly complex [9–12], and recent work showed that at least
one typical glass-former, a binary Lennard–Jones mixture, is “dynamically heteroge-
neous” in the sense that highly “mobile” particles, and highly “immobile” particles,
are spatially correlated [13,14]. Mobile particles in particular were shown to move
cooperatively, following one another along string-like paths [15,16]. An increasingly
large body of experimental evidence supports the existence of some form of “dynamical
heterogeneity” in supercooled liquids [17–20].
The observation of “dynamical heterogeneity” in simulated liquids has to date been

carried out through the selection of a speci!c subset of the particles in the liquid,
based on local dynamical properties. Such an approach raises the concern that the re-
sults will depend on the choice of arbitrary thresholds in the selection criteria. We
show here that it is possible to address the question of the existence of spatially
correlated dynamics in glass-forming liquids in a manner that does not require the
selection of subsets of particles. Speci!cally, we construct a spatial correlation func-
tion for individual particle displacements in which the behavior of all of the parti-
cles of a liquid is incorporated. We evaluate this function using simulation data for
a glass-forming Lennard–Jones liquid, and !nd that the growth of the “dynamically
correlated” regions reported in previous work can also be identi!ed in the present
approach. A more complete description of the approach described here is given in
Ref. [21].

2. Displacement–displacement correlation function

Consider a liquid consisting of N identical particles, each with no internal degrees
of freedom, contained in a volume V . Let the position of each particle i as a function
of time t be denoted ri(t). For an isotropic liquid in equilibrium, the structure can be
quanti!ed in terms of g(r), the radial distribution function [22], de!ned as

g(r)=
1

!N

〈

N
∑

i=1

N
∑

j=1
j !=i

"(r+ ri(0)− rj(0))
〉

: (1)

Here, r= |r| and !=N=V is the density; 〈· · ·〉 indicates an average over the choice of
the time t=0, which is equivalent to an ensemble average for a system in equilibrium.



P.H. Poole et al. / Physica A 261 (1998) 51–59 53

The factor of 1=! is included so that limr→∞ g(r)= 1. The function g(r) quanti!es the
probability to !nd a particle within dr of a distance r from a given particle. As such,
g(r) can be described as a “position–position” correlation function.
A simple way to characterize the dynamics of a particle i in a liquid is to consider

its displacement ui over some interval of time #t, starting from a time t:

ui(t;#t)= |ri(t + #t)− ri(t)| : (2)

The general question of whether there exist dynamically correlated regions in a
glass-forming liquid can be addressed using these individual particle displacements.
Speci!cally, we test if the values of u for two distinct particles are, on average, corre-
lated if the two particles are initially close in space. To quantify this, we modify the
de!nition of g(r) so that the contribution of each particle to the correlation function
is weighted by its subsequent displacement over a time interval #t. That is, we de!ne
a “displacement–displacement” correlation function,

guu(r;#t)=
1

〈u(#t)〉2 !N

〈

N
∑

i=1

N
∑

j=1
j !=i

ui(0;#t)uj(0;#t)"(r+ ri(0)− rj(0))
〉

: (3)

The quantity 〈u(#t)〉 =
〈

1
N

∑N
i=1 ui(0;#t)

〉

is the average displacement of particles

over the time interval #t. The factor of 1=〈u(#t)〉2 is included so that like g(r),
limr→∞ guu(r;#t)= 1. Note that the de!nition used here for guu(r;#t) di"ers from
that used in Ref. [21].
For a !xed choice of #t, note that if ui(t;#t) were always the same for every

particle, then guu(r;#t) and g(r) would be identical for all r. Hence, it is deviations
of guu(r;#t) from g(r) that will inform us of displacement correlations among the
particles. However, the question immediately arises as to how to select the particular
value of #t. We shall see in the next section that the behavior of the liquid itself
suggests a unique and physically motivated choice for #t.

3. Computer simulation results

We demonstrate the usefulness of the displacement–displacement correlation function
by presenting preliminary results for guu(r;#t) evaluated using data obtained [13,15]
from a molecular dynamics simulation of a model Lennard–Jones glass-former. The
system is a three-dimensional binary mixture (80 : 20) of 8000 particles interacting via
Lennard–Jones interaction parameters [23] chosen to prevent demixing or crystallization
[24]. Throughout this section, all values, including those for temperature T and pressure
P, are quoted in reduced units [23]. We analyze data from nine (!; P; T ) state points
that lie on a line in the P; T plane, approaching the mode-coupling dynamical critical
temperature Tc≈ 0:435 at a pressure P≈ 3:03 [24]. The highest and lowest tempera-
ture state points simulated are (!=1:09, P=0:50, T =0:550) and (!=1:19, P=2:68,
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Fig. 1. For T =0:451, dotted line: guu(r;#t) for #t=340:062; solid line: g(r). Inset: The excess correlation
given by $(r;#t) as de!ned in the text.

T =0:451), respectively. At each state point, the system is equilibrated for a time
longer than the typical (primary) relaxation time of the system before accumulating
data on the particle displacements. Following equilibration, the simulations are carried
out in the microcanonical (NVE) ensemble and the particle trajectories are stored for
up to 1:2×104 reduced time units (25:4 ns in argon units) for the coldest T . Complete
simulation details may be found in [14]. Because the sample consists of 80% A parti-
cles, in this paper we only consider correlations between these particles. All quantities
calculated in this section were therefore averaged only over the 6400A particles.
For all temperatures simulated, a plateau exists in both the mean square displacement

and the self part of the intermediate scattering function Fs(q; t) as a function of t. The
plateau separates an early time ballistic regime from a late time di"usive regime, and is
thought to indicate “caging” of the particles typical of low T , high density liquids. Over
the range of T studied, the primary (%) relaxation time &% that describes the decay of
Fs(q; t) increases by between 2 and 3 orders of magnitude. The simulated liquid states
used here to evaluate guu(r;#t) therefore exhibit the complex bulk relaxation behavior
characteristic of a supercooled liquid approaching its glass transition.
Fig. 1 shows both guu(r;#t) and g(r) for a cold temperature T =0:451, with #t=

340:062. For comparison, the typical “collision” time at this T is &coll≈ 0:09 [25].
To quantify the di"erence between guu(r;#t) and g(r), the inset shows the “excess”
displacement correlation $(r;#t) de!ned as

$(r;#t)=
guu(r;#t)
g(r)

− 1 : (4)
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Fig. 2. $(r;#t) for T =0:451 for #t=0:441 (solid curve), 19.944 (dotted curve), 155.511 (short-dashed
curve), and 340.062 (long-dashed curve). Inset: Characteristic range ' vs. #t.

With this de!nition limr→∞ $(r;#t)= 0. If $(r;#t)= 0 for all r, then the displace-
ments are totally uncorrelated. We see from the !gure that the particle displacements
are spatially correlated on the time scale #t. Note that $(r;#t) is still appreciably
di"erent from zero out to a distance of approximately r=5. This rather substantial
length scale should be compared with the simulation box size divided by 2, which
for T =0:451 is approximately 9.4. We note that the system sizes used in this study
are large relative to other simulations investigating dynamics in glass-forming liquids
[9,11,24,26]. If we assume a typical molecular diameter of 0.4–0.5 nm (like in the
case of orthoterphenyl or salol), we can expect to !nd non-zero spatial correlations in
the particle displacements on length scales up to 2.5 nm at T =0:451, which is of the
same order of magnitude as experimental estimates of the length scale associated with
spatially heterogeneous dynamics closer to Tg [27–29].
The importance of calculating correlations in non-instantaneously de!ned dynamical

quantities like ui(t;#t) is demonstrated in Fig. 2, which shows $(r;#t) for several
choices of #t at T =0:451. The dependence on #t of a characteristic range ' de!ned by

'(#t)=

∞
∫

0

dr $(r;#t) (5)

is shown in the inset. The !gure demonstrates four important points: (i) As #t→ 0,
the characteristic range '→ 0. Recall that in the limit #t→ 0, |ri(t + #t) − ri(t)|=#t
is equal to the magnitude of the instantaneous velocity. Thus ' cannot be observed
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Fig. 3. $(r;#t) vs. r for T =0:55 (solid curve), 0.505 (dotted curve), 0.480 (dashed curve), 0.468
(long-dashed curve) and 0.451 (dot-dashed curve). Inset: Characteristic length '(#t∗) vs. T .

by looking at a “snapshot” of the system, that is, by measuring correlations in the
velocity. (ii) Initially, as #t increases, ' increases. Thus the correlation of particle
displacements develops over time. (iii) There is a time #t∗ where ' is maximum.
We !nd that #t∗ increases with decreasing T , and for all T is in the late-(=early-%
relaxation regime. It appears that the T -dependence of #t∗ is the same as that of &%.
This suggests that the strongest correlation in the particle displacements may be closely
related to the long-time structural relaxation of the system governed by the breaking
up of the cages mentioned in the Introduction. Hence in the following we set #t=#t∗

for each T studied, in order to ensure that we examine the system at that value of
#t for which the displacement correlations are the most prominent, as de!ned by the
largest value of '. (iv) As #t→∞, ' decreases. At higher T where the simulations
could be run well into the di"usive regime and where the particles act like Brownian
particles, '→ 0 at long times. This is consistent with the expectation that Brownian
particles are statistically independent, and thus should not exhibit correlations in their
displacements.
Fig. 3 shows $(r;#t) at #t∗ for several di"erent temperatures. Here #t∗ is again

the time-window for which ' is a maximum, and thus #t∗ depends on T as described
above. The inset shows the T -dependence of the characteristic length '(#t∗). The data
shows that '(#t∗) increases with decreasing T . It is important to note that despite
careful experimental and computational investigations, no statically de!ned growing
characteristic length associated with the correlation function g(r) has been found for
this, or any other (see, e.g., [30,31]) glass-forming liquid [32].
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The data shown in Fig. 3 suggests a number of scenarios, all of which require further
simulations to elucidate. One possibility is that '∗ ≡ '(#t∗) continues to increase with
decreasing T , possibly diverging at some temperature (perhaps at the mode-coupling
critical temperature, or at the ideal glass transition). Another possibility is that '∗ grows
and then saturates at some T due to some inherent physical limitation in the size of
the clusters [33]. However, saturation of '∗ as a function of T might also result from
!nite-size e"ects. A !nite size scaling study [34] like that done in studies of ordinary
critical phenomena would help to distinguish between these contributions.
In this system, it was shown previously that the 5% most “mobile” particles in the

liquid at any time form clusters which grow with decreasing T [13,14], and which
rearrange cooperatively [15]. Particle mobility was de!ned in [13] in terms of the
distance traveled by the particle after some time interval. The particles which travel
farther than a certain distance r∗ after a characteristic time t∗ are de!ned as mobile,
where t∗ is calculated via the non-Gaussian parameter [35] and is on the order of the
late-( relaxation of the intermediate scattering function. It was subsequently shown
that the 5% least mobile particles also cluster [14]. Those results can be recovered
by calculating suitably modi!ed versions of guu(r;#t) that assign, e.g., u(r; 0;#t)= 1
to particles in the mobile subset, and u(r; 0;#t)= 0 to the rest of the system. One
important advantage of the approach outlined in the present paper and in Ref. [21]
is that it allows the direct calculation of spatial correlations in the local particle mo-
tions without having to de!ne arti!cial thresholds either in #t or in the particle dis-
placements.

4. Discussion

In this paper, we have de!ned a general correlation function that quanti!es the
spatial correlation of single-particle displacements in a liquid. Using this function, we
have shown in computer simulations of an equilibrium liquid that the displacements
of particles exhibit spatial correlations over a characteristic range ' and time scale #t
that both grow with decreasing T as the glass transition is approached.
Experiments and simulations that have looked for a growing correlation length asso-

ciated with the static density–density correlation function g(r) have found no evidence
for such a length [30,31]. Nevertheless, it has often been speculated that a growing
length might be associated with the increasingly slow dynamics observed near the glass
transition. Recently, experiments investigating the e"ect of con!nement on the glass
transition have extracted length scales over which molecular motion is cooperative
[28,29], and several recent simulations have found evidence for growing correlation
lengths as the glass transition is approached [12,13,15,36]. In this paper, we have
shown that it is possible to de!ne a dynamical correlation length that grows as Tg
(and the Tc of mode-coupling theory) is approached from above. Whether the corre-
lation length measured here will diverge at lower T cannot be determined from the
present data. However, such a divergence would raise the possibility that the glass
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transition could be understood in a way similar to that used to describe static critical
phenomenon.

Acknowledgements

We are grateful to J. Baschnagel for useful suggestions. PHP acknowledges the
support of NSERC (Canada).

References

[1] For a summary of phenomenology and theory and glasses and supercooled liquids, see e.g. the series
of articles in Science 297 (1995) 1945; M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100
(1996) 13 200.

[2] G.B. Mckenna, in: C. Booth, C. Price (Eds.), Comprehensive Polymer Science, vol. 2, Pergamon,
Oxford, 1989.

[3] A.D. Gopal, D.J. Durian, Phys. Rev. Lett. 75 (1995) 2610; D.J. Durian, MRS Bull. (April 1994)
20–23; J. Durian, D.A. Weitz, D.J. Pine, Science 25 (1991) 686.

[4] W. van Megen, Transport Theory Stat. Phys. 24 (1995) 1017–1051, and references therein.
[5] See, e.g., A.H. Marcus, S.A. Rice, APS March Meeting Abstracts, G30.09, Bull. Amer. Phys. Soc.

(1998); Z. Cheng, P.M. Chaikin, S. Phang, J. Zhu, W.B. Russel, ibid, G30-05; E. Hobbie, private
communication.

[6] H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68 (1996) 1259.
[7] W. G#otze, L. Sjogren, Chem. Phys. 212 (1996) 47; W. G#otze, L. Sjogreny, Transport Theory Stat.

Phys. 24 (1995).
[8] H.Z. Cummins, G. Li, W.M. Du, J. Hernandez, N.J. Tao, in: P. Nelson (Ed.), Relaxation Kinetics in

Supercooled Liquids – Mode Coupling Theory and Its Experimental Tests, Transport Theory Stat. Phys.
24 (1995) 981–1016.

[9] M. Hurley, P. Harrowell, Phys. Rev. E 52 (1995) 1694; A.I. Mel’cuk, R.A. Ramos, H. Gould, W. Klein,
R. Mountain, Phys. Rev. Lett. 75 (1995) 2522; T. Muranaka, Y. Hiwatari, Phys. Rev. E 51 (1995)
R2735; D. Thirumalai, R.D. Mountain, Phys. Rev. E 47 (1993) 479; J.L. Barrat, J.N. Roux, J.P. Hansen,
Chem. Phys. 149 (1990) 197; H. Miyagawa, Y. Hiwatari, B. Bernu, J.P. Hansen, J. Chem. Phys. 86
(1988) 3879; G. Wahnstr#om, Phys. Rev. A 44 (1991) 3752; Y. Hiwatari, J. Matsui, T. Muranaka,
T. Odagaki, Computational Physics as a New Frontier in Condensed Matter Research, 1995,
pp. 329–339.

[10] T.B. Schr#oder, J. Dyre, J. Non-Cryst. Solids, 235–237 (1998) 331.
[11] R. Yamamoto, A. Onuki, Europhys. Lett. 40 (1997) 61.
[12] R.D. Mountain, in: J.T. Fourkas et al. (Eds.), Supercooled Liquids: Advances and Novel Applications,

American Chemical Society, Washington DC, 1997, pp. 122–130.
[13] W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79 (1997) 2827.
[14] C. Donati, S.C. Glotzer, W. Kob, S.J. Plimpton, P.H. Poole, cond-mat/98 10060.
[15] C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80 (1998)

2338.
[16] “Dynamical heterogeneity” is readily observed in simulations of systems with quenched disorder, such

as the Ising spin glass. See, P.H. Poole, S.C. Glotzer, A. Coniglio, N. Jan, Phys. Rev. Lett. 78 (1997)
3394; S.C. Glotzer, N. Jan, T. Lookman, A.B. MacIsaac, P.H. Poole, Phys. Rev. E 57 (1998) 7350.

[17] K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 66 (1991) 3020; J. Leisen, K. Schmidt-Rohr,
H.W. Spiess, J. Non-Cryst. Solids 172–174 (1994) 737; A. Heuer, M. Wilhelm, H. Zimmermann,
H.W. Spiess, Phys. Rev. Lett. 95 (1995) 2851.

[18] M.T. Cicerone, M.D. Ediger, J. Chem. Phys. 103 (1995) 5684; F.R. Blackburn, M.T. Cicerone,
G. Hietpas, P.A. Wagner, M.D. Ediger, J. Non-Cryst. Solids 172–174 (1994) 256.

[19] H. Sillescu, J. Non-Cryst. Solids, in press; B. Schiener, R. B#ohmer, A. Loidl, R.V. Chamberlin, Science
274 (1996) 752; R. B#ohmer et al., J. Non-Cryst. Solids, 235–237 (1998) 1.



P.H. Poole et al. / Physica A 261 (1998) 51–59 59

[20] A. Heuer, Phys. Rev. E 56 (1997) 730; A. Heuer, K. Okun, J. Chem. Phys. 106 (1997) 6176; B. Doliwa,
A. Heuer, Phys. Rev. Lett. 80 (1998) 4915.

[21] S.C. Glotzer, C. Donati, P.H. Poole, in: D.P. Landau et al. (Eds.), Computer Simulation Studies in
Condensed-Matter Physics XI, Springer, Berlin, 1998, in press.

[22] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic Press, London, 1986.
[23] The Lennard–Jones interaction parameters )%; ( and *%; ( are given by: )AA =1:0, )AB =1:5, )BB =0:5,

*AA =1:0, *AB =0:8, *BB =0:88. Lengths are de!ned in units of *AA, temperature T in units of )AA=kB,
and time t in units of

√

*2AAm=)AA. Both types of particles are taken to have the same mass.
[24] W. Kob, H.C. Andersen, Phys. Rev. Lett. 73 (1994) 1376; W. Kob, H.C. Andersen, Phys. Rev. E 51

(1995) 4626; 52 (1995) 4134.
[25] Here we have estimated the “collision” time to be the time when the velocity autocorrelation function

!rst changes sign.
[26] F. Sciortino, L. Fabbian, S.H. Chen, P. Tartaglia, Phys. Rev. E 56 (1997) 5397.
[27] M.T. Cicerone, F.R. Blackburn, M.D. Ediger, J. Chem. Phys. 102 (1995) 471.
[28] M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79 (1997) 2077.
[29] B. Jerome, J. Commandeur, Nature 387 (1997) 589.
[30] A. van Blaaderen, P. Wiltzius, Science 270 (1995) 1177.
[31] S.-P. Chen, T. Egami, V. Vitek, Phys. Rev. B 37 (1988) 2440.
[32] See also E.W. Fischer, E. Donth, W. Ste"en, Phys. Rev. Lett. 68 (1992) 2344.
[33] G. Tarjus, S. Kivelson, D. Kivelson, in: J.T. Fourkas et al. (Eds.), Supercooled Liquids: Advances and

Novel Applications, American Chemical Society, Washington DC, 1997, p. 67.
[34] See, e.g., V. Privman (Ed.), Finite Size Scaling and Numerical Simulation of Statistical Systems, World

Scienti!c, Singapore, 1990.
[35] See, e.g., A. Rahman, Phys. Rev. 136 (1964) A405.
[36] P. Ray, K. Binder, Europhys. Lett. 27 (1994) 53.


