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SPATIAL COVARIANCE IN PLANT COMMUNITIES: INTEGRATING 
ORDINATION, GEOSTATISTICS, AND VARIANCE TESTING 

HELENE H. WAGNER' 

Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA, and 
WSL, Swiss Federal Institute for Forest, Snow, and Landscape Research, 8903 Birmensdorf, Switzerland 

Abstract. Spatial structure in plant communities occurs in the forms of (1) single- 
species aggregation and dispersion patterns, (2) distance-dependent interactions between 
species, and (3) the response to the spatial structure of environmental conditions. Different 
methods deal with these components of spatial variation: geostatistical analysis reveals 
autocorrelation in a spatial sample; the variance of species richness has been used as an 
indicator for interspecific interactions due to niche limitation; and ordination techniques 
describe multispecies responses to environmental factors. Based on the mathematical prop- 
erties of presence-absence data, it is shown how variogram modeling, the testing of in- 
terspecific associations, and multiscale ordination can be integrated using the same set of 
distance-dependent variance-covariance matrices (variogram matrix). The variogram matrix 
partitions the variance of community data into spatial components at the levels of the 
individual species, species composition, and species richness. It can be used to factor out 
the effects of single-species aggregation patterns, interspecific interactions, or environ- 
mental heterogeneity. The mathematical integration of traditionally unrelated methods in- 
creases the interpretability of variograms of plant communities, provides a spatial extension 
and an empirical null model for the variance test of species richness, and extends multiscale 
ordination to nonsystematic spatial samples. Beyond the individual applications, the var- 
iogram matrix provides a framework for a mathematical unification of geostatistics, mul- 
tivariate data analysis, and the analysis of variance that may enable ecologists from a broad 
range of fields to incorporate spatial effects into their research and to integrate analyses 
across different levels of biological organization. 

Key words: interspecific associations; multiscale ordination; multivariate geostatistics; nonsta- 
tionarity; spatial variance; species richness; variance test; variogram matrix. 

INTRODUCTION 

Differences in species composition between sam- 
pling units, such as quadrats, are a primary focus of 
quantitative vegetation analysis. Ordination is the main 
method used for analyzing variation in plant commu- 
nities. Indirect ordination detects intrinsic gradients in 
species composition, while direct gradient analysis 
identifies compositional gradients in vegetation as a 
response to measured environmental factors (De'ath 
1999). Plant communities and environmental factors 
often are spatially structured. Direct and indirect or- 
dination, however, are both essentially nonspatial 
methods. 

Due to an increasing awareness of the importance of 
space in ecology and the availability of global posi- 
tioning systems (GPS), more and more data sets are 
spatially referenced and lend themselves to spatial anal- 
ysis. If the data represent a transect or grid of contig- 
uous quadrats, their spatial structure can be analyzed 
by block-size variance analysis, also known as pattern 
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analysis (e.g., Greig-Smith 1952, Hill 1973, Usher 
1975, Dale 1999). Block-size variance techniques sum- 
marize the spatial structure of individual species and 
of pairs of species; they are essentially uni- or bivariate 
methods (Fortin 1999, Mistral et al. 2000). The re- 
spective scales of regular spatial patterns in a com- 
munity, such as patches and gaps of constant size, are 
identified by comparing several uni- or bivariate plots 
of variance against block size. Alternatively, pattern 
analysis can be performed on the scores of an ordi- 
nation axis (Galiano 1983). 

A truly multivariate extension, called multiscale or- 
dination, was presented by Noy-Meir and Anderson 
(1971) and further developed by Ver Hoef and Glenn- 
Lewin (1989). Noy-Meir and Anderson (1971) sug- 
gested summarizing the spatial structure of a com- 
munity by calculating a variance-covariance matrix for 
each block size. In order to facilitate interpretation, the 
matrices are added to form a combined covariance ma- 
trix, which is subjected to principal component analysis 
(PCA). The scales of spatially overlapping, statistically 
uncorrelated multispecies patterns are identified by par- 
titioning the variance of each PCA axis by block size. 

Increasingly, ecologists are exploring the possibili- 
ties of geostatistical analysis (e.g., Burrough 1987, 
Palmer 1988, Legendre and Fortin 1989, Rossi et al. 
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1992, Fortin 1999, Koenig 1999). The geostatistical 
approach is based on distance rather than block size, 
which has the advantage that the quadrats need not be 
contiguous, nor spaced at regular intervals. The spatial 
structure of a dataset is usually described by an em- 
pirical variogram, which is basically a plot of the var- 
iance or difference between pairs of observations 
against their distance in geographic space. A variogram 
can be interpreted in a similar way as a plot of variance 
against block size derived by blocked variance tech- 
niques (Ver Hoef et al. 1993). In addition to descriptive 
purposes, variogram modeling can be used to inter- 
polate point observations by kriging (Isaaks and Sri- 
vastava 1989, Cressie 1991, Haining 1997). However, 
like pattern analysis, geostatistical analysis has been 
applied mostly to single variables such as species rich- 
ness or the scores of quadrats along a major ordination 
axis (Palmer 1988, Legendre 1993, Jonsson and Moen 
1998). 

Several authors have proposed ways of plotting some 
kind of resemblance measure (a multispecies measure 
of the similarity or dissimilarity of pairs of quadrats) 
against geographic distance. Examples are the Mantel 
correlogram (Sokal 1986), the method of Nekola and 
White (1999) for determining the rate of distance de- 
cay, or the "dissimilogram" proposed by Mistral et al. 
(2000). Such plots provide a very flexible description 
of the overall multivariate spatial structure of a com- 
munity. However, generalized variograms cannot be 
used for interpolation, and their ecological interpre- 
tation is limited as their behavior is typically unknown. 

Spatial structure in plant communities arises from a 
variety of factors. These factors fall into three broad 
groups: (1) morphological factors, such as plant size 
or dispersal mechanism, which influence the spatial 
aggregation within a population; (2) interspecific in- 
teractions within a community; and (3) the response to 
environmental factors, which themselves are spatially 
structured (Kershaw 1964, Dale 1999, Koenig 1999). 
Based on hierarchy theory (Allen and Starr 1982), Le- 
gendre (1993) postulated that physical processes create 
environmental heterogeneity at broad scales, while 
contagious biotic processes may cause further struc- 
turing within smaller areas of relative environmental 
homogeneity. This hierarchical view implies that one 
may assume local homogeneity within a study area 
even though heterogeneity exists at a larger scale. If, 
however, there are no independent domains of scale but 
the scales of physical and biotic processes overlap, we 
need to account for environmental heterogeneity when 
investigating patterns caused by biotic processes, and 
vice versa. 

Although it is common to use more than one spatial 
or nonspatial method to analyze the same dataset, the 
techniques are usually applied individually rather than 
in an integrated way. On a conceptual level, this means 
that we investigate factors determining community 
structure individually, ignoring the contributions of 

other factors and their potential interactions. However, 
one cannot answer the question of why communities 
vary and, ultimately, why species coexist, without un- 
derstanding how various factors interact and what de- 
termines their relative importance. For example, testing 
the variance of quadrat species richness against a null 
model has often been used by ecologists as a test of 
interspecific association (for a review, see Palmer and 
Van der Maarel 1995), but the difficulties of accounting 
for spatial autocorrelation, for the distance-dependence 
of species associations, and for environmental hetero- 
geneity severely limit the capacity of this method to 
provide evidence for niche limitation (Palmer and van 
der Maarel 1995, van der Maarel et al. 1995, Wilson 
et al. 1995, Roxburgh and Matsuki 1999). 

This paper presents a mathematical unification of 
geostatistical analysis, the analysis of interspecific as- 
sociations, and multiscale ordination. The integration 
provides a framework for partitioning the variance in 
community data into the distance-dependent compo- 
nents of single-species aggregation patterns, interac- 
tions between species, and species-specific responses 
to environmental gradients. Starting with a mathemat- 
ical model of species richness as the sum of a set of 
binary species variables, I reexpress the variance of 
species richness in terms of spatial covariance, which 
is conveniently summarized in the variogram matrix. 
I derive a standardized variogram for binary data that 
makes spatial covariance observed under different en- 
vironmental conditions directly comparable. I present 
a spatial extension of the variance test of species rich- 
ness that accounts for spatial autocorrelation and the 
distance-dependent nature of interspecific associations, 
and I show how multiscale ordination can be used to 
remove variance attributed to a larger scale trend. Un- 
derstory vegetation data from the Oosting Natural Area 
in North Carolina serve to highlight the ecological ap- 
plication, and a worked example on artificial data in 
the Appendix illustrates the calculations. 

MODEL STRUCTURE AND METHODS 

A mathematical model of species richness 

The following mathematical model reflects the fact 
that species richness is not a simple quantitative var- 
iable, but a result of the distributions of individual, 
interdependent species. Statistically speaking, the oc- 
currence of a species i in a single quadrat is itself a 
random variable xi with a specific probability distri- 
bution. Therefore, I start with the formal definitions of 
species occurrence, species composition, and species 
richness for a single quadrat. 

Let x, be a binary variable that takes the value 1 if 
species i is present in a quadrat, and 0 if it is absent. 
The defining parameter pi, the mean or probability of 
occurrence of i in the quadrat, will depend on quadrat 
size and shape: 
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Semivariance ay(h) 

Variogram of complementarity 

sillx - - - - - - - - - - - - - 

/ } ~~~~~~~~sill= ljpj (1 - pi) 

nuggetxi Species variogram 
sill. - 

sill1=pi(' -pi) 
nugget_ 

range, range 

Distance h 
FIG. 1. Hypothetical variograms of the complementarity of species composition, X, and of a single species i. The parameters 

sill, range, and nugget of the variogram of complementarity are related to the respective parameters of the variograms of the 
constituent species. 

xi= 0 1 P {1, .**, SI ? 'Pi '? 1. 

(1) 

Species composition X is the vector of s binary vari- 
ables x, that describe the occurrence of s species in the 
quadrat. Quadrat species richness S is the sum of the 
vector of species composition X, i.e., the sum of all 
species variables x,: 

S = 2 X = 2 x,. (2) 

The expected value of S is the sum of the expected 
values of the binary variables xi, even if the variables 
are not independent. The variance of S is the sum of 
the variance-covariance matrix: 

S S .-1 

Var(S) = E Var(x,) + 2 E E Cov(x, x,) 
1=1 ,=2 j=1 

s s 

= IE COV(Xl,,Xj) i, j ( t1,., SI. (3) 
i=1 j=1 

If the species variables are independent, the pairwise 
covariances between all species i and j are zero and 
the variance of species richness S is equal to the var- 
iance of species composition X, which is the sum of 
the variances of the s species variables xi. 

In practice, it is not possible to observe multiple 
independent realizations of xl in a single quadrat under 
exactly the same conditions. Hence, one cannot esti- 
mate the statistical properties of x, (or of S) directly 
from empirical data from a single quadrat. One solution 
is to observe one realization each of a number of ran- 
dom variables xia, with a E I 1, . . ., NJ, from a sample 
of N quadrats, assuming the variables xa to be inde- 

pendent and identically distributed with the probability 
distribution function of Eq. 1. Thus the quadrats act as 
replicates, and the variances and covariances in Eq. 3 
are estimated from the replicated data. What happens 
if the quadrats are not true replicates, either because 
they are not independent due to spatial autocorrelation, 
or because they are not comparable due to environ- 
mental heterogeneity, is the primary subject of this 
paper. 

Spatial covariance 

Geostatistical methods deal with the question of how 
variance and covariance depend on the distance be- 
tween observations (i.e., quadrats). Spatial autocorre- 
lation, or distance dependence, is commonly modeled 
by fitting a variogram function to an empirical vario- 
gram (Isaaks and Srivastava 1989, Cressie 1991, Hain- 
ing 1997, Burrough and McDonnell 1998). An empir- 
ical variogram is a plot of half the squared difference 
between two observations (the semivariance) against 
their distance in space, averaged for a series of distance 
classes. A simple variogram model is defined by the 
model family and the parameters sill (the average half 
squared difference of two independent observations), 
range (the maximum distance at which pairs of obser- 
vations will influence each other), and nugget (the var- 
iance within the sampling unit; Fig. 1). 

The most commonly used model families (spherical, 
exponential, and Gaussian models) assume that there 
is no spatial dependence for distances larger than the 
range. However, ecological communities may be or- 
ganized in periodic spatial patterns, which result in a 
cyclic pattern of variance plotted against distance. This 
can be modeled with a hole effect model, a dampening 
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sine function that is defined by the nugget effect and 
the range and eventually stabilizes at the sill (Legendre 
and Legendre 1998). 

Variogram modeling is well developed for metric 
(ordinary kriging) and binary (probability kriging) uni- 
and bivariate data, but no standard methods exist for 
the multivariate categorical data that are typical for 
plant community ecology. Hence, I will first develop 
the empirical variogram description of a set of binary 
variables xl as observed in a sample of N quadrats. 

An omnidirectional empirical variogram of a single 
variable xi is constructed by estimating the empirical 
semivariance, y1(h), for a range of distance classes h 
(Isaaks and Srivastava 1989, Cressie 1991): 

1 
7 a (h) = - bE2(Xl xlb) (4) 

2 nh asbjhab-h 

where nh is the number of pairs of quadrats a and b 
separated by approximately h. Sample size nh decreases 
with large distances h. Distances greater than half the 
maximum extent of the study area can only be observed 
for quadrats outside of the center of the study area. 
This introduces a bias, as the quadrats from the center 
do not contribute to variance estimates for larger dis- 
tances. Therefore, interpretation is commonly limited 
to distances smaller than an arbitrary maximum dis- 
tance hmax: 

The univariate definition of a variogram can be ex- 
tended to multivariate data, in which case xa and Xb are 
not two observations of a single variable x, but vectors 
Xa and Xb of two observations of s variables x. The 
empirical semivariance a(h) becomes half the squared 
Euclidean distance between Xa and Xb and is equal to 
the sum of the empirical semivariances ^y(h) of the 
species variables xi: 

=(h) - E liXa - Xb 112 
2nh a,bIhab-h 

1E _ (Xia - Xib)2 = j'(h). (5) 
1 2nh asblhahb h i 

In the case of binary variables, j(h) equals the mean 
number of species that are present in only one of a pair 
of observations, regardless of the direction of com- 
parison. It is a direct measure of species turnover and 
describes the complementarity of the species compo- 
sition of two quadrats. Therefore, j'(h) will be referred 
to as the variogram of complementarity. The concept 
of complementarity is statistically equivalent to the dis- 
tinctness or dissimilarity of species composition. As a 
concept, however, it captures the sense that comple- 
mentary faunas or floras form parts of a whole, so that 
complementarity is a positive biodiversity component 
(Vane-Wright et al. 1991, Colwell and Coddington 
1994). 

In order to obtain a spatial definition of the variance 
of species richness, the covariances between species 

need to be expressed in terms of cross-variograms. An 
empirical cross-variogram j(h) describes the distance- 
dependent covariance between two species, i and j 
(Isaaks and Srivastava 1989): 

ij(h)= 2 (X1a - Xib)(Xja XJb). (6) 
2nh ablhab-h 

Based on Eqs. 3 and 6, the variance of species rich- 
ness can be expressed as spatial covariance (note that 
the "semivariance" in a variogram is equal to the var- 
iance of a single species occurrence, complementarity, 
or species richness): 

Var(S) - = 
I ( la Xib)(Xja 

- 
XJb) 

n ij ab 2 

= En Ys(h) = E-E i/J(h). (7) 
h fl h fl i, 

As the worked example in the Appendix shows, Eq. 
7 provides the empirical variance of species richness 
S. In geostatistical analysis, however, only distances 
>0 are analyzed, so that a quadrat is never compared 
to itself. Under this condition that a # b, N quadrats 
will provide n = N(N - 1)/2 unique pairs of quadrats 
a and b, and Eq. 7 results in the unbiased estimator of 
the variance of species richness S. 

Eq. 7 includes the definitions of the variance of com- 
plementarity, pairs of species, and an individual species 
as special cases. The condition i = j leads to the var- 
iance of complementarity; for a given pair of species 
i and j, Eq. 7 results in their cross-variogram; and for 
a single species i = j, it describes the variance of the 
variable x,. 

The basic element of spatial covariance, 'j'(a,b), fol- 
lows from Eq. 7. It is half the product of the observed 
differences between quadrats a and b for two species 
I and]: 

Wj (a, b) = (Xia - Xib)(Xja - XJb). (8) 
2 

The variogram matrix 

The spatial covariance can be summarized in a set 
of distance-dependent variance-covariance matrices 
C(h). The matrix elements c1(h) = yij(h) are calculated 
from Eq. 6. The term variogram matrix of Myers (1997) 
will be used for such a set of distance-dependent var- 
iance-covariance matrices C(h). The variogram matrix 
can be interpreted in various ways (Fig. 2): 

1) A plot of a diagonal element cj(h) against distance 
h is the empirical variogram of species i. Its ex- 
pected value for independent observations in a 
homogeneous environment is p1(l - pi). 

2) A plot of cj(h) against distance h is the empirical 
cross-variogram of species i and j. Its expected 
value for independent observations in a homo- 
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1 Cc1(1 max) 
/ 

(hmax) ~ ma 

/ t (l) XCa() Xmo 

FIG. 2. Schematic representation of a variogram matrix. 
A variogram matrix contains a separate variance-covariance 
matrix C(h) for each distance class h, up to an arbitrarily 
defined maximum distance hmax. Each cell of a matrix C(h) 
contains an estimate of the variance of one species i [diagonal 
cells, cii(h)] or of the covariance of a pair of species i and j 
[off-diagonal cells, c,(h)], based on all pairs of observations 
that are separated by a distance of approximately h. The ar- 
rows indicate further geostatistical interpretations that are dis- 
cussed in the text. 

geneous environment and independent species is 
zero. 

3) A plot of the sum of the diagonal of C(h), X, cjh), 
against distance h is the empirical variogram of 
complementarity. Its expected value for indepen- 
dent observations in a homogeneous environment 
is i pi(, - p1). 

4) A plot of the sum of C(h), lij cij(h), against dis- 
tance h is the empirical variogram of quadrat spe- 
cies richness S. Its expected value for independent 
observations in a homogeneous environment and 
independent species is Yi p,(l - pi). 

Often, researchers want to test whether the observed 
autocorrelation is significantly different from random. 
A randomization test is constructed by randomly per- 
muting the observations. The easiest way is to permute 
the couplets of x and y coordinates (Legendre and Le- 
gendre 1998). For each of r permutations, a variogram 
matrix is derived, providing a reference distribution of 
r values for each matrix element under the null hy- 
pothesis of spatially independent observations. 

The standardized variogram 

For binary variables such as species presence-ab- 
sence data, the expected variance is a function of the 
mean. This can be used to make variograms from dif- 
ferent areas with varying environmental conditions 
comparable by scaling the observed spatial covariance 

y,(a, b) in terms of the expected spatial covariance. 
The method corresponds to a pairwise relative vario- 

gram (Isaaks and Srivastava 1989), and results in a 
standardized variogram with an expected sill of 1, in- 
dependent of the mean and variance of a species. 

The variance of a binary species variable i with an 
underlying mean of p, is pi(1 - pi). Hence the stan- 
dardized variogram -y (h) of species i is 

1 (xi - Xi)2 
'Y (h) = aIib(9) 

2nh a,blhab-h P,(l - P) 

If the mean Pia of species i depends on the quadrat 
a, the expected semivariance y,(a,b) of a pair of quad- 
rats a and b is 

E{fyij(a, b)} = Pa(l Pb) + Pb( - Pi (10) 
2 

and Eq. 9 extends to 

,y(h) 
I 

(Xia - Xib)2 (11) 
h a,Ihab=h Pi a(1 - Pib) + PAb( Pia) 

If p1 is estimated from the data, the unbiased variance 
estimator should be used for the denominator. This 
means that c'(h) in Eq. 9 needs to be multiplied by 
(N - 1)/N, where N is the total number of quadrats in 
the sample: 

Pi = EXa (12) N a 

N 11I (Xia 
- Xib)2 

N 2nh a,blhab-h Ji(I - fl) 

The standardized variogram of complementarity, 
,y'(h), with estimated means pI is 

N- 1 ^y,(h) 
y'(h) = N E -) (14) 

Under the assumption of stationarity, the autocor- 
relation function r1(h) of a species i can be expressed 
in terms of its semivariance yi(h) and its semivariance 
for independent samples, yi(oo), i.e., its global variance 
or sill (Isaaks and Srivastava 1989): 

__ _ _ _-ey_ _ yi(h) 
r (h) (== Y =1 (15) 

'yi(OO) y1(0o)' 

Under the assumption that the underlying means p, 
or Pia are known or correctly estimated, the standard- 
ized variogram eliminates the effect of nonconstant 
means and variances. This means that the stationarity 
criteria are met and the standardized semivariance 
y'(h)provides an estimator for the autocorrelation func- 
tion r(h): 

r (h) = 1 - y'(h). (16) 

Under the same conditions, the standardized cross- 
covariance y,(h) of two species i and j is an estimator 
of their cross-correlation function ri/(h): 
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r11(h) = y'(h) 

N - 1 1 (Xia - Xib)(Xja - XJb) 

N 2nh ablhab-h Vlp1(1 -;5) Vfi(1 -vl 

(17) 

Testing the spatial covariance of species richness 

The observed spatial covariance of complementarity 
provides an empirical null model of species indepen- 
dence for the spatial covariance of species richness. 
The two are affected by spatial aggregation in the in- 
dividual species variables and species-specific response 
to environmental heterogeneity in exactly the same 
way. The only difference is in the associations or co- 
variances between species, which again can be distance 
dependent. The test statistic is the ratio of the observed 
and the expected variance, as in the nonspatial variance 
test of species richness (Schluter 1984, McCulloch 
1985, Palmer and Van der Maarel 1995). A variance 
ratio smaller than 1 is a potential indicator for niche 
limitation. The ratio can be derived by first calculating 
the empirical variograms of species richness ("ob- 
served variance") and of complementarity ("expected 
variance") before dividing the aggregate values for 
each distance class. Alternatively, the observed vari- 
ance can be divided by the expected one for each pair 
of observations, as in a pairwise relative variogram 
(Isaaks and Srivastava 1989). A permutation test for 
the null hypothesis of independent species is con- 
structed by independently permuting each species vec- 
tor xi. 

The spatial structure of ordination axes 

Multiscale ordination has been proposed for inves- 
tigating the scale of multispecies patterns, such as a 
cyclic spatial structure of a gradient in species com- 
position. In multiscale ordination (Noy-Meir and An- 
derson 1971, Ver Hoef and Glenn-Lewin 1989, Dale 
1999), blocked-variance techniques are used to cal- 
culate a variance-covariance matrix C(b) of the species 
for each of a range of block sizes b. The matrices are 
then summed into an overall variance-covariance ma- 
trix C, which is subjected to principal components anal- 
ysis (PCA). For each PCA axis, the associated variance' 
is partitioned by block size and plotted against block 
size. 

The method can be adapted to the concept of spatial 
covariance and the distance-dependent variance-co- 
variance matrices C(h) of a variogram matrix. A matrix 
C(O) for distance class h = 0 is included and all ma- 
trices C(h) are weighted with w,, = nhIn. The summed 
matrix IhwhC(h) is equal to the global empirical var- 
iance-covariance matrix C that is used in PCA. The 
eigenvalue Xf of PCA axis f is partitioned among dis- 
tance classes, h, by multiplying its associated eigen- 
vector Uf with each of the matrices C(h) (cf. worked 
example in the Appendix): 

256 m 

FIG. 3. Grid design of the I-n2 quadrant 'data from the 
Oosting Natural Area in Duke Forest, Orange County, North 
Carolina (Palmer and White 1994). The quadrats of the large 
grid are located in the lower left corner of each module of 
16 X 16 m. Each of the three small grids contains 16 X 16 
contiguous quadrats within a randomly selected module of 
the large grid. The underlying contour plot reflects relative 
elevation in intervals of 1 m, ranging from 0-1 m (dark grey) 
to 10-11I m (white). The contour plot is derived from ele- 
vation measurements at the corner points of each module. 

X/h) = UJC(h)uf (18) 

A plot of X/h) against distance h provides a vario- 
gram of axisf It reflects the spatial covariance of corn- 
plementarity explained by PCA axisf, or the difference 
in species composition due to the intrinsic gradient 
described by f. 

The eigenvalue Xf of PCA axis f is a weighted mean 
of its distance-dependent components X/h): 

Xf UTCUf = 'nhU uC (h)uf 

I Wh~f (h) f E (1,. .,S). (19) 
h 

Examples from the Qosting Natural Area 

The approach is illustrated with previously published 
data from a mixed hardwood-pine forest in North Car- 
olina (Reed et al. 1993, Palmer and White 1994, Palmer 
1995, Jonsson and Moen 1998). The study area in the 
Oosting Natural Area of the Duke Forest,. Orange 
County, North Carolina, contains several forest com- 
munities with gradual transitions. The entire dataset 
describes the presence-absence of understory vascular 
plant species in a nested series of quadrats within a 
sampling grid of 256 modules of 16 X 16 mn. For this 
paper, I analyzed the 1In_2 quadrats from the main grid, 



April 2003 SPATIAL COVARIANCE IN PLANT COMMUNITIES 1051 

placed in the lower-left corner of each module, and 
from the three randomly selected modules within which 
every square meter was studied (Fig. 3). In addition to 
plant community data, I used data on relative elevation 
and pH measurements obtained at the corners of each 
module (Reed et al. 1993). For the small grid 3, I es- 
timated relative elevation at the lower-left corner of 
each -iM2 quadrat by linear interpolation. 

To explore the effects of environmental heteroge- 
neity, I calculated a variogram of complementarity for 
each of the three small grids and for the large grid by 
averaging half the squared Euclidean distance per dis- 
tance class. To make the variograms directly compa- 
rable, I restricted the analysis to the species that oc- 
curred at least five times in each of the four data sets. 
A 95% confidence interval for each variogram and dis- 
tance class was estimated from the distribution of the 
basic elements of spatial covariance (Eq. 8). For every 
small grid, I estimated the mean pi of each of the 25 
species (Eq. 12) and derived the standardized vario- 
gram of complementarity (Eq. 14). 

Further analysis focused on the small grid 3, using 
all of its 72 species variables. I tested the significance 
of the departure of the variogram of species richness 
from the variogram of complementarity by a two-sided 
permutation test (ox = 0.05) with 499 permutations of 
the original observations, permuting each species vec- 
tor independently. For each permutation, the ratio of 
the variance of species richness to the variance of com- 
plementarity was calculated for each distance class. 
The permutations thus provided a reference distribution 
for the ratio of each distance class under the assumption 
that the species are independently distributed. For the 
variograms of PCA axes, a variogram matrix was con- 
structed by assembling the variograms and cross-var- 
iograms calculated from Eqs. 4 and 6 in a set of dis- 
tance-dependent matrices C(h). The original data from 
the small grid 3 were subjected to PCA. Because a total 
of 23 axes had eigenvalues Xf > 1, I used a scree test 
(Cattell 1966) to determine the number of PCA axes 
to be retained. As X4 lay below the regression line fitted 
to X2 - X23, the first three axes were retained for anal- 
ysis. All axes were partitioned by distance class using 
Eq. 18. A variogram of complementarity, accounting 
for the variance along PCA axis 1, was obtained by 
summing the variograms of all other PCA axes by dis- 
tance class. 

All calculations were performed in S-Plus (Becker 
et al. 1988). 

RESULTS 

The effect of environmental heterogeneity on 
spatial covariance 

How strongly does local environmental heteroge- 
neity influence spatial covariance? The Oosting data 
provide an excellent example, as the four grids were 
sampled from a total area of only 256 X 256 m. The 

study area contained some environmental heterogene- 
ity (cf. Fig. 3); e.g., the mean relative elevation of the 
four corner points of the small grids 1, 2, and 3 was 
3.7 m, 8.9 m, and 7.1 m, and their respective average 
pH was 6.5, 5.7, and 5.9. 

Fig. 4 shows the empirical variograms of comple- 
mentarity for each of the four grids, including only the 
25 species that occurred at least five times in each grid. 
Although the four data subsets contained exactly the 
same species and originated from the same small study 
area, their variograms of complementarity differed 
strongly (Fig. 4). The variogram for the large grid 
showed a continuous rise without reaching a sill, in- 
dicating larger scale heterogeneity. The curves for the 
three small grids showed more or less parallel curves 
but approached very different sills. 

The expected variance estimated from the species 
means in each grid predicted the different sills fairly 
well. This means that between-grid heterogeneity is 
responsible for the observed difference in the sills. The 
standardized variograms of complementarity in Fig. 5 
(note the different scaling of the x axis as compared to 
Fig. 4) support this interpretation, as the curves for the 
three grids coalesced after accounting for variable spe- 
cies means. 

Distance dependence of the variance of 
species richness 

Does the spatial version of the variance test of spe- 
cies richness provide more or better information than 
the global test? In the example of the small grid 3, the 
global variance of species richness was only slightly 
lower than expected under the hypothesis of indepen- 
dent observations and independently distributed spe- 
cies. Based on the global variance test, the difference 
was clearly not statistically significant (chi-square = 
248.76, df = 256, P = 0.384). The plot against dis- 
tance, however, revealed a systematic change from pre- 
dominantly negative covariances between species at 
small distances to mainly positive covariances at larger 
distances (Fig. 6). The permutation test showed sig- 
nificant departures of the two curves for the smallest 
and the largest distance classes. Hence the spatial var- 
iance test of species richness was able to detect a var- 
iance deficit at small distances undetected by the global 
test. 

Spatial structure of intrinsic gradients 

Indirect ordination methods such as PCA describe 
vegetation as the sum of overlapping, statistically un- 
correlated intrinsic gradients. What does multiscale or- 
dination tell us about the spatial structure of these gra- 
dients? Fig. 7 shows the variograms of PCA axes 1-3 
for the small grid 3. The variance along the first axis 
increased strongly and continually with distance, in- 
dicating the presence of larger scale trend. A strong 
correlation between axis scores and the interpolated 
relative elevation (Pearson correlation, r = 0.73, P < 
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FIG. 4. Empirical variograms of complementarity for the large grid and for each of the three small grids, calculated 
independently for each grid. The point symbols represent the average observed semivariance per distance class, based on 
the 25 plant species that were present in at least five cells of each of the four grids. Error bars mark the 95% confidence 
interval for the mean of each distance class. The solid lines indicate the expected variance based on the species means within 
each grid. 

0.001) suggests that the variance along PCA axis 1 is 
largely due to environmental heterogeneity. All other 
factors showed only a modest increase with distance 
(e.g., axis 2), or even suggested slightly cyclic patterns 
(e.g., axis 3) as one would expect to result from com- 
munity-level processes. 

How important are the factors contributing to the 
variance of species richness? Fig. 8 illustrates for the 
small grid 3 how multi-scale ordination can be used to 
partition the variance in a dataset into distance-depen- 
dent components of interspecific interactions, larger 
scale trend as caused by environmental heterogeneity, 
and single-species aggregation patterns. The strong in- 
crease of the variance of species richness with distance 
was largely due to interspecific interactions and the 
trend reflected in PCA axis 1. Only a small portion of 
the remaining variance could be explained by single- 
species aggregation patterns, peaking at -7 m. The 
observed variance of complementarity without axis 1 
appeared to oscillate around its global variance, indi- 
cating that all larger scale trend had been accounted 
for by removing PCA axis 1. 

DISCUSSION 

Spatial analysis of plant communities in a 
heterogeneous environment 

Can variograms from different communities be com- 
pared? The Oosting example illustrates the drastic ef- 
fect that within-site environmental heterogeneity can 
have on spatial analysis. Researchers often assume ho- 

mogeneity over relatively small study areas. However, 
heterogeneity may occur at all scales, leading to dif- 
ferences in the mean and variance of species variables 
across space. The empirical variogram of the large grid 
did not reach a sill, indicating a violation of the second- 
order stationarity assumption (e.g., Bellehumeur and 
Legendre 1998). The three intensively sampled mod- 
ules of 16 X 16 m, separated by 150-250 m, differed 
in their species composition and in the frequency of 
occurrence of the more abundant and ubiquitous spe- 
cies. Even when the analysis was restricted to the latter 
group, the resulting variograms of complementarity 
differed strongly in their sills due to the differences in 
species means between the grids. 

The spatial description by a generalized variogram 
or "dissimilogram" (e.g., Mistral et al. 2000) would 
normally stop here. The mathematical approach de- 
veloped here, however, allowed the different sills to be 
predicted from the observed species means so that the 
variograms could be made comparable by standardi- 
zation. The standardized variograms of the three small 
grids were relatively well behaved, although all ap- 
peared to reach sills slightly >1, indicating some un- 
accounted internal heterogeneity. In the standardized 
form, the three curves coalesced and thus provided a 
general description of small-scale autocorrelation in 
species composition within the study area, independent 
of environmental conditions. 

The variogram matrix provides two ways for dealing 
with larger scale heterogeneity. Eq. I 1 can be used to 
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predict and account for the expected spatial covariance 
based on any given trend model, which may be obtained 
by local interpolation or by modeling species response 
to known environmental gradients. Multiscale ordina- 
tion provides a direct way of separating variance at- 
tributed to a "true gradient" from the variance of 
"false gradients," as determined by the variograms of 
ordination axes. This approach needs to be extended 
to direct gradient analysis with Redundancy Analysis 
(RDA; Rao 1964, Legendre and Legendre 1998), where 
PCA axes are linear combinations of observed envi- 
ronmental variables. 

On purely empirical grounds, however, it is not pos- 
sible to distinguish between trend, or systematic var- 
iation of the mean, and autocorrelation, or local de- 
pendence of the departure from the mean. The ap- 
pearance of any spatial pattern depends highly on the 
grain and extent of a study. The same spatial structure 
may appear as trend in a fine-scale study and as pattern 
of a specific scale if a broader extent is considered. 

Advantages of a spatial variance test of 
species richness 

The example in Fig. 5 clearly illustrates the distance- 
dependent nature of interspecific interactions in a com- 
munity and their effect on the variance of species rich- 
ness. A global, nonspatial variance test is prone to miss 
the systematic departure of the variance of species rich- 
ness from its expected value if negative covariances at 
small distances are cancelled out by positive covari- 
ances at larger distances. The different results of the 
two tests do not merely reflect their statistical power, 
i.e., their ability to detect a given effect with a sample 
of a certain size. Here, the effect itself, the global sum 
of the associations, increased with increasing distance 
between observations. In such a situation, the chances 
of detecting a variance deficit with the global test are 
likely to decrease with increasing sample size, as larger 
distances are included. 

The negative covariance at short distances may in- 
dicate niche limitation, but it may also be an effect of 

8- 
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cell size, or of rarefaction (0kland 1994), the physical 
limitation of the number of individual plants and thus 
the number of species within relatively small areas. The 
increase in positive covariance with distance is prob- 
ably due to increasing environmental heterogeneity, 
which is one of the factors determining niche limita- 
tion. 

The variogram of complementarity provides a null 
model that already includes the autocorrelation due to 
single-species aggregation patterns. Hence, it elimi- 
nates the need for keeping the spatial pattern of each 

species constant while permuting observations. While 
this statement is based on mathematical considerations, 
it remains to be verified by a thorough empirical com- 
parison to published permutation tests (Palmer and Van 
der Maarel 1995, Roxburgh and Matsuki 1999). 

The spatial variance test of species richness elimi- 
nates two former impediments of observational studies 
of the variance deficit in species richness, namely the 
confounding of negative associations at short distances 
with positive interactions at larger distances, and the 
spatial autocorrelation in the distributions of the in- 
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FIG. 8. Partitioning of the variance of species richness of the small grid 3 into the additive contributions of interspecific 
interactions, environmental heterogeneity as reflected in PCA axis 1, and single-species aggregation patterns. The point 
symbols represent, for each distance class, the variance of species richness, complementarity, and the variance of comple- 
mentarity after accounting for PCA axis 1 as described in the text. 
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dividual species. Hence, it opens the door for a sub- 
stantially new approach to the research on niche lim- 
itation. 

A geostatistical perspective on multiscale ordination 

This paper proposes two important deviations from 
earlier presentations of multiscale ordination. First, 
Noy-Meir and Anderson (1971) suggested a simple ad- 
dition of the variance matrices for each block size to 
obtain a global matrix that is subjected to PCA. Dale 
(1999) recommended weighting by the expected inten- 
sity, or amplitude of a cyclic variance, as a function of 
block size. Here, I suggest weighting the distance-de- 
pendent variance-covariance matrices by the number 
of pairs of observations in each distance class. This 
recreates the global, nonspatial variance-covariance 
matrix, which is used not only in PCA but in many 
multivariate methods (see worked example in the Ap- 
pendix). This compatibility may lead to further inte- 
gration of geostatistical modeling with nonspatial mul- 
tivariate methods. 

Second, in a geostatistical framework, the block size 
of the original definition of multiscale ordination cor- 
responds to distance. While block sizes are defined by 
the analytic method, distances are a property of the 
sampling design and may take any value. This is a great 
advantage as it extends multiscale ordination to non- 
systematic spatial samples, although the sampling de- 
sign will still determine whether a specific pattern in 
an ecological community is detected by the method. 

The often arbitrary choice of distance classes may, 
however, affect the shape of a variogram. The geostatis- 
tical solution is to analyze the variogram cloud instead 
of the empirical variogram defined by distance classes. 
The variogram cloud is a scatter plot where each dot 
represents the semivariance of a single pair of obser- 
vations. Such a plot can easily be constructed by plot- 
ting the basic elements of spatial covariance (Eq. 8). 

From a geostatistical perspective, there is another 
important extension. Spatial autocorrelation is often 
anisotropic, that is, it depends on the geographic di- 
rection in which it is measured. If the sampling design 
is two dimensional and the sample is large enough, 
directional variance-covariance matrices C(h,d) can be 
calculated, e.g., for four directional sectors d. However, 
I would expect that most cases of anisotropy in eco- 
logical data sets are due to environmental heteroge- 
neity, so that a removal of larger scale trend would 
usually eliminate the need for anisotropic models. 

Assumptions and limitations 

Many readers may feel uncomfortable about the 
heavy reliance on the Euclidean distance. A main con- 
cern is that the Euclidean distance does not reflect the 
special nature of the value zero in biotic data. Although 
the Euclidean distance is especially unsuitable for cov- 
er or abundance data that include zeros (Legendre and 
Legendre 1998), it is more robust for presence-absence 

data, as illustrated in the following example: Assume 
that the respective abundance of species i in three quad- 
rats a, b, and c is 4, 1, and 0. Based on the squared 
Euclidean distance, D2, b and c are more similar (D2 
= 1) than are a and b (D2 = 9), although a and b share 
species i, which is absent from c (Legendre and Le- 
gendre 1998). However, converted to presence-absence 
data, b and c are more different (D2 = 1) than a and 
b (D2 = 0). 

A zero may be stochastic (the sampling unit repre- 
sents suitable habitat, but is unoccupied) or it may be 
structural (unsuitable habitat, where the species cannot 
occur). Structural zeros, which can inflate observed 
species associations, occur if the sample includes a 
large degree of environmental heterogeneity. In such a 
situation, local means should be accounted for in the 
modeling of variograms (Eq. 11). If a multiscale or- 
dination is performed, this adjustment may not be 
enough. PCA assumes that the individual species are 
linearly related to the main gradients in species com- 
position. If there is a considerable degree of beta di- 
versity, as a result of environmental heterogeneity, spe- 
cies may appear and disappear along a compositional 
gradient. In order to accommodate such a unimodal 
response or optimum curve, the variogram matrix ap- 
proach needs to be generalized and extended to a chi- 
square measure of distance that is compatible with cor- 
respondence analysis (CA; cf. Legendre and Legendre 
[1998] for an overview of chi-square based ordination 
methods). An approach based on the chi-square dis- 
tance would also accommodate abundance data. 

The Euclidean distance has some distinct advantag- 
es. First, it leads to a direct mathematical extension of 
the variogram and is compatible with multivariate 
geostatistical methods used in other fields for quanti- 
tative variables (e.g., Goovaerts [1994] in soil science, 
Myers [1997] in remote sensing). Second, it mathe- 
matically links the spatial structure of individual spe- 
cies variables, of complementarity, and of species rich- 
ness. A similar partitioning may be possible for other 
resemblance measures, such as the chi-square distance. 
The direct ecological interpretations, however, and spe- 
cifically the explicit decomposition of the variance of 
species richness, are unique to the Euclidean distance. 

The biggest advantage of the Euclidean distance is 
its general (though often implicit) use in statistics, 
which makes the variogram matrix approach highly 
generalizable. Any variable that is the sum of other 
variables can be defined and interpreted as the sum of 
a variance-covariance matrix. If variance is calculated 
from pairwise differences instead of individual differ- 
ences from the mean, any variance or variance-co- 
variance matrix can be partitioned by distance. 

A last concern is that the observed spatial covariance 
will strongly depend on quadrat size, as Palmer and 
White (1994) illustrated with additional data collected 
at eight nested quadrat sizes from the Oosting study 
area. Scale dependence has many faces and aspects, 
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which can be related to the two basic components of 
scale, grain, and extent (Wiens 1989). While most 
block-size variance techniques manipulate grain, or 
quadrat size, geostatistical analysis focuses on extent, 
or distance between observations. A parallel geosta- 
tistical analysis at different cell sizes may help to un- 
tangle the effects of grain and extent on ecological 
patterns and processes. 

Conclusions 

Variance in ecological communities and systems is 
spatially structured. This is true for abiotic and biotic 
factors, for populations, communities, and biodiversity. 
The ecological literature most often treats spatial struc- 
ture as a problem rather than as information, stressing 
problems for significance tests due to spatial autocor- 
relation instead of the additional insights that can be 
gained from spatial analysis (cf. Legendre 1993). When 
ecologists analyze variation in plant communities, they 
either focus on plant-environment interactions using 
ordination methods that ignore spatial structure, or they 
describe the pattern in one or two species without tak- 
ing into account the spatial structure caused by envi- 
ronmental factors or community-level processes. 

The composition and diversity of a plant community 
results from processes at different levels of biological 
organization operating in a spatially structured envi- 
ronment. As the Oosting example illustrated, the pat- 
terns created by abiotic and biotic processes overlap 
to form a complex spatial covariance structure that is 
difficult to compare or interpret. However, the joint 
analysis of single-species, interspecific, and abiotic ef- 
fects revealed component patterns that were highly in- 
terpretable. This shows that an integrated methodolog- 
ical approach is needed to understand what determines 
community structure, and ultimately, why species co- 
exist. 

The variogram matrix is a geostatistical extension of 
multiscale ordination. It partitions the variance in eco- 
logical communities into spatial components on the 
levels of individual populations; species composition, 
and species richness, and can be used to factor out the 
effects of single-species aggregation patterns, inter- 
specific. interactions, or environmental heterogeneity. 
By integrating three traditionally unrelated methods, it 
increases the interpretability of variograms of plant 
communities, provides a spatial extension and an em- 
pirical null model for the variance test of species rich- 
ness, and extends multiscale ordination to nonsystem- 
atic spatial samples. 

Beyond the individual applications, the variogram 
matrix provides a framework for the mathematical uni- 
fication of geostatistics, multivariate data analysis, and 
the analysis of variance. An integration of geostatistics 
with general multivariate statistical methods may en- 
able ecologists from a broad range of fields to incor- 
porate spatial structure and processes into their re- 

search and to integrate analyses across different levels 
of biological organization. 
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APPENDIX 

A worked example of spatial covariance in plant communities is available in ESA's Electronic Data Archive: Ecological 
Archives E084-023-A1. 
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