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Background

�e proliferation of mobile applications and the widespread of hardware sensing devices 

increase the streamed data towards the hosting data-centers. �is increase causes a 

flooding of data. Taking benefits from these massive dataset stores is a key point in cre-

ating deep insights for analysts in order to enhance system productivity and to capture 

new business opportunities. �e inter-connected systems are sweeping almost all sec-

tors forming what’s called today Internet of �ings. �ese changes will have a big impact 

in the foreseeable future. Estimations say that the economic share of the internet of 

things will reach 11 % of the world economy by 2025 [1]. From the human health and 

fitness supervising, passing by smart-grids supply chains control and reaching intelli-

gent transportation systems (ITS) monitoring, the generated data is becoming more and 

more context-oriented. Indeed, embedded applications send data associated to a loca-

tion and time information. In ITS, for instance, the moving vehicles and the road side 

units (RSU) will be continuously broadcasting traffic-related and location-tagged pack-

ets. �e produced data are underpinning different kinds of applications such as safety 

related, traffic efficiency and value-added services. �e huge size of received and stored 

datasets might be more or less homogeneous. Moreover, data could be either structured 

or semi-structured. �e data handling requirements are beyond the capabilities of the 

traditional data management systems. �e community are currently aware of the added-

value that could be derived from processing and analyzing big datasets. Surveys showed 

that less than 1 % of data are currently used for real-time control and a good opportunity 
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for performance and prediction might be addressed using the remaining data [1]. Differ-

ent frameworks are being investigated to deal with these new requirements at the stor-

age layer, but also at the processing, analysis and visualization layers.

As an illustration of the data scale, data collected in the ITS for example by a single 

RSU could exceed 100 GB per day [2]. Hence, for a city or a country-scale deployment 

we could easily reach the petabyte scales in the first year. �e management of this data 

requires innovating models. �e NoSQL Not only SQL data management systems are 

standing for these new challenges. Indeed, Cassandra [3], MongoDB [4], Neo4J [5] and 

Redis [6] are, among others, too much dealt with in the research and business commu-

nities in the last period. A quick look on Google trends [7] comparing NoSQL versus 

RDBMS shows clearly the trends of both terms.

�ese new promising NoSQL solutions are not really suited for transaction queries 

so far. Indeed, the integrity model of data in the relational database systems assured by 

atomicity, consistency, integrity, and durability (ACID) proprieties is not possible to be 

applied when scaling out data. Regarding the NoSQL databases, it was proven that a 

database could have maximum two out of the consistency, availability, partition-toler-

ance proprieties (CAP) [8].

In this work, we are investigating a missing feature in Cassandra NoSQL database 

which is the spatial data indexing and retrieval. Indeed, most of this category of data-

bases are not supporting geospatial indexes and hence spatial queries [8].

Our research contribution in this paper could be summarized as follows; We index 

stored data using geohashing technique [9] by converting the latitude/longitude infor-

mation to a numeric geohash attribute and associate it to the data when being stored. 

�en, we develop a spatial query parser and define a spatial syntax as a Cassandra query 

language (CQL) spatial extension. Besides, since our lookup is based on the geohash 

attributes, we develop an aggregation algorithm for optimizing the number of queries 

to be routed to the cluster nodes. Finally we illustrate the new capability enabled in Cas-

sandra and evaluate the response time to client spatial queries using different schemes: 

sequential, asynchronous and with and without queries aggregation.

�is paper is organized as follows. the next section presents the related work. �e sec-

tion after is focusing on describing the system architecture and detailing the proposed 

approach. A benchmarking setup and performance evaluation are presented and dis-

cussed in the fourth section. We wrap up this paper with a conclusion and perspectives 

in the last section.

Related work

It is currently admitted that conventional relational databases are no longer the efficient 

option in a large and heterogeneous data environment. Alternatively, NoSQL technolo-

gies are showing better capabilities when uprising to petabyte scale and the system is 

partitioned. Indeed, the continuous growth of the data repositories hits the borders of 

the existing relational data management systems. Many other factors are driving users to 

fully or partly migrate and join the NoSQL emerging solutions including lack of flexibil-

ity and rigid schema, inability to scale out data, high latency and low performance, high 

support and maintenance costs [8].
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�e spectrum of the NoSQL is getting larger and several solutions are currently in 

place and being enhanced day after day. So far, they can fit into one of four sub cat-

egories of databases: document-stored, wide-column stored, key-value stored and graph 

oriented. Several differences and similarities exist regarding the design and features, the 

integrity, the data indexing, the distribution and the underlying compatible platforms 

[8]. Conducting analytics over big multidimensional data is another challenge that 

should be investigated within the context of NoSQL and big data emerging technologies 

[10].

Spatial search integration and data modeling in conventional databases used to be a 

hot topic since a while [11]. Currently, several conventional RDBMS and some NoSQL 

databases integrate geospatial indexing [8, 12]. Used techniques for geospatial index-

ing differ from one product to another. For instance, Galileo is a distributed hash table 

implementation where the geoavailability grid and query bitmap techniques are lever-

aged to distribute data within groups of nodes and to evaluate queries in order to reduce 

search space. �e group membership and bitmap indexes are derived from the binary 

string of the geohashes. �ese techniques show better performance compared to the 

R-tree especially for big data retrieval [13]. However, �e impact of partitioning algo-

rithm in Galileo is different of the partitioning in Cassandra. Indeed, the random parti-

tioning algorithm in Cassandra has a direct impact on the data retrieval queries. Hence, 

the grouping of nodes based on a specific criteria to store geographically closer events 

is not doable. Another scalable scheme proposed in [14] named VegaGiStore using 

multi-tier approach to store, index and retrieve spatial data within big data environment. 

�e approach is based on MapReduce paradigm to distribute and parallelize the query 

processing. �e performance of the scheme shows good results against conventional 

RDBMS such as PostGIS and Oracle Spatial. However, it remains a theoretical concept 

since no product has been publicly released [15].

System architecture and proposed approach

�e classical relational databases show their limitations facing the inevitable data set 

size, information connectivity and semi structured incoming data leading to sparse 

tables [8]. Cassandra DB could be an appropriate candidate to handle the data storage 

with the aforementioned characteristics. �e challenge in this choice is the missing of 

spatial query feature within Cassandra query language (CQL). An overview of Cassandra 

and CQL along with the proposed approach to extend its capabilities are discussed in 

the following subsections.

Cassandra DB and CQL

Cassandra is fully distributed, share nothing and highly scalable database, developed 

within Facebook and open-sourced on 2008 on Google code and accepted as Apache 

Incubator project on 2009 [16]. Cassandra DB is built based on Amazon’s Dynamo and 

Google BigTable [3]. Since that, continuous changes and development efforts have been 

carried out to enhance and extend its features. DataStax, Inc. and other companies pro-

vide customer support services and commercial grade tools integrated in an enterprise 

edition of Cassandra DB. Cassandra clusters can run on different commodity servers and 

even across multiple data centers. �is propriety gives it a linear horizontal scalability. 
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Figure  1 depicts an example of a possible physical deployment of Cassandra cluster, 

however, a logical view of the cluster is much more simple. Indeed, the nodes of the clus-

ter are seen as parts of a ring where each node contains some chunks of data. �e rows 

of data are partitioned based on their primary key. �is latter could be composed from 

two parts: the first is called partition key based on it the hash function of the partitioner 

picks the receiving node to store data. �e second part of the key is reserved for cluster-

ing and sorting the data within a given partition. A good spreading of data over a cluster 

should make a balance between two apparently conflicting goals [17]:

  • Spread data evenly across the cluster nodes;

  • Minimize the number of partitions read.

Spreading data evenly requires a fairly high cardinality in the partition key and the hash 

function output space. However, since data is scattered by partitions within the cluster 

nodes set, having a wide range of partition keys may lead to visiting more nodes for even 

simple queries and as a result, longer query response delay. In the opposite side, reduc-

ing too much the number of partitions may affect the load balancing between nodes and 

create hot-spot nodes degrading their responsiveness.

�e philosophy behind Cassandra is different from a traditional relational data-

base. Indeed, the need for a fast read and write combined with huge data handling are 

Fig. 1 Overview of a physical cross data centers Cassandra cluster. A Cassandra cluster deployment over 

three datacenters and in multiple racks. The client could connect to the cluster through any node of the 

cluster called coordinator node
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primordial in Cassandra. Hence, normalizing the data model by identifying the entity/

relationship entities are not top priorities. However, designing the data access pattern 

and the queries to be executed against the data are more valuable in the data model 

design [17]. With this perspective, the data model accepts generally redundancy and 

denormalization of stored data and allows the storage of both simple primitives data 

types and composed data types such as collections (list, set, map). Recently, CQL gives 

the user the ability to extend the native data types with customized user data types 

(UDT). Even though these UDTs are stored as blobs strings in the database, they could 

be formatted, parsed and serialized within the client side using the custom codec inter-

face [18].

�e CQL version 3 offers a new feature of user defined functions (UDF). It’s a user 

defined code that can be run into Cassandra cluster. Once created, a UDF is added to 

cluster schema and gossiped to all cluster nodes. �e UDFs are executed on queries 

result set in the coordinator node row by row. Aggregations over result set rows are also 

possible. Leveraging the UDFs to filter results returned by Cassandra engine at different 

nodes is still a challenging task. Indeed, the intention of the UDF feature developers was 

to delegate a light treatment at the cluster level on resulted rows. So far no possibilities 

to filter based on a user defined reference or value are available. Extending UDFs with 

this feature adds more flexibility of their usage and enables pushing some computation 

blocks from the client to the cluster side.

Geohashing and spatial search

�e geohash is a geocoding system which consists in mapping latitude/longitude to a 

string by interleaving bits resulting from latitude and longitude iterative computation. 

�e resulting bitstring is split into substrings of 5-bit length and mapped to 32-base 

character dictionary. Finally, a string of an arbitrary length is obtained which represents 

a rectangular area. �e longer the geohash string, the higher is the precision of the rec-

tangle. �e successive characters represent nested addresses that converge to around 3.7 

by 1.8 cm for 12 characters geohash string length [19]. For the best of our knowledge, 

Cassandra DB and its query language CQL don’t support spatial queries. Even though 

the literature presents some generic indexing and search libraries, such as Lucene-based 

elasticsearch [20] and Solr [21] java libraries. In this contribution, we tried to leverage 

the geohash technique to label and efficiently retrieve Cassandra stored rows within a 

user defined area of interest. �is behavioral extension of Cassandra and CQL is illus-

trated in Fig. 2 which details the spatial data storage and retrieval phases accomplished 

through the following three steps:

  • First, every row, when being stored, is labeled with a  numeric geohash value com-

puted based on its latitude/longitude values. �e computing of  numeric geohash 

is required in the proposed approach because of the limitation of CQL in terms of 

operators applied on the String type. Indeed, the WHERE clause of native CQL pre-

sents only equality operators for textual types. However, the range queries are not 

possible. Events associated to a zone may be addressed in a future work.

  • Second, the queried area is decomposed into geohashes of different precision levels. 

Indeed, the biggest geohash box that fits into the queried area is the first to be com-
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puted. �en, the remaining area is filled with smaller geohashes until they are fully 

covering the area of interest. Since range query is not straight-forward within space-

filling Z-order curve [22], a query aggregation algorithm for grouping neighbor geo-

hashes is developed so that the number of generated queries is optimized.

  • Finally, the original query, defined via a new spatial CQL syntax is decomposed to a 

number of queries and executed sequentially or in parallel before aggregating result 

sets and returning them to the client.

Let’s further explain the above steps. We assume that in a Cassandra cluster database, 

the stored data scheme is under the form of events generated from distributed con-

nected devices or external systems. �e events are time-stamped and location-tagged. 

During the storage phase, the event’s timestamp and location are parsed to extract 

day, month, year and compute the corresponding numeric geohash (gh_numeric). �e 

event is stored and these attributes are passed as primary key attributes: day as parti-

tion key, month and year as clustering keys and gh_numeric as either part of clustering 

keys or a secondary indexed column value. �e definition of a such primary key is effi-

cient in this specific-context where events are looked-up generally within time ranges 

and area of interest. In different context, the primary key structure may be different 

while being inline with Cassandra pattern data model design. �e conversion of geohash 

value from its string representation to numeric representation enables querying ranges 

of events based on their gh_numeric attributes. Indeed, since geohash values represent 

Fig. 2 Flowchart of the proposed approach for spatial data storage and retrieval. The flowchart depicts the 

sequence of actions and processes to store and retrieve spatially tagged data
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rectangles rather than exact geopoints location, the binary string of the geohash value is 

appended in the right side with a string of ‘0’ to get the min_value and and a list of ‘1’ to 

get the max_value representing the south–west and north-east rectangle corners values, 

respectively. Every location within this bounding rectangle has a gh_numeric between 

min_value and max_value. Hence, the spatial range query is reduced to a numeric range 

query instead of string-based query (which is allowed by CQL).

As depicted in Fig.  3, the binary representation of string geohash is extended with 

list of 0 or 1 to a predefined bit-depth to get respectively the geohash min_value and 

max_value. For example, the ths geohash has a binary representation over 15 bits (each 

character is mapped to 5 bits). If we consider the binary extension is done over 52 bits, 

the geohash value has respectively a min_value = 3592104487944192 and a max_value 

= 3592241926897663. With this approach, each geohash that fits inside ths bounding 

box, will have a geohash numeric value between the min_value and max_value. Never-

theless, the queries are not always over perfectly adjacent and ordered fences. A queried 

area could be of an arbitrary shape and the list of covering geohashes are of different 

precision.

Once a spatial query is received from the user, the original query is decomposed into 

sub-queries based on the resulting Gehashes bounding boxes. �e number of resulting 

queries might be relatively high which may increase the query response time. To reduce 

the number of queries, a query aggregation algorithm is developed, Algorithm 1, and its 

integration in the query path is illustrated in Fig. 4.

Fig. 3 Geohash and computing of numeric geohash values

Fig. 4 Queries aggregation algorithm for optimizing generated queries to be sent to Cassandra cluster
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Algorithm 1 Spatial queries aggregation algorithm

1: function Aggregate(GHs list)
2: result ← ∅

3: tmp ← ∅

4: moreSteps ← True
5: while moreSteps = True do
6: tmp ← Geohashes with same prefix from GHs list
7: if tmp[i] = tmp[j] OR tmp[i] = prefix(tmp[j]) then
8: tmp ← tmp − tmp[j] ⊲ Classify by prefix: Remove Redundancy
9: end if

10: result ← result U tmp
11: result ← Constructing Upper Geohashes if any: Grouping
12: Repeat steps 6 to 11 Until moreSteps = False
13: end while
14: Classify Geohashes by length
15: result ← Clustering ordered Geohashes and compute min/max numeric Geohashes
16: return result
17: end function

�e main function of the algorithm is the optimization of the generated sub-queries 

to be sent to the cluster and search space reduction. �e optimization is derived from 

the removal of redundant bounding boxes or nested ones. For example, if a geohash is 

contained in another one, the upper one is kept and the smallest is removed because the 

result will be in the query of the containing geohash as depicted in Fig. 5a. Also, geo-

hashes of same length could be reduced to a single geohash if their union fills its total 

content as illustrated in Fig. 5b. �e last step is the aggregation of neighbor geohashes 

that could not be reduced to an upper geohash because they partly fill its content or may 

belong to different upper geohashes but they keep a total order of their global min_value 

and max_value; �is means that no other geohash, belonging to the list of geohashes 

to be aggregated and not grouped yet, belongs to the range limited by min_value and 

max_value. �is latter case is illustrated in the Fig. 5c where the green area composed of 

seven geohashes are aggregated into three ordered sets (yellow, orange, and purple). At 

this stage, queries could be sent to the coordinator nodes based on the partition key in 

either parallel or sequential scheme.

Fig. 5 Geohashes aggregation scenarios. a Remove nested geohahses. b Groupe geohashes to an upper 

geohash. c Aggregate ordered geohashes into sets



Page 9 of 16Ben Brahim et al. J Big Data  (2016) 3:11 

Spatial search queries

For analytics purpose, several types of spatial queries could be looked up. Some of them 

cover simple area shapes, others may target more complicated ones. In the following, we 

pick up the basic three queries which can be seen as a base to compute others. But let’s 

first define the table on which we are going to write queries:

 

CREATE TABLE table_events (

day int,

month int,

year int,

gh_numeric bigint,

event_id int,

timestp timestamp,

zone_name text,

PRIMARY KEY ((day), month, year, gh_numeric));

In this schema, gh_numeric is part of the clustering key where Cassandra creates an 

index over it by default. Following, we consider three examples of spatial queries:

  • Around_me looking on a focal point is a recurrent scenario. Events around an impor-

tant point of interest where no predefined geometric shape is known could be dis-

covered by only giving a geocode location and a range or radius of circle centered 

at the point of interest. Fine or coarse grained lookup could be adjusted through the 

radius value and resulting output are retrieved accordingly. For discovery and update 

purposes, querying events around a location gives a 360° view of surrounding area. 

Following is a spatial query illustration of Around_me type where SFUNC represents 

the spatial function taking two parameters; the first is a of String type defining the 

query type. �e second parameter circle_params is a container (list) of center coor-

dinates, radius length and a maximum geohash precision value: 

  • In a given area predefined zones like countries, districts or municipalities are subject 

of frequent queries in a spatial database context. Also non-predefined areas such as 

arbitrary polygon zones could be queried. Interested scientists may want to quantify, 

aggregate and visualize statistics of some criteria in the supervised area. By providing 

a list of geocode locations forming a closed polygon, our present framework cares of 

the rest. �e following query example illustrates such syntax where polyg_params 

is a container of list of latitude/longitude pairs and a maximum geohash precision 

length: 

SELECT event_id, gh_numeric, timestp

FROM table_events

WHERE day IN (5,6,7)

AND month = 1

AND year = 2016

AND SFUNC ( SFUNC_WITHIN_CIRCLE, circle_params );
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  • In my path another type of spatial queries may be of particular importance is within 

a road segment, in the path of a tracked vehicle or maybe in a traffic stream. Try-

ing to limit the path with a polygon may be not the best option. Hence, providing 

way-points and a precision level of search could be more self-explained. �is kind 

of queries may be very useful for analytics purposes but also for real time support 

of emergency fleets. An example of In my path query syntax is following where 

path_params is a container of list of waypoints coordinates and geohash precision 

value: 

�e syntax is simple and intuitive and it conserves the native CQL syntax, which means 

native non-spatial queries could be executed either directly or through the developed 

spatial framework.

Performance evaluation

�is section describes the environment of testing and discusses the results.

Benchmark settings and dataset

In this paper we carried out our work with community distribution of Datastax Cas-

sandra v3.0.0 and with the Datastax java driver v3.0.0-beta1. �e hosting machines 

are 5-nodes cluster of 4GB of RAM running Ubuntu 14.04.1 LTS server instances. 

�ree different data sets with respectively 100 MB, 500 MB and 1 GB sizes are gener-

ated over the Umm Slal municipality in Qatar as depicted in Fig. 6. In fact, the whole 

municipality is decomposed to geo-fences of different precision lengths and generated 

events are attached to every geohash for different dates with a maximum precision 

value equal to 9 which means an accuracy of around 4.78 by 4.78 m [19] and minimum 

precision value equal to 6, around 1.2 by 0.61 km. It’s also worth to mention the usage 

of available open-source libraries exposing geographic utilities such as geotools [23] 

and guava [24] java libraries. We aim proving the feasibility of our approach to allow 

retrieving events within arbitrarily geometric defined fences, to measure their times of 

execution and to discover the impact of the stored data size on the spatial framework 

performance.

SELECT event_id, gh_numeric, timestp

FROM table_events

WHERE day IN (5,6,7)

AND month = 1

AND year = 2016

AND SFUNC ( SFUNC_WITHIN_POLYGON, polyg_params );

SELECT event_id, gh_numeric, timestp

FROM table_events

WHERE day IN (5,6,7)

AND month = 1 AND year = 2016

AND SFUNC ( SFUNC_WITHIN_PATH, path_params );
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Results and discussion

In this section, we evaluate the different scenarios of query execution for previously 

selected three spatial queries: Circle, Path and in a given Polygon. We focus as well on 

the performance of the queries aggregation algorithm in terms of reduction of the num-

ber of queries sent to the cluster nodes.

Aggregation algorithm performance

Figure 7 shows the execution time required by the spatial query pre-processing phase 

to group and aggregate the geohashes covering the target area of the query. �e graph 

illustrates the variation of both geohashes generation time and geohashes aggregation 

time for different precision levels (geohash length) against the queried area of the tar-

get zone (radius of circular zone). Values are reduced by log scale for the homogeneity 

of the graph. We could clearly notice that geohashes generation time variation is corre-

lated with variation of the aggregation time. Indeed, for small areas, the execution time 

is reduced to few milliseconds regardless the required precision. However, the execution 

time goes upward when increasing the lookup area and the precision level. �is increase 

could be explained by the way the algorithm is proceeding to compute the geohashes 

covering the queried area and the time complexity of the developed algorithm. �e bor-

ders of the circular area need higher time to define the required precision and to identify 

Fig. 6 Umm Slal municipality map in Qatar
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the geohashes fully fitting into the area from others totally or partially fitting outside the 

border.

In Table  1, the efficiency of the algorithm was assessed through quantification of 

reduction of queries routed to the coordinator node in the cluster from client applica-

tion. A circular area is queried with different radius length values and a given precision. 

Results show that up to 73 % of queries could be reduced and thus avoid to make bottle-

neck in the cluster with a flooding of queries.

Spatial queries execution time

�is subsection assesses the different scenarios of executing a spatial query within the 

present framework. Indeed, several spatial queries have been run and different combi-

nations of CQL queries and geohashes aggregation algorithm are used. �e queries are 

executed against different data set sizes. �e averaged execution time over several hits of 

each query are recorded in Tables 2, 3 and 4 for respectively 100 MB, 500 MB and 1 GB 

data sets.

Fig. 7 Geohashes aggregation algorithm performance. Execution time of both geohashes generation and 

aggregation for different precision (geohash length) levels and different circular areas measurement

Table 1 Reduction of number of spatial queries using aggregation algorithm

Circle radius and prec. Without_aggregation With_aggregation Reduction rate (%)

10 m, 9 25 9 64

100 m, 9 451 123 72

1 km, 9 5218 1371 73.7

10 km, 9 52,517 14,133 73

Table 2 Spatial query performance within a circle for 100 MB data set

Circle radius & prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 57.6 184.6 9.6 43.6

100 m, 9 773.75 2681.5 89.25 237.75

1 km, 9 7610.67 23,004 1123.83 1175.67

10 km, 9 232,494.5 224,630.5 52,851.5 5456
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All the aforementioned tables depict the execution time of spatial queries over a circu-

lar area with different radius values going from few meters up to 10 km. All the scenarios 

are with a fixed precision value of 9. �e output values show the out-performance of 

the asynchronous queries scheme versus the sequential one. Indeed, the asynchronous 

model decreases drastically the overall needed time to retrieve the result set. Besides, 

�e execution of the aggregation algorithm over the set of geohashes to be queried out-

performs the execution time and reduces as well the number of queries sent toward 

Cassandra cluster. �e continuous increase of the target area increases the queries 

generation and aggregation time as already learned from the above aggregation perfor-

mance graph. Hence, the spatial query execution time for asynchronous queries with 

aggregation may exceed the non-aggregated scenario when reaching big areas, 10 km 

circle radius length, for instance. Nevertheless, it’s still lower than the sequential sce-

nario regardless using aggregation or not. As a learned lesson, it is recommended to use 

asynchronous model all the time. However, special care should be given to the advan-

tages (reducing the sent queries to the cluster and avoid making hotspot nodes) and the 

cost (longer execution time) of using the aggregation algorithm especially when dealing 

with big areas.

Tables 5, 6 and 7 present the execution time of a queried path. �e compared query 

schemes are also different combinations of sequential, asynchronous and with or with-

out aggregation algorithm. �e shape of the queried area is simple and the framework is 

able to quickly generate and aggregate the resulting geohashes. As a result, the impact of 

Table 3 Spatial query performance within a circle for 500 MB data set

Circle radius & prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 51.4 171.2 10 28.2

100 m, 9 743 2213.75 52.75 243.5

1 km, 9 7520.17 22,401.5 1029.33 1123.67

10 km, 9 235,558.5 243,333 61,656 5731.5

Table 4 Spatial query performance within a circle for 1 GB data set

Circle radius and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 52.2 167 6 35.2

100 m, 9 700.75 2320.5 76 205.25

1 km, 9 7803.5 23,151.67 1042.17 996.5

10 km, 9 237,636.33 238,607.33 53,568.67 5687

Table 5 Spatial query performance within a path for 100 MB data set

Path length and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 19.6 35.8 2.6 12.2

100 m, 9 92.8 257 21.2 44.8

1 km, 9 1024.33 2082.67 73.33 153.17

10 km, 9 6515.8 13,657.4 368.4 784.6
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aggregation and asynchronous scenario is more clear in terms of response time reduc-

tion. �is enhancement in response time is identified for all the tested paths. Indeed, for 

10 km-long path, the query response time is around 38 times faster when using spatial 

aggregation and asynchronous queries. Another observation which is almost valid to all 

the tested spatial queries is the limited impact of the data set size. Indeed, one of the 

fundamental propriety of Cassandra is that it scales linearly by simply adding commod-

ity server nodes. Hence, the developed framework scales well with the data set size.

Finally, the spatial polygon-based query in the developed framework is evaluated are 

results are given in Tables 8, 9 and 10. Measurement results are averaged over several 

executions for different polygon dimensions and with different geohash precision val-

ues. �e spatial queries have been executed as well against different data set sizes. It’s 

then clear the enhancement of the response time by using the asynchronous mode and 

executing the spatial aggregation algorithm compared to other schemes. By focusing 

on the column AS_AGG, for asynchronous with aggregation, an effective time reduc-

tion of about 70 times is noticed against a normal scenario not using these enhancement 

Table 6 Spatial query performance within a path for 500 MB data set

Path length and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 27.4 45.6 3 15.6

100 m, 9 130.6 361.8 22.2 53

1 km, 9 1097.67 2200.5 63.67 180.33

10 km, 9 5282.2 13109.4 372.2 562.2

Table 7 Spatial query performance within a path for 1 GB data set

Path length and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 24.4 34.6 2.6 8.4

100 m, 9 118 316.8 19.6 43.6

1 km, 9 1072.6 2221 51.2 133.6

10 km, 9 5929.8 13260.8 347.8 557

Table 8 Spatial query performance within a polygon for 100 MB data set

Polyg and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

(140 m; 150 m), 8 55 98.8 7 23.4

(1.10 km; 0.61 km), 7 54.4 91.6 6.4 19.8

(4.42 km; 4.87 km), 7 949.5 3719.17 62.67 238.83

(9.73 km; 8.84 km), 7 2071.4 7985.4 115.8 454.2

Table 9 Spatial query performance within a polygon for 500 MB data set

Polyg and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

(140 m; 150 m), 8 60.4 104 8 23.4

(1.10 km; 0.61 km), 7 67.6 98.2 8 22.2

(4.42 km; 4.87 km), 7 1050.33 3946.67 79 205.83

(9.73 km; 8.84 km), 7 2243.6 8459.8 131.6 398
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features. �e increase of the queried area keeps the asynchronous model with aggrega-

tion showing the best performance and this is due to the regular, rectangular, shape of 

the area.

Conclusion

�is paper tackles the spatial data retrieval within Cassandra NoSQL database. For this 

goal, a framework is designed and implemented to extend the CQL with spatial que-

ries. Indeed, a CQL-like syntax is defined to enable spatial functions while keeping the 

native CQL query syntax. �e developed framework is tested against different data set 

sizes. �e evaluation outcomes confirm the efficiency of using an aggregation algorithm 

in order to reduce the number of queries sent to the cluster and avoid making hot-spot 

nodes, despite its extra cost in terms of execution time. �e importance of paralleling 

queries in non-blocking way to avoid unnecessary idle time is also highlighted through 

the performance results.

A learned lesson is that irregular area shapes might cause a longer time to compute the 

covering geohashes and to aggregate them. In this case, the user is invited to make deci-

sion based on its interest in either speeding up the query execution time or reducing the 

number of routed queries to the cluster.

We believe that presented framework could be a basic component of the big data sys-

tem that we are building to support the data collection and management for the con-

nected vehicles and distributed devices managed by Qatar Mobility Innovations Center 

(QMIC).

In our perspectives, we plan to extend Cassandra with two features: �e first one is to 

enable the table creation query defining the attributes based on them numeric geohashes 

should be computed as part of the schema. �e second one is to add the ability to gener-

ate numeric geohashes for already saved data in the background compaction process.
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Table 10 Spatial query performance within a polygon for 1 GB data set

Polyg and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

(140 m;150 m), 8 59.6 106.8 8.2 18.4

(1.10 km;0.61 km), 7 59.4 97.6 7 19.8

(4.42 km;4.87 km), 7 1024.5 3755 59.5 199.5

(9.73 km;8.84 km), 7 2201 8398.6 161.8 499.8



Page 16 of 16Ben Brahim et al. J Big Data  (2016) 3:11 

References

 1. Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin J, Aharon D. McKinsey Global Institute —the internet of 

things: mapping the value beyond the hype. http://www.mckinsey.com/insights/business_technology/the_inter-

net_of _things_the_value_of_digitizing_the_physical_world. Accessed 01 Mar 2016.

 2. Drira W, Filali F. Ndn-q: an ndn query mechanism for efficient v2x data collection. IEEE 11th annual international 

conference on sensing, communication, and networking workshops (SECON Workshops); 2014

 3. Lakhshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Syst Rev. 

2010;44(2):35–40.

 4. MongoDB, WG.: MongoDB. https://www.mongodb.org/. Accessed 1 Mar 2016

 5. Robinson I, Webber J, Eifrem E. Graph databases: new opportunities for connected data. Sebastopol: O’Reilly Media; 

2015.

 6. Redis WG. Redis. http://redis.io/. Accessed 1 Mar 2016.

 7. Google WG. Google trends. https://www.google.fr/trends/explore#q=NoSQL%2C%20RDBMS&cmpt=q&tz=Etc%2F

GMT-3. Accessed 1 Mar 2016.

 8. Moniruzzaman AB, Hossain SA. Nosql database: new era of databases for big data analytics—classification, charac-

teristics and comparison. Int J Database Theor Appl. 2013;6(4):1–13.

 9. Geohash WG. Geohash. https://www.en.wikipedia.org/wiki/Geohash. Accessed 1 Mar 2016.

 10. Cuzzocrea A, Song IY, Davis KC. Analytics over large-scale multidimentional data: the big data reveolution. Glasgow: 

DOLAP’11; 2011.

 11. Samet H, Aref WG. Spatial data models and query processing. Modern database systems: the object model, interop-

erability, and beyond. Reading: Addison Wesley/ACM Press; 1994.

 12. Oracle WG. Oralce spatial developer’s guide. https://www.docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.

htm. Accessed 1 Mar 2016.

 13. Malensek M, Pallickara S, Pallickara S. Polygon-based query evaluation over geospatial data using distributed hash 

tables. UCC ’13 Proceedings of the 2013 IEEE/ACM 6th international conference on utility and cloud computing; 

2013. p. 219–226.

 14. Zhong Y, Han J, Zhang T, Li Z, Fang J, Chen G. Towards parallel spatial query processing for big spatial data. IEEE 26th 

International parallel and distributed processing symposium workshops and PhD forum; 2012.

 15. Arnold T. An entropy maximizing geohash for distributed spatiotemporal database indexing. arXiv:1506.05158v1 [cs.

DB]; 2015

 16. Tutorialspoint WS. Cassandra—Introduction. http://www.tutorialspoint.com/cassandra/cassandra_introduction.

htm. Accessed 1 Mar 2016.

 17. Hobbs T. Basic rules of Cassandra data modeling. http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-

modeling. Accessed 1 Mar 2016.

 18. Datastax WG. Basic rules of Cassandra data modeling. https://www.datastax.github.io/java-driver/features/custom_

codecs/. Accessed 1 Mar 2016.

 19. ElasticSearch WG. Geohashes. https://www.elastic.co/guide/en/elasticsearch/guide/current/geohashes.html. 

Accessed 1 Mar 2016.

 20. ElasticSearch WG. Elastic Java API. https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.

html. Accessed 1 Mar 2016.

 21. Solr WG. Apache Solr. http://www.lucene.apache.org/solr/. Accessed 1 Mar 2016.

 22. Wikipedia: Z-order curve. https://www.en.wikipedia.org/wiki/Z-order_curve. Accessed 1 Mar 2016.

 23. Geotools WG. GeoTools the open source java GIS toolkit. http://www.geotools.org/. Accessed 1 Mar 2016.

 24. Guava WG. Guava: Google core libraries for java. https://www.github.com/google/guava. Accessed 1 Mar 2016.

http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
https://www.mongodb.org/
http://redis.io/
https://www.google.fr/trends/explore#q=NoSQL%2C%20RDBMS&cmpt=q&tz=Etc%2FGMT-3
https://www.google.fr/trends/explore#q=NoSQL%2C%20RDBMS&cmpt=q&tz=Etc%2FGMT-3
https://www.en.wikipedia.org/wiki/Geohash
https://www.docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.htm
https://www.docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.htm
http://www.arxiv.org/abs/1506.05158v1
http://www.tutorialspoint.com/cassandra/cassandra_introduction.htm
http://www.tutorialspoint.com/cassandra/cassandra_introduction.htm
http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling
http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling
https://www.datastax.github.io/java-driver/features/custom_codecs/
https://www.datastax.github.io/java-driver/features/custom_codecs/
https://www.elastic.co/guide/en/elasticsearch/guide/current/geohashes.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/ind
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/ind
http://www.lucene.apache.org/solr/
https://www.en.wikipedia.org/wiki/Z-order_curve
http://www.geotools.org/
https://www.github.com/google/guava

	Spatial data extension for Cassandra NoSQL database
	Abstract 
	Background
	Related work
	System architecture and proposed approach
	Cassandra DB and CQL
	Geohashing and spatial search
	Spatial search queries

	Performance evaluation
	Benchmark settings and dataset
	Results and discussion
	Aggregation algorithm performance
	Spatial queries execution time


	Conclusion
	Authors’ contributions
	References


