
Spatial data extension for Cassandra
NoSQL database

Mohamed Ben Brahim1* , Wassim Drira1, Fethi Filali1 and Noureddine Hamdi2

Background

�e proliferation of mobile applications and the widespread of hardware sensing devices

increase the streamed data towards the hosting data-centers. �is increase causes a

flooding of data. Taking benefits from these massive dataset stores is a key point in cre-

ating deep insights for analysts in order to enhance system productivity and to capture

new business opportunities. �e inter-connected systems are sweeping almost all sec-

tors forming what’s called today Internet of �ings. �ese changes will have a big impact

in the foreseeable future. Estimations say that the economic share of the internet of

things will reach 11 % of the world economy by 2025 [1]. From the human health and

fitness supervising, passing by smart-grids supply chains control and reaching intelli-

gent transportation systems (ITS) monitoring, the generated data is becoming more and

more context-oriented. Indeed, embedded applications send data associated to a loca-

tion and time information. In ITS, for instance, the moving vehicles and the road side

units (RSU) will be continuously broadcasting traffic-related and location-tagged pack-

ets. �e produced data are underpinning different kinds of applications such as safety

related, traffic efficiency and value-added services. �e huge size of received and stored

datasets might be more or less homogeneous. Moreover, data could be either structured

or semi-structured. �e data handling requirements are beyond the capabilities of the

traditional data management systems. �e community are currently aware of the added-

value that could be derived from processing and analyzing big datasets. Surveys showed

that less than 1 % of data are currently used for real-time control and a good opportunity

Abstract

The big data phenomenon is becoming a fact. Continuous increase of digitization

and connecting devices to Internet are making current solutions and services smarter,

richer and more personalized. The emergence of the NoSQL databases, like Cassandra,

with their massive scalability and high availability encourages us to investigate the

management of the stored data within such storage system. In our present work, we

harness the geohashing technique to enable spatial queries as extension to Cassandra

query language capabilities while preserving the native syntax. The developed frame-

work showed the feasibility of this approach where basic spatial queries are under-

pinned and the query response time is reduced by up to 70 times for a fairly large area.

Keywords: Big data, Spatial query, Geohash, Cassandra DB, NoSQL databases

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Ben Brahim et al. J Big Data (2016) 3:11

DOI 10.1186/s40537-016-0045-4

*Correspondence:

mohamedb@qmic.com
1 Qatar Mobility Innovations

Center, Qatar Science

and Technology Park,

210531 Doha, Qatar

Full list of author information

is available at the end of the

article

http://orcid.org/0000-0003-3442-9086
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-016-0045-4&domain=pdf

Page 2 of 16Ben Brahim et al. J Big Data (2016) 3:11

for performance and prediction might be addressed using the remaining data [1]. Differ-

ent frameworks are being investigated to deal with these new requirements at the stor-

age layer, but also at the processing, analysis and visualization layers.

As an illustration of the data scale, data collected in the ITS for example by a single

RSU could exceed 100 GB per day [2]. Hence, for a city or a country-scale deployment

we could easily reach the petabyte scales in the first year. �e management of this data

requires innovating models. �e NoSQL Not only SQL data management systems are

standing for these new challenges. Indeed, Cassandra [3], MongoDB [4], Neo4J [5] and

Redis [6] are, among others, too much dealt with in the research and business commu-

nities in the last period. A quick look on Google trends [7] comparing NoSQL versus

RDBMS shows clearly the trends of both terms.

�ese new promising NoSQL solutions are not really suited for transaction queries

so far. Indeed, the integrity model of data in the relational database systems assured by

atomicity, consistency, integrity, and durability (ACID) proprieties is not possible to be

applied when scaling out data. Regarding the NoSQL databases, it was proven that a

database could have maximum two out of the consistency, availability, partition-toler-

ance proprieties (CAP) [8].

In this work, we are investigating a missing feature in Cassandra NoSQL database

which is the spatial data indexing and retrieval. Indeed, most of this category of data-

bases are not supporting geospatial indexes and hence spatial queries [8].

Our research contribution in this paper could be summarized as follows; We index

stored data using geohashing technique [9] by converting the latitude/longitude infor-

mation to a numeric geohash attribute and associate it to the data when being stored.

�en, we develop a spatial query parser and define a spatial syntax as a Cassandra query

language (CQL) spatial extension. Besides, since our lookup is based on the geohash

attributes, we develop an aggregation algorithm for optimizing the number of queries

to be routed to the cluster nodes. Finally we illustrate the new capability enabled in Cas-

sandra and evaluate the response time to client spatial queries using different schemes:

sequential, asynchronous and with and without queries aggregation.

�is paper is organized as follows. the next section presents the related work. �e sec-

tion after is focusing on describing the system architecture and detailing the proposed

approach. A benchmarking setup and performance evaluation are presented and dis-

cussed in the fourth section. We wrap up this paper with a conclusion and perspectives

in the last section.

Related work

It is currently admitted that conventional relational databases are no longer the efficient

option in a large and heterogeneous data environment. Alternatively, NoSQL technolo-

gies are showing better capabilities when uprising to petabyte scale and the system is

partitioned. Indeed, the continuous growth of the data repositories hits the borders of

the existing relational data management systems. Many other factors are driving users to

fully or partly migrate and join the NoSQL emerging solutions including lack of flexibil-

ity and rigid schema, inability to scale out data, high latency and low performance, high

support and maintenance costs [8].

Page 3 of 16Ben Brahim et al. J Big Data (2016) 3:11

�e spectrum of the NoSQL is getting larger and several solutions are currently in

place and being enhanced day after day. So far, they can fit into one of four sub cat-

egories of databases: document-stored, wide-column stored, key-value stored and graph

oriented. Several differences and similarities exist regarding the design and features, the

integrity, the data indexing, the distribution and the underlying compatible platforms

[8]. Conducting analytics over big multidimensional data is another challenge that

should be investigated within the context of NoSQL and big data emerging technologies

[10].

Spatial search integration and data modeling in conventional databases used to be a

hot topic since a while [11]. Currently, several conventional RDBMS and some NoSQL

databases integrate geospatial indexing [8, 12]. Used techniques for geospatial index-

ing differ from one product to another. For instance, Galileo is a distributed hash table

implementation where the geoavailability grid and query bitmap techniques are lever-

aged to distribute data within groups of nodes and to evaluate queries in order to reduce

search space. �e group membership and bitmap indexes are derived from the binary

string of the geohashes. �ese techniques show better performance compared to the

R-tree especially for big data retrieval [13]. However, �e impact of partitioning algo-

rithm in Galileo is different of the partitioning in Cassandra. Indeed, the random parti-

tioning algorithm in Cassandra has a direct impact on the data retrieval queries. Hence,

the grouping of nodes based on a specific criteria to store geographically closer events

is not doable. Another scalable scheme proposed in [14] named VegaGiStore using

multi-tier approach to store, index and retrieve spatial data within big data environment.

�e approach is based on MapReduce paradigm to distribute and parallelize the query

processing. �e performance of the scheme shows good results against conventional

RDBMS such as PostGIS and Oracle Spatial. However, it remains a theoretical concept

since no product has been publicly released [15].

System architecture and proposed approach

�e classical relational databases show their limitations facing the inevitable data set

size, information connectivity and semi structured incoming data leading to sparse

tables [8]. Cassandra DB could be an appropriate candidate to handle the data storage

with the aforementioned characteristics. �e challenge in this choice is the missing of

spatial query feature within Cassandra query language (CQL). An overview of Cassandra

and CQL along with the proposed approach to extend its capabilities are discussed in

the following subsections.

Cassandra DB and CQL

Cassandra is fully distributed, share nothing and highly scalable database, developed

within Facebook and open-sourced on 2008 on Google code and accepted as Apache

Incubator project on 2009 [16]. Cassandra DB is built based on Amazon’s Dynamo and

Google BigTable [3]. Since that, continuous changes and development efforts have been

carried out to enhance and extend its features. DataStax, Inc. and other companies pro-

vide customer support services and commercial grade tools integrated in an enterprise

edition of Cassandra DB. Cassandra clusters can run on different commodity servers and

even across multiple data centers. �is propriety gives it a linear horizontal scalability.

Page 4 of 16Ben Brahim et al. J Big Data (2016) 3:11

Figure 1 depicts an example of a possible physical deployment of Cassandra cluster,

however, a logical view of the cluster is much more simple. Indeed, the nodes of the clus-

ter are seen as parts of a ring where each node contains some chunks of data. �e rows

of data are partitioned based on their primary key. �is latter could be composed from

two parts: the first is called partition key based on it the hash function of the partitioner

picks the receiving node to store data. �e second part of the key is reserved for cluster-

ing and sorting the data within a given partition. A good spreading of data over a cluster

should make a balance between two apparently conflicting goals [17]:

 • Spread data evenly across the cluster nodes;

 • Minimize the number of partitions read.

Spreading data evenly requires a fairly high cardinality in the partition key and the hash

function output space. However, since data is scattered by partitions within the cluster

nodes set, having a wide range of partition keys may lead to visiting more nodes for even

simple queries and as a result, longer query response delay. In the opposite side, reduc-

ing too much the number of partitions may affect the load balancing between nodes and

create hot-spot nodes degrading their responsiveness.

�e philosophy behind Cassandra is different from a traditional relational data-

base. Indeed, the need for a fast read and write combined with huge data handling are

Fig. 1 Overview of a physical cross data centers Cassandra cluster. A Cassandra cluster deployment over

three datacenters and in multiple racks. The client could connect to the cluster through any node of the

cluster called coordinator node

Page 5 of 16Ben Brahim et al. J Big Data (2016) 3:11

primordial in Cassandra. Hence, normalizing the data model by identifying the entity/

relationship entities are not top priorities. However, designing the data access pattern

and the queries to be executed against the data are more valuable in the data model

design [17]. With this perspective, the data model accepts generally redundancy and

denormalization of stored data and allows the storage of both simple primitives data

types and composed data types such as collections (list, set, map). Recently, CQL gives

the user the ability to extend the native data types with customized user data types

(UDT). Even though these UDTs are stored as blobs strings in the database, they could

be formatted, parsed and serialized within the client side using the custom codec inter-

face [18].

�e CQL version 3 offers a new feature of user defined functions (UDF). It’s a user

defined code that can be run into Cassandra cluster. Once created, a UDF is added to

cluster schema and gossiped to all cluster nodes. �e UDFs are executed on queries

result set in the coordinator node row by row. Aggregations over result set rows are also

possible. Leveraging the UDFs to filter results returned by Cassandra engine at different

nodes is still a challenging task. Indeed, the intention of the UDF feature developers was

to delegate a light treatment at the cluster level on resulted rows. So far no possibilities

to filter based on a user defined reference or value are available. Extending UDFs with

this feature adds more flexibility of their usage and enables pushing some computation

blocks from the client to the cluster side.

Geohashing and spatial search

�e geohash is a geocoding system which consists in mapping latitude/longitude to a

string by interleaving bits resulting from latitude and longitude iterative computation.

�e resulting bitstring is split into substrings of 5-bit length and mapped to 32-base

character dictionary. Finally, a string of an arbitrary length is obtained which represents

a rectangular area. �e longer the geohash string, the higher is the precision of the rec-

tangle. �e successive characters represent nested addresses that converge to around 3.7

by 1.8 cm for 12 characters geohash string length [19]. For the best of our knowledge,

Cassandra DB and its query language CQL don’t support spatial queries. Even though

the literature presents some generic indexing and search libraries, such as Lucene-based

elasticsearch [20] and Solr [21] java libraries. In this contribution, we tried to leverage

the geohash technique to label and efficiently retrieve Cassandra stored rows within a

user defined area of interest. �is behavioral extension of Cassandra and CQL is illus-

trated in Fig. 2 which details the spatial data storage and retrieval phases accomplished

through the following three steps:

 • First, every row, when being stored, is labeled with a numeric geohash value com-

puted based on its latitude/longitude values. �e computing of numeric geohash

is required in the proposed approach because of the limitation of CQL in terms of

operators applied on the String type. Indeed, the WHERE clause of native CQL pre-

sents only equality operators for textual types. However, the range queries are not

possible. Events associated to a zone may be addressed in a future work.

 • Second, the queried area is decomposed into geohashes of different precision levels.

Indeed, the biggest geohash box that fits into the queried area is the first to be com-

Page 6 of 16Ben Brahim et al. J Big Data (2016) 3:11

puted. �en, the remaining area is filled with smaller geohashes until they are fully

covering the area of interest. Since range query is not straight-forward within space-

filling Z-order curve [22], a query aggregation algorithm for grouping neighbor geo-

hashes is developed so that the number of generated queries is optimized.

 • Finally, the original query, defined via a new spatial CQL syntax is decomposed to a

number of queries and executed sequentially or in parallel before aggregating result

sets and returning them to the client.

Let’s further explain the above steps. We assume that in a Cassandra cluster database,

the stored data scheme is under the form of events generated from distributed con-

nected devices or external systems. �e events are time-stamped and location-tagged.

During the storage phase, the event’s timestamp and location are parsed to extract

day, month, year and compute the corresponding numeric geohash (gh_numeric). �e

event is stored and these attributes are passed as primary key attributes: day as parti-

tion key, month and year as clustering keys and gh_numeric as either part of clustering

keys or a secondary indexed column value. �e definition of a such primary key is effi-

cient in this specific-context where events are looked-up generally within time ranges

and area of interest. In different context, the primary key structure may be different

while being inline with Cassandra pattern data model design. �e conversion of geohash

value from its string representation to numeric representation enables querying ranges

of events based on their gh_numeric attributes. Indeed, since geohash values represent

Fig. 2 Flowchart of the proposed approach for spatial data storage and retrieval. The flowchart depicts the

sequence of actions and processes to store and retrieve spatially tagged data

Page 7 of 16Ben Brahim et al. J Big Data (2016) 3:11

rectangles rather than exact geopoints location, the binary string of the geohash value is

appended in the right side with a string of ‘0’ to get the min_value and and a list of ‘1’ to

get the max_value representing the south–west and north-east rectangle corners values,

respectively. Every location within this bounding rectangle has a gh_numeric between

min_value and max_value. Hence, the spatial range query is reduced to a numeric range

query instead of string-based query (which is allowed by CQL).

As depicted in Fig. 3, the binary representation of string geohash is extended with

list of 0 or 1 to a predefined bit-depth to get respectively the geohash min_value and

max_value. For example, the ths geohash has a binary representation over 15 bits (each

character is mapped to 5 bits). If we consider the binary extension is done over 52 bits,

the geohash value has respectively a min_value = 3592104487944192 and a max_value

= 3592241926897663. With this approach, each geohash that fits inside ths bounding

box, will have a geohash numeric value between the min_value and max_value. Never-

theless, the queries are not always over perfectly adjacent and ordered fences. A queried

area could be of an arbitrary shape and the list of covering geohashes are of different

precision.

Once a spatial query is received from the user, the original query is decomposed into

sub-queries based on the resulting Gehashes bounding boxes. �e number of resulting

queries might be relatively high which may increase the query response time. To reduce

the number of queries, a query aggregation algorithm is developed, Algorithm 1, and its

integration in the query path is illustrated in Fig. 4.

Fig. 3 Geohash and computing of numeric geohash values

Fig. 4 Queries aggregation algorithm for optimizing generated queries to be sent to Cassandra cluster

Page 8 of 16Ben Brahim et al. J Big Data (2016) 3:11

Algorithm 1 Spatial queries aggregation algorithm

1: function Aggregate(GHs list)
2: result ← ∅

3: tmp ← ∅

4: moreSteps ← True
5: while moreSteps = True do
6: tmp ← Geohashes with same prefix from GHs list
7: if tmp[i] = tmp[j] OR tmp[i] = prefix(tmp[j]) then
8: tmp ← tmp − tmp[j] ⊲ Classify by prefix: Remove Redundancy
9: end if

10: result ← result U tmp
11: result ← Constructing Upper Geohashes if any: Grouping
12: Repeat steps 6 to 11 Until moreSteps = False
13: end while
14: Classify Geohashes by length
15: result ← Clustering ordered Geohashes and compute min/max numeric Geohashes
16: return result
17: end function

�e main function of the algorithm is the optimization of the generated sub-queries

to be sent to the cluster and search space reduction. �e optimization is derived from

the removal of redundant bounding boxes or nested ones. For example, if a geohash is

contained in another one, the upper one is kept and the smallest is removed because the

result will be in the query of the containing geohash as depicted in Fig. 5a. Also, geo-

hashes of same length could be reduced to a single geohash if their union fills its total

content as illustrated in Fig. 5b. �e last step is the aggregation of neighbor geohashes

that could not be reduced to an upper geohash because they partly fill its content or may

belong to different upper geohashes but they keep a total order of their global min_value

and max_value; �is means that no other geohash, belonging to the list of geohashes

to be aggregated and not grouped yet, belongs to the range limited by min_value and

max_value. �is latter case is illustrated in the Fig. 5c where the green area composed of

seven geohashes are aggregated into three ordered sets (yellow, orange, and purple). At

this stage, queries could be sent to the coordinator nodes based on the partition key in

either parallel or sequential scheme.

Fig. 5 Geohashes aggregation scenarios. a Remove nested geohahses. b Groupe geohashes to an upper

geohash. c Aggregate ordered geohashes into sets

Page 9 of 16Ben Brahim et al. J Big Data (2016) 3:11

Spatial search queries

For analytics purpose, several types of spatial queries could be looked up. Some of them

cover simple area shapes, others may target more complicated ones. In the following, we

pick up the basic three queries which can be seen as a base to compute others. But let’s

first define the table on which we are going to write queries:

CREATE TABLE table_events (

day int,

month int,

year int,

gh_numeric bigint,

event_id int,

timestp timestamp,

zone_name text,

PRIMARY KEY ((day), month, year, gh_numeric));

In this schema, gh_numeric is part of the clustering key where Cassandra creates an

index over it by default. Following, we consider three examples of spatial queries:

 • Around_me looking on a focal point is a recurrent scenario. Events around an impor-

tant point of interest where no predefined geometric shape is known could be dis-

covered by only giving a geocode location and a range or radius of circle centered

at the point of interest. Fine or coarse grained lookup could be adjusted through the

radius value and resulting output are retrieved accordingly. For discovery and update

purposes, querying events around a location gives a 360° view of surrounding area.

Following is a spatial query illustration of Around_me type where SFUNC represents

the spatial function taking two parameters; the first is a of String type defining the

query type. �e second parameter circle_params is a container (list) of center coor-

dinates, radius length and a maximum geohash precision value:

 • In a given area predefined zones like countries, districts or municipalities are subject

of frequent queries in a spatial database context. Also non-predefined areas such as

arbitrary polygon zones could be queried. Interested scientists may want to quantify,

aggregate and visualize statistics of some criteria in the supervised area. By providing

a list of geocode locations forming a closed polygon, our present framework cares of

the rest. �e following query example illustrates such syntax where polyg_params

is a container of list of latitude/longitude pairs and a maximum geohash precision

length:

SELECT event_id, gh_numeric, timestp

FROM table_events

WHERE day IN (5,6,7)

AND month = 1

AND year = 2016

AND SFUNC (SFUNC_WITHIN_CIRCLE, circle_params);

Page 10 of 16Ben Brahim et al. J Big Data (2016) 3:11

 • In my path another type of spatial queries may be of particular importance is within

a road segment, in the path of a tracked vehicle or maybe in a traffic stream. Try-

ing to limit the path with a polygon may be not the best option. Hence, providing

way-points and a precision level of search could be more self-explained. �is kind

of queries may be very useful for analytics purposes but also for real time support

of emergency fleets. An example of In my path query syntax is following where

path_params is a container of list of waypoints coordinates and geohash precision

value:

�e syntax is simple and intuitive and it conserves the native CQL syntax, which means

native non-spatial queries could be executed either directly or through the developed

spatial framework.

Performance evaluation

�is section describes the environment of testing and discusses the results.

Benchmark settings and dataset

In this paper we carried out our work with community distribution of Datastax Cas-

sandra v3.0.0 and with the Datastax java driver v3.0.0-beta1. �e hosting machines

are 5-nodes cluster of 4GB of RAM running Ubuntu 14.04.1 LTS server instances.

�ree different data sets with respectively 100 MB, 500 MB and 1 GB sizes are gener-

ated over the Umm Slal municipality in Qatar as depicted in Fig. 6. In fact, the whole

municipality is decomposed to geo-fences of different precision lengths and generated

events are attached to every geohash for different dates with a maximum precision

value equal to 9 which means an accuracy of around 4.78 by 4.78 m [19] and minimum

precision value equal to 6, around 1.2 by 0.61 km. It’s also worth to mention the usage

of available open-source libraries exposing geographic utilities such as geotools [23]

and guava [24] java libraries. We aim proving the feasibility of our approach to allow

retrieving events within arbitrarily geometric defined fences, to measure their times of

execution and to discover the impact of the stored data size on the spatial framework

performance.

SELECT event_id, gh_numeric, timestp

FROM table_events

WHERE day IN (5,6,7)

AND month = 1

AND year = 2016

AND SFUNC (SFUNC_WITHIN_POLYGON, polyg_params);

SELECT event_id, gh_numeric, timestp

FROM table_events

WHERE day IN (5,6,7)

AND month = 1 AND year = 2016

AND SFUNC (SFUNC_WITHIN_PATH, path_params);

Page 11 of 16Ben Brahim et al. J Big Data (2016) 3:11

Results and discussion

In this section, we evaluate the different scenarios of query execution for previously

selected three spatial queries: Circle, Path and in a given Polygon. We focus as well on

the performance of the queries aggregation algorithm in terms of reduction of the num-

ber of queries sent to the cluster nodes.

Aggregation algorithm performance

Figure 7 shows the execution time required by the spatial query pre-processing phase

to group and aggregate the geohashes covering the target area of the query. �e graph

illustrates the variation of both geohashes generation time and geohashes aggregation

time for different precision levels (geohash length) against the queried area of the tar-

get zone (radius of circular zone). Values are reduced by log scale for the homogeneity

of the graph. We could clearly notice that geohashes generation time variation is corre-

lated with variation of the aggregation time. Indeed, for small areas, the execution time

is reduced to few milliseconds regardless the required precision. However, the execution

time goes upward when increasing the lookup area and the precision level. �is increase

could be explained by the way the algorithm is proceeding to compute the geohashes

covering the queried area and the time complexity of the developed algorithm. �e bor-

ders of the circular area need higher time to define the required precision and to identify

Fig. 6 Umm Slal municipality map in Qatar

Page 12 of 16Ben Brahim et al. J Big Data (2016) 3:11

the geohashes fully fitting into the area from others totally or partially fitting outside the

border.

In Table 1, the efficiency of the algorithm was assessed through quantification of

reduction of queries routed to the coordinator node in the cluster from client applica-

tion. A circular area is queried with different radius length values and a given precision.

Results show that up to 73 % of queries could be reduced and thus avoid to make bottle-

neck in the cluster with a flooding of queries.

Spatial queries execution time

�is subsection assesses the different scenarios of executing a spatial query within the

present framework. Indeed, several spatial queries have been run and different combi-

nations of CQL queries and geohashes aggregation algorithm are used. �e queries are

executed against different data set sizes. �e averaged execution time over several hits of

each query are recorded in Tables 2, 3 and 4 for respectively 100 MB, 500 MB and 1 GB

data sets.

Fig. 7 Geohashes aggregation algorithm performance. Execution time of both geohashes generation and

aggregation for different precision (geohash length) levels and different circular areas measurement

Table 1 Reduction of number of spatial queries using aggregation algorithm

Circle radius and prec. Without_aggregation With_aggregation Reduction rate (%)

10 m, 9 25 9 64

100 m, 9 451 123 72

1 km, 9 5218 1371 73.7

10 km, 9 52,517 14,133 73

Table 2 Spatial query performance within a circle for 100 MB data set

Circle radius & prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 57.6 184.6 9.6 43.6

100 m, 9 773.75 2681.5 89.25 237.75

1 km, 9 7610.67 23,004 1123.83 1175.67

10 km, 9 232,494.5 224,630.5 52,851.5 5456

Page 13 of 16Ben Brahim et al. J Big Data (2016) 3:11

All the aforementioned tables depict the execution time of spatial queries over a circu-

lar area with different radius values going from few meters up to 10 km. All the scenarios

are with a fixed precision value of 9. �e output values show the out-performance of

the asynchronous queries scheme versus the sequential one. Indeed, the asynchronous

model decreases drastically the overall needed time to retrieve the result set. Besides,

�e execution of the aggregation algorithm over the set of geohashes to be queried out-

performs the execution time and reduces as well the number of queries sent toward

Cassandra cluster. �e continuous increase of the target area increases the queries

generation and aggregation time as already learned from the above aggregation perfor-

mance graph. Hence, the spatial query execution time for asynchronous queries with

aggregation may exceed the non-aggregated scenario when reaching big areas, 10 km

circle radius length, for instance. Nevertheless, it’s still lower than the sequential sce-

nario regardless using aggregation or not. As a learned lesson, it is recommended to use

asynchronous model all the time. However, special care should be given to the advan-

tages (reducing the sent queries to the cluster and avoid making hotspot nodes) and the

cost (longer execution time) of using the aggregation algorithm especially when dealing

with big areas.

Tables 5, 6 and 7 present the execution time of a queried path. �e compared query

schemes are also different combinations of sequential, asynchronous and with or with-

out aggregation algorithm. �e shape of the queried area is simple and the framework is

able to quickly generate and aggregate the resulting geohashes. As a result, the impact of

Table 3 Spatial query performance within a circle for 500 MB data set

Circle radius & prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 51.4 171.2 10 28.2

100 m, 9 743 2213.75 52.75 243.5

1 km, 9 7520.17 22,401.5 1029.33 1123.67

10 km, 9 235,558.5 243,333 61,656 5731.5

Table 4 Spatial query performance within a circle for 1 GB data set

Circle radius and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 52.2 167 6 35.2

100 m, 9 700.75 2320.5 76 205.25

1 km, 9 7803.5 23,151.67 1042.17 996.5

10 km, 9 237,636.33 238,607.33 53,568.67 5687

Table 5 Spatial query performance within a path for 100 MB data set

Path length and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 19.6 35.8 2.6 12.2

100 m, 9 92.8 257 21.2 44.8

1 km, 9 1024.33 2082.67 73.33 153.17

10 km, 9 6515.8 13,657.4 368.4 784.6

Page 14 of 16Ben Brahim et al. J Big Data (2016) 3:11

aggregation and asynchronous scenario is more clear in terms of response time reduc-

tion. �is enhancement in response time is identified for all the tested paths. Indeed, for

10 km-long path, the query response time is around 38 times faster when using spatial

aggregation and asynchronous queries. Another observation which is almost valid to all

the tested spatial queries is the limited impact of the data set size. Indeed, one of the

fundamental propriety of Cassandra is that it scales linearly by simply adding commod-

ity server nodes. Hence, the developed framework scales well with the data set size.

Finally, the spatial polygon-based query in the developed framework is evaluated are

results are given in Tables 8, 9 and 10. Measurement results are averaged over several

executions for different polygon dimensions and with different geohash precision val-

ues. �e spatial queries have been executed as well against different data set sizes. It’s

then clear the enhancement of the response time by using the asynchronous mode and

executing the spatial aggregation algorithm compared to other schemes. By focusing

on the column AS_AGG, for asynchronous with aggregation, an effective time reduc-

tion of about 70 times is noticed against a normal scenario not using these enhancement

Table 6 Spatial query performance within a path for 500 MB data set

Path length and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 27.4 45.6 3 15.6

100 m, 9 130.6 361.8 22.2 53

1 km, 9 1097.67 2200.5 63.67 180.33

10 km, 9 5282.2 13109.4 372.2 562.2

Table 7 Spatial query performance within a path for 1 GB data set

Path length and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

10 m, 9 24.4 34.6 2.6 8.4

100 m, 9 118 316.8 19.6 43.6

1 km, 9 1072.6 2221 51.2 133.6

10 km, 9 5929.8 13260.8 347.8 557

Table 8 Spatial query performance within a polygon for 100 MB data set

Polyg and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

(140 m; 150 m), 8 55 98.8 7 23.4

(1.10 km; 0.61 km), 7 54.4 91.6 6.4 19.8

(4.42 km; 4.87 km), 7 949.5 3719.17 62.67 238.83

(9.73 km; 8.84 km), 7 2071.4 7985.4 115.8 454.2

Table 9 Spatial query performance within a polygon for 500 MB data set

Polyg and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

(140 m; 150 m), 8 60.4 104 8 23.4

(1.10 km; 0.61 km), 7 67.6 98.2 8 22.2

(4.42 km; 4.87 km), 7 1050.33 3946.67 79 205.83

(9.73 km; 8.84 km), 7 2243.6 8459.8 131.6 398

Page 15 of 16Ben Brahim et al. J Big Data (2016) 3:11

features. �e increase of the queried area keeps the asynchronous model with aggrega-

tion showing the best performance and this is due to the regular, rectangular, shape of

the area.

Conclusion

�is paper tackles the spatial data retrieval within Cassandra NoSQL database. For this

goal, a framework is designed and implemented to extend the CQL with spatial que-

ries. Indeed, a CQL-like syntax is defined to enable spatial functions while keeping the

native CQL query syntax. �e developed framework is tested against different data set

sizes. �e evaluation outcomes confirm the efficiency of using an aggregation algorithm

in order to reduce the number of queries sent to the cluster and avoid making hot-spot

nodes, despite its extra cost in terms of execution time. �e importance of paralleling

queries in non-blocking way to avoid unnecessary idle time is also highlighted through

the performance results.

A learned lesson is that irregular area shapes might cause a longer time to compute the

covering geohashes and to aggregate them. In this case, the user is invited to make deci-

sion based on its interest in either speeding up the query execution time or reducing the

number of routed queries to the cluster.

We believe that presented framework could be a basic component of the big data sys-

tem that we are building to support the data collection and management for the con-

nected vehicles and distributed devices managed by Qatar Mobility Innovations Center

(QMIC).

In our perspectives, we plan to extend Cassandra with two features: �e first one is to

enable the table creation query defining the attributes based on them numeric geohashes

should be computed as part of the schema. �e second one is to add the ability to gener-

ate numeric geohashes for already saved data in the background compaction process.

Authors’ contributions

WD proposed the idea and MBB worked on it, developed and implemented the algorithms. All co-authors participated

in the final manuscript edition and review. All authors read and approved the final manuscript.

Author details
1 Qatar Mobility Innovations Center, Qatar Science and Technology Park, 210531 Doha, Qatar. 2 University of Carthage,

INSAT, Tunis, Tunisia.

Acknowledgements

This publication was made possible by NPRP Grant #[5-1272-1-214] from the Qatar National Research Fund (a member of

Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Competing interests

The authors declare that they have no competing interests.

Received: 5 March 2016 Accepted: 14 June 2016

Table 10 Spatial query performance within a polygon for 1 GB data set

Polyg and prec. SEQ_AGG (ms) SEQ_no_AGG (ms) AS_AGG (ms) AS_no_AGG (ms)

(140 m;150 m), 8 59.6 106.8 8.2 18.4

(1.10 km;0.61 km), 7 59.4 97.6 7 19.8

(4.42 km;4.87 km), 7 1024.5 3755 59.5 199.5

(9.73 km;8.84 km), 7 2201 8398.6 161.8 499.8

Page 16 of 16Ben Brahim et al. J Big Data (2016) 3:11

References

 1. Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin J, Aharon D. McKinsey Global Institute —the internet of

things: mapping the value beyond the hype. http://www.mckinsey.com/insights/business_technology/the_inter-

net_of _things_the_value_of_digitizing_the_physical_world. Accessed 01 Mar 2016.

 2. Drira W, Filali F. Ndn-q: an ndn query mechanism for efficient v2x data collection. IEEE 11th annual international

conference on sensing, communication, and networking workshops (SECON Workshops); 2014

 3. Lakhshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Syst Rev.

2010;44(2):35–40.

 4. MongoDB, WG.: MongoDB. https://www.mongodb.org/. Accessed 1 Mar 2016

 5. Robinson I, Webber J, Eifrem E. Graph databases: new opportunities for connected data. Sebastopol: O’Reilly Media;

2015.

 6. Redis WG. Redis. http://redis.io/. Accessed 1 Mar 2016.

 7. Google WG. Google trends. https://www.google.fr/trends/explore#q=NoSQL%2C%20RDBMS&cmpt=q&tz=Etc%2F

GMT-3. Accessed 1 Mar 2016.

 8. Moniruzzaman AB, Hossain SA. Nosql database: new era of databases for big data analytics—classification, charac-

teristics and comparison. Int J Database Theor Appl. 2013;6(4):1–13.

 9. Geohash WG. Geohash. https://www.en.wikipedia.org/wiki/Geohash. Accessed 1 Mar 2016.

 10. Cuzzocrea A, Song IY, Davis KC. Analytics over large-scale multidimentional data: the big data reveolution. Glasgow:

DOLAP’11; 2011.

 11. Samet H, Aref WG. Spatial data models and query processing. Modern database systems: the object model, interop-

erability, and beyond. Reading: Addison Wesley/ACM Press; 1994.

 12. Oracle WG. Oralce spatial developer’s guide. https://www.docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.

htm. Accessed 1 Mar 2016.

 13. Malensek M, Pallickara S, Pallickara S. Polygon-based query evaluation over geospatial data using distributed hash

tables. UCC ’13 Proceedings of the 2013 IEEE/ACM 6th international conference on utility and cloud computing;

2013. p. 219–226.

 14. Zhong Y, Han J, Zhang T, Li Z, Fang J, Chen G. Towards parallel spatial query processing for big spatial data. IEEE 26th

International parallel and distributed processing symposium workshops and PhD forum; 2012.

 15. Arnold T. An entropy maximizing geohash for distributed spatiotemporal database indexing. arXiv:1506.05158v1 [cs.

DB]; 2015

 16. Tutorialspoint WS. Cassandra—Introduction. http://www.tutorialspoint.com/cassandra/cassandra_introduction.

htm. Accessed 1 Mar 2016.

 17. Hobbs T. Basic rules of Cassandra data modeling. http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-

modeling. Accessed 1 Mar 2016.

 18. Datastax WG. Basic rules of Cassandra data modeling. https://www.datastax.github.io/java-driver/features/custom_

codecs/. Accessed 1 Mar 2016.

 19. ElasticSearch WG. Geohashes. https://www.elastic.co/guide/en/elasticsearch/guide/current/geohashes.html.

Accessed 1 Mar 2016.

 20. ElasticSearch WG. Elastic Java API. https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.

html. Accessed 1 Mar 2016.

 21. Solr WG. Apache Solr. http://www.lucene.apache.org/solr/. Accessed 1 Mar 2016.

 22. Wikipedia: Z-order curve. https://www.en.wikipedia.org/wiki/Z-order_curve. Accessed 1 Mar 2016.

 23. Geotools WG. GeoTools the open source java GIS toolkit. http://www.geotools.org/. Accessed 1 Mar 2016.

 24. Guava WG. Guava: Google core libraries for java. https://www.github.com/google/guava. Accessed 1 Mar 2016.

http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world
https://www.mongodb.org/
http://redis.io/
https://www.google.fr/trends/explore#q=NoSQL%2C%20RDBMS&cmpt=q&tz=Etc%2FGMT-3
https://www.google.fr/trends/explore#q=NoSQL%2C%20RDBMS&cmpt=q&tz=Etc%2FGMT-3
https://www.en.wikipedia.org/wiki/Geohash
https://www.docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.htm
https://www.docs.oracle.com/cd/E11882_01/appdev.112/e11830/toc.htm
http://www.arxiv.org/abs/1506.05158v1
http://www.tutorialspoint.com/cassandra/cassandra_introduction.htm
http://www.tutorialspoint.com/cassandra/cassandra_introduction.htm
http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling
http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling
https://www.datastax.github.io/java-driver/features/custom_codecs/
https://www.datastax.github.io/java-driver/features/custom_codecs/
https://www.elastic.co/guide/en/elasticsearch/guide/current/geohashes.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/ind
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/ind
http://www.lucene.apache.org/solr/
https://www.en.wikipedia.org/wiki/Z-order_curve
http://www.geotools.org/
https://www.github.com/google/guava

	Spatial data extension for Cassandra NoSQL database
	Abstract
	Background
	Related work
	System architecture and proposed approach
	Cassandra DB and CQL
	Geohashing and spatial search
	Spatial search queries

	Performance evaluation
	Benchmark settings and dataset
	Results and discussion
	Aggregation algorithm performance
	Spatial queries execution time

	Conclusion
	Authors’ contributions
	References

