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Abstract—Spatial databases, addressing the growing data management and analysis needs of spatial applications such as
Geographic Information Systems, have been an active area of research for more than two decades. This research has produced a
taxonomy of models for space, spatial data types and operators, spatial query languages and processing strategies, as well as
spatial indexes and clustering techniques. However, more research is needed to improve support for network and field data, as well
as query processing (e.g., cost models, bulk load). Another important need is to apply spatial data management accomplishments to
newer applications, such as data warehouses and multimedia information systems. The objective of this paper is to identify recent
accomplishments and associated research needs of the near term.

Index Terms—Spatial databases, multidimensional, object-relational, databases, Geographic Information Systems.

——————————���F���——————————

1� INTRODUCTION

1.1 Spatial Databases
PATIAL database [11], [15], [35] management systems
aim at the effective and efficient management of data

related to

•� a space such as the physical world (geography, urban
planning, astronomy);

•� parts of living organisms (anatomy of the human body);
•� engineering design (very large scale integrated cir-

cuits, the design of an automobile, or the molecular
structure of a pharmaceutical drug); and

•� conceptual information space (a multidimensional
decision support system, fluid flow, or an electro-
magnetic field).

The field of spatial database research has been an active
area of research for more than two decades. The results of
this research, e.g., spatial multidimensional indexes, are
being used in a number of areas. The field of spatial data-
bases can be defined by its accomplishments; current re-
search is aimed at improving its functionality and its per-
formance. The impetus for improving functionality comes
from the needs of existing applications such as Geographic
Information Systems (GIS) and Computer Aided Design
(CAD), as well as from potential applications such as Multi-
media Information System (MMIS), Data Warehousing
(DWH), and NASA’s Earth Observation System (EOS). The
acceptance of GIS as an important tool in governmental
decision-making is also documented [34], and military

planners have embraced GIS technology at all levels of tac-
tical, operational and strategic planning, including battle-
fied visualization and terrain analysis [20].

Commercial examples of spatial database management
include Informix’s spatial data-blades (i.e., 2D, 3D, Geo-
detic), Oracle’s Universal server with either Spatial Data
Option or Spatial Data Cartridge and ESRI’s Spatial Data
Engine (SDE). Research prototype examples of spatial data-
base management systems include spatial datablades with
Postgres [30], Predator, and Paradise [9]. The functionalities
provided by these systems include a set of spatial data
types such as a point, line-segment and polygon, and a set
of spatial operations such as inside, intersection, and dis-
tance. The spatial types and operations may be made part
of a query language such as SQL, which allows spatial que-
rying when combined with an object-relational database
management system [6], [32]. The performance enhance-
ment provided by these systems includes a multidimen-
sional spatial index and algorithms for spatial access
methods, spatial range queries, and spatial joins. Spatial in-
dexing with concurrency control may be implemented in
the object-relational server for performance reasons.

Existing and emerging applications require new func-
tionalities including the modeling of network spaces and
continuous fields. The performance needs of emerging ap-
plications require not only the management of large data
sets, but also new processing strategies for spatial set-
operations, field operations (e.g., slope), and network
analysis (e.g., shortest-path, route-evaluation).

1.2 Related Work and Our Contributions
Recent reports [11], [15], [35], [1] have described the ac-
complishments of spatial database research and have pri-
oritized research needs. A broad survey of spatial data-
base requirements and an overview of research results
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is provided in [35], [11], [1]. Basic modeling require-
ments for spatial objects such as points, lines, and polygons
are given in terms of their geometry, topology and object
relationships (topological, directional, metric, network). Re-
quirements are given for other user-level issues such as
graphical input and output and query language support.
Spatial clustering and indexing techniques [23] such as
Grid-files, Z-order, Quad-tree, Kd-trees, R-trees [12], and
associated join strategies are described. Finally, an archi-
tecture for spatial databases is given in terms of the object-
relational model.

Research needed to improve the performance of spatial
databases in the context of object-relational databases was
listed in [15]. The primary research needs identified were
concurrency control techniques for spatial indexing meth-
ods, the development of cost models for query strategies,
and the development of new spatial join algorithms beyond
nested-loop and tree matching.

Many of the research needs identified in [15] have since
been addressed. For example, concurrency control tech-
niques for R-trees have been studied in the context of R-link
[16] trees. Also, new spatial join strategies using space par-
titioning [22] have been explored. In this paper, we identify
the recent accomplishments in spatial databases as well as
current research needs, based on publications in journals
and conference proceedings and recent commercial trends.

1.3 Scope and Outline
The role of the spatial database component is dependent on
the type of database management system (DBMS) involved:
relational, object-oriented or object-relational. In this paper,
we focus the discussion of spatial databases in the context
of the object-relational [6], [32], [31] databases, which pro-
vide extensibility to many components of traditional data-
bases to support new application domains. These and other
important issues including architectural options, Raster
DBMS and Network spaces are covered in detail in our
forthcoming book [24]. Spatial databases have been one of
the most common applications of object-relational data-
bases and have influenced their design a great deal. Object-
relational databases allow the inclusion of spatial data-
types, spatial operations, and multidimensional indexing
systems. This three-layer architectural framework is shown
in Fig. 1, and it consists of an object-relational database
management system, a spatial database, and a spatial ap-
plication such as a GIS or MMIS. The interface between the
application and the spatial data system maps application-
specific constructs to the spatial database. The spatial data-
base associates the application requirements to the func-
tionality provided by the DBMS. The interface to the DBMS
supports specialized query processing, which in turn sup-
ports the core database requirements for achieving accept-
able performance.

Emerging trends such as World Wide Web interfaces,
multimedia data, and image processing are likely to impact
the data sharing and analysis needs of spatial databases.
Scaling up to large datasets requires new research in many
areas beyond spatial databases, including research on file-
systems, device-drivers for tertiary storage, computer net-
works, and visualization software and algorithms related to

graphics and computational geometry. This paper does not
explore those issues.

The remainder of the paper is organized as follows:
Section 2 describes the recent advances in spatial databases.
Section 3 states the research needs for spatial databases.
Section 4 highlights our conclusions and motivates explo-
ration of applications whose needs are not currently met by
spatial databases.

2 ACCOMPLISHMENTS

Research into spatial databases has mainly focused on de-
veloping a space taxonomy, spatial data models, spatial
query languages and processing strategies, and spatial ac-
cess methods. This section lists recent important accom-
plishments, not only for the current applications of spatial
databases, but also for the emerging database problems that
have spatial dimensions.

2.1 Space Taxonomy
Space is a framework to formalize specific relationships
among a set of objects. Depending on the relationships of
interest, different models of space such as set-based
space, topological space, Euclidean space, metric space and
network space can be used [35]. Set-based space uses the
basic notion of elements, element-equality, sets and member-
ship to formalize the set relationships such as set-equality,
subset, union, cardinality, relation, function, and convex-
ity. Relational and object-relational databases use this model
of space.

Topological space uses the basic notion of a neighbor-
hood and points to formalize the extended object relation-
ships such as boundary, interior, open, closed, within, connect-
ed, and overlaps, which are invariant under elastic deforma-
tion. Combinatorial topological space formalizes relation-
ships such as Euler’s formula (#faces + #vertices − #edges =
1 for planar configuration). Network space is a form of
topological space in which the connectivity property among
nodes formalizes graph properties such as connectivity, iso-
morphism, shortest-path, and planarity.

Euclidean coordinatized space uses the notion of a coor-
dinate system to transform spatial properties and relation-
ships to properties of tuples of real numbers. Metric spaces
formalize the distance relationships using positive symmet-
ric functions that obey the triangle inequality. Many multi-
dimensional applications use Euclidean coordinatized
space with metrics such as distance.

2.2 Spatial Data Model and Query Language
A spatial data model [25], [35] is a type of data-abstraction
that hides the details of data-storage. There are two com-
mon models of spatial information: field-based and object-
based. The field-based model treats spatial information
such as altitude, rainfall and temperature as a collection of
spatial functions transforming a space-partition to an at-
tribute domain. The object-based model treats the informa-
tion space as if it is populated by discrete, identifiable, spa-
tially referenced entities. The operations on spatial objects
include distance and boundary. The operations on fields in-
clude local, focal, and zonal operations, as shown in Table 2.
The fields may be continuous, differentiable, discrete, and
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isotropic or anisotropic, with positive or negative autocor-
relation. Certain field operations (slope or interpolation)
assume certain field properties (differentiable or positive
autocorrelation).

An implementation of a spatial data model in the context
of object-relational databases consists of a set of spatial data
types and the operations on those types. Much work has
been done over the last decade on the design of spatial Ab-
stract Data Types (ADTs) and their embedding in a query
language. Consensus is slowly emerging via standardiza-
tion efforts, and recently the OGIS consortium [21] has pro-
posed a specification for incorporating 2D geospatial ADTs
in SQL. Fig. 3, which illustrates this spatial data-type hier-
archy consists of Point, Curve, and Surface classes and a
parallel class of Geometry Collection. The basic operations
operative on all datatypes are shown in Table 1. The topo-
logical operations are based on the ubiquitous nine-
intersection model [10]. Using the OGIS specification,
common spatial queries can be intutively posed in SQL. For
example, the query Find all lakes which have an area greater

than 5 sq. km. and are within 20 km. from the campgrounds can
be posed as shown in Fig. 2a.

Other example GIS queries which can be implemented
using OGIS operations are provided in Table 3. The OGIS
specification is confined to topological and metric opera-
tions on vector data types. Other interesting classes of op-
erations are network, direction, dynamic and the field op-
erations of focal, local and zonal (see Table 2). While stan-
dards for field based raster data types are still emerging,
Map Algebra [33], specifically designed for cartographic
modeling and RaSQL, based on Image Algebra [3], for
general multidimensional discrete objects(satellite images,
X-rays, etc.), are important milestones.

2.3 Spatial Query Processing
The efficient processing of spatial queries requires both effi-
cient representation and efficient algorithms. Common rep-
resentations of spatial data in an object model include spa-
ghetti, the node-arc-area (NAA) model, the doubly connected-
edge-list (DCEL), and boundary representation [17], some of

Fig. 1. Three-layer architecture.
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TABLE 1
REPRESENTATIVE FUNCTIONS SPECIFIED BY OGIS [21]

TABLE 2
A SAMPLE OF SPATIAL OPERATIONS

TABLE  3
TYPICAL SPATIAL QUERIES FROM GIS
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which are shown in Fig. 4 using entity-relationship dia-
grams. The NAA model differentiates between the topo-
logical concepts (node, arc, areas) and the embedding space
(points, lines, areas). The spaghetti-ring and DCEL focus on
the topological concepts. The representation of the field data
model includes a regular tessellation (triangular, square, hex-
agonal grid), as well as triangular irregular networks (TIN).

The spatial queries [7], shown in Table 3, are often proc-
essed using filter and refine techniques. Approximate ge-
ometry such as the minimal orthogonal bounding rectangle
of an extended spatial object is first used to filter out many
irrelevant objects quickly. Exact geometry is then used for
the remaining spatial objects to complete the processing.
Strategies for range-queries include a scan and index-search
in conjunction with the plane-sweep algorithm [5]. Strate-
gies for the spatial-join include the nested loop, tree
matching [5], when indices are present on all participating
relations, and space partitioning [22], in the absence of indi-
ces. To speed up computation for large spatial objects (it is
common for polygons to have 1,000 or more edges), object
indices are used in extended filtering. Strategies such
as object approximation and tree matching originated in
spatial-databases, and can potentially be applied in other
domains with similar characteristics.Fig. 2: (a) SQL query with spatial operators; (b) corresponding query tree.

Fig. 3. Spatial data type hierarchy [21].
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Fig. 4. Entity relationship diagrams for common representations of spatial data.

Fig. 5. Space-filling curves to linearize a multidimensional space.
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2.4 Spatial File Organization and Indices
The physical design of a spatial database optimizes

the instructions to storage devices for performing com-
mon operations on spatial data files. File designs for se-
condary storage include clustering methods as well as
spatial hashing methods. The design of spatial clustering
techniques is more difficult compared to the design of
traditional clustering because there is no natural order in
multidimensional space where spatial data resides. This is
only complicated by the fact that the storage disk is a
logical one-dimensional device. Thus, what is needed is a
mapping from a higher dimensional space to a one-
dimensional space that is distance-preserving: So that ele-
ments that are close in space are mapped onto nearby
points on the line, and one-one: no two points in the space
are mapped onto the same point on the line [2]. Several
mappings, none of them ideal, have been proposed to ac-
complish this. The most prominent ones include row-order,
z-order, and the Hilbert-curve (see Fig. 5).

Metric clustering techniques use the notion of distance to
group nearest neighbors together in a metric space. Topo-
logical clustering methods like connectivity-clustered ac-
cess methods [27] use the min-cut partitioning of a graph
representation to efficiently support graph traversal opera-
tions. The physical organization of files can be supple-
mented with indices, which are data-structures to improve
the performance of search operations.

Classical one-dimensional indices such as the B+ tree can
be used for spatial data by linearizing a multidimensional
space using a space-filling curve such as the Z-order (see
Fig. 5). A large number of spatial indices [23] have been
explored for multidimensional Euclidean space. Represen-
tative indices for point objects include Grid files, multidi-
mensional grid files [18], Point-Quad-Trees, and Kd-trees.
Representative indices for extended objects include the
R-tree family, the Field tree, Cell tree, BSP tree, and Bal-
anced and Nested grid files.

One of the first access methods created to handle ex-
tended objects was Guttman’s R-tree structure [12]. The
R-tree is a height balanced natural extension of the B+ tree
for higher dimensions. Objects are represented in the R-tree
by their minimum bounding rectangles (MBRs). Nonleaf
nodes are composed of entries of the form (R, child−pointer),
where R is the MBR of all entries contained in the child-
pointer. Leaf nodes contain the MBRs of the data objects. To
guarantee good space utilization and height-balance, the
parent MBRs are allowed to overlap. Fig. 6a illustrates the
spatial objects organized in an R-tree, while Fig. 6b shows
the file structure where the nodes correspond to disk pages.
Many variations of the R-tree structure exist whose main
emphasis is on discovering new strategies to maintain the
balance of the tree in case of a split and to minimize the
overlap of the MBRs in order to improve the search time.

Concurrency control for spatial access methods [16] is
provided by the R-link tree, which is a variant of the R-tree
with additional sibling pointers that allow the tracking of
modifications. Concurrency is provided during operations
such as search, insert, and delete. The R-link tree is also
recoverable in a write-ahead logging environment.

2.5 Other Accomplishments
Spatial applications like NASA’s Earth Observation System
(EOS) have some of the largest data sets encountered in
any application to date. This has prompted new research in
database-file design for storage on tertiary storage devices
such as juke-boxes. Representative results include those
from the Sequoia 2000 project [30]. High-performance spa-
tial applications such as flight simulators with geographic
accuracy have triggered the development of new parallel
formalizations for the range query and the spatial join
query, including declustering methods and dynamic-load
balancing techniques for multidimensional spatial data [28],
[19]. Other interesting developments include hierarchical
algorithms for shortest path computation [14] and view
materialization [26].

3 RESEARCH NEEDS

Spatial databases are being used for an increasing number
of new applications, such as Intelligent Transportation
Systems, NASA’s Earth Observation System, Multimedia
Information Systems (MMIS) and Data Warehouses. This
section lists representative research needs.

3.1 Space Taxonomy
Many spatial applications manipulate continuous spaces of
different scales and with different levels of discretization. A
sequence of operations on discretized data can lead to

Fig. 6: (a) Spatial objects (bold) arranged in R-tree hierarchy; (b) R-tree
file structure on disk.
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growing errors similar to the ones introduced by finite-
precision arithmetic on numbers. There are preliminary
results [11] on the use of discrete basis and bounding errors
with peg-board semantics. Another related problem con-
cerns interpolation to estimate the continuous field from a
discretization. Negative spatial autocorrelation makes in-
terpolation error-prone. Further work is needed on a
framework to formalize the discretization process, its asso-
ciated errors, and on interpolation.

3.2 Spatial Data Model
Spatial data models have been developed for topological,
metric and coordinatized Euclidean space. The OGIS speci-
fication alluded to in Section 2.2 is confined to topological
operators [8], and more work is needed to incorporate rela-
tionships which involve directional [29] and metric proper-
ties (see Table 2 for examples). In addition, there has been
very little work toward developing data models, data types
(e.g., node, edge, path), and a kernel set of operations (e.g.,
get-successors, shortest path) for network space, despite
their critical role in applications like transportation and
utility management (telephone, gas, electric).

Similarly, there is a need for developing the field data
model [33] toward a field-based query language. Opera-
tions on fields will be needed to help derive new informa-
tion such as land-cover classification; the fields involved
include temperature, texture, and water content, and are
obtained through imaging in different bands such as infra-
red, visible bands, or microwave.

3.3 Spatial Query Processing
Many open research areas exist at the logical level of query
processing, including query-cost modeling and strategies
for nearest neighbor, bulk loading as well as queries re-
lated to fields and networks. Cost models are used to
rank and select the promising processing strategies, given a
spatial query and a spatial data set. Traditional cost mod-
els may not be accurate in estimating the cost of strategies
for spatial operations, due to the distance metric as well
as the semantic gap between relational operators and spa-
tial operation. Cost models are needed to estimate the se-
lectivity of spatial search and join operations toward com-
parison of execution-costs of alternative processing strate-
gies for spatial operations during query optimization. Pre-
liminary work in the context of the R-tree, tree-matching
join, and fractal-models is promising [4], [36], but more
work is needed.

Similarly, common strategies employed in traditional
databases for the logical transformation step in query optimi-
zation may not be always applicable in the context of spa-
tial databases. For example consider the query (see Fig. 2a).
Let us assume that the Area() function is not precom-
puted and that its value is computed afresh every time it
is invoked. A query tree generated for the query is shown
in Fig. 2b.

In the classical situation, the rule “select before join”
would dictate that the Area() function be computed before
the join predicate function, Distance() (Fig. 7a), the under-
lying assumption being that the computational cost of exe-
cuting the select and join predicate are equivalent and

negligible compared to the I/O cost of the operations. In
the spatial situation the relative cost per tuple of Area() and
Distance() is an important factor in deciding the order of
the operations [13]. Depending upon the implementation of
these two functions the optimal strategy may be to process
the join before the select operation(see Fig. 7b).

Many processing strategies using the overlap predicate
have been developed for range queries and spatial join que-
ries. However, there is a need to develop and evaluate
strategies for many other frequent queries such as those in
Table 4. These include queries on objects using predicates
other than overlap and queries on fields such as slope
analysis as well as queries on networks such as the shortest
path to a set of destinations. Bulk loading strategies for
spatial data also need further study.

3.4 Spatial File Organization and Indices:
Physical Level

Many file organizations and indices with distance metrics
have been developed for coordinatized Euclidean space.
However, little work has been done on file clustering and
on indices for network spaces such as road maps and

Fig. 7: (a) Area() before distance(); (b) Distance() before Area().
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telephone networks. Further work is needed, both to char-
acterize the access patterns of the graph algorithms that
underlie network operations and to design access methods.

The R-link tree [16] is among the few approaches avail-
able for concurrency control on the R-tree. New approaches
for concurrency-control techniques are needed for other
spatial indices. The data volume of emerging spatial appli-
cations such as NASA’s EOS is among the highest of any
database application. Sequoia 2000 [30] provides an ap-
proach toward tertiary storage files and indices. Other ap-
proaches for managing databases on tertiary storage need
to be investigated.

3.5 Other
Other research needs include benchmarking, workflow
modeling, and the visual presentation of results. The Se-
quoia 2000 [30] benchmark characterizes the data and que-
ries in Earth Science applications. The performance of
loading data, raster queries, spatial selection, spatial joins,
and recursion is addressed in 11 benchmark queries. A few
more are provided in the Paradise system [9]. Similar
benchmarks are needed to characterize the spatial data
management needs of other applications such as GIS,
DWH, and transportation.

The workflow in some spatial applications such as GIS is
based on manipulating layers to produce new, derived lay-
ers. Typically, the layers are combined in a tree-based man-
ner, starting with a large number of source layers and pro-
ducing new layers until a final result layer is produced.
Information about dependence among layers is useful for
change propagation if the source layers are modified.

Spatial databases may require a different type of
concurrency support than is needed by traditional data-
bases. For example, transactions in traditional systems tend
to be short (on the order of seconds). However, in spatial
databases, these transactions can last up to a couple of
hours for editing and browsing. Similarly, recovery and
backup issues may also change, as the spatial objects tend
be large (a few megabytes) when compared to their coun-
terparts in traditional systems. There is a need to charac-
terize the work flow of spatial applications.

Many spatial applications present results visually, in the
form of maps which consist of graphic images, 3D displays,
and animations. They also allow users to query the visual
representation by pointing to the visual representation us-
ing devices like a mouse or a pen. Further work is needed

to explore the impact of querying by pointing and visual
presentation of results on database performance.

4 SUMMARY AND DISCUSSION

In this survey, we have presented the major research ac-
complishments and techniques which have emerged from
the area of SDBMS. These include object-based data mod-
eling, spatial data types, filter and refine techniques for
query processing and spatial indexing. We have also identi-
fied areas where more research is needed. Some of these
areas are spatial graphs, field based modeling, cost model-
ing and concurrency control, query processing techniques
and discretization and propogation error.

Many of the spatial techniques highlighted in this sur-
vey are being used in an increasing number of applica-
tions such as GIS, CAD, and EOS. We believe that other
emerging multidimensional applications such as multime-
dia information systems will use these methods to solve
problems such as searching and indexing spatial content.
We illustrate the possibilities in the context of multimedia
information systems with text, audio and video data over
the World Wide Web.

Multimedia data has a spatial content which can be que-
ried using the same spatial operators that have become
popular in geographic information systems. For example,
the spatial operator inside of can be applied to text to locate
sentences that contain the word “multimedia.” Also, audio
is often broken into channels with each channel containing
input from a different source; for instance, trumpet, guitar,
and voice. These channels are analogous to layers in GIS
and can be manipulated similarly. A spatial join could de-
termine all of the locations where the input from both piano
and voice is over a certain decibel threshold.

A video database such as a movie server can take ad-
vantage of techniques developed for spatial databases.
Consider the movie Toy Story: Each frame contains spatial
content with objects interacting in directional relationships.
For instance, Buzz Lightyear could be above the trees when
he is flying, and frames in the movie could be queried
based on those relationships. For example, if you cannot
remember when in the movie an important event occurred,
but you can remember that Buzz Lightyear was in front of a
tree, you would be able to query the movie using that rela-
tionship to determine when in the movie that event took
place. Such queries exploit the directional relationships in-
herent between all tangible objects.

TABLE  4
DIFFICULT SPATIAL QUERIES FROM GIS
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