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ABSTRACT

The endogenous complexity and spatial nature of the problems encountered in the urban water

management environment present decision-makers with three major problems: (a) in the urban

environment, every decision is site-specific, almost on a case-by-case basis, (b) the decision-maker must

access, simultaneously, a large amount of information, increasing with rising spatial resolution and (c) the

information to be evaluated is heterogeneous, including engineering, economical and social

characteristics and constraints. The first two problems indicate that urban water management is an ideal

field to develop and use spatial decision support systems (SDSS), while the latter promotes the use of

fuzzy inference systems as a key mathematical framework. This research discusses the nature of uncer-

tainty in environmental management in general and urban water management in particular, argues that

fuzzy, rule-based, inference systems can be an invaluable tool for uncertainty quantification and presents

the relevant elements of a prototype SDSS for urban water management. The examples

presented in this paper are based on an application of the SDSS in water demand management.
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INTRODUCTION

Uncertainty in complex environmental systems

Complexity, naturally occurring in real life, is transformed

into uncertainty when building an abstraction of the real

world: a model. If a system is fairly simple, and therefore

little uncertainty is inherent in the associated model,

closed-form mathematical expressions can be used to pro-

vide insight in the way the system functions. For more

complex systems for which significant data exist, model-

free methods (such as neural networks) provide a method-

ology for dealing with uncertainty through learning, based

on patterns in available data (Ross 1995). Finally, for more

complex systems where scarce data exist and where only

ambiguous or imprecise information is available (a widely

appreciated fact in urban water management), fuzzy logic

provides a framework for handling and formally express-

ing this uncertainty, assisting the understanding of the

system’s functions. The imprecision therefore in fuzzy

systems is generally high. It is thus evident that the suc-

cessful application of fuzzy logic, apart from knowledge of

the theory involved, is dependent on the correct identifi-

cation of the type of uncertainty involved in the system’s

structure. Despic & Simonovic (1997) identify two basic

forms of uncertainty in environmental modelling: un-

certainty caused by inherent stochastic variability and

uncertainty due to a fundamental lack of knowledge

(including model structure and model parameters). Intui-

tively, the second form can be more readily modelled by

fuzzy sets, particularly if there is a need for quantification

of qualitative criteria and synthesis of non-homogeneous

information (technical, economical, political, etc.), where

lack of knowledge is coupled with scarce available data and

ambiguous cause–effect relationships.

Complexity in designing for a sustainable urban

environment

Urban environmental planning is currently burdened

with the task of creating a sustainable urban environment
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(Vlachos & Braga 2001). But what exactly does this entail?

Following the discussion on the urban ‘ecological foot-

print’ (Wackernagel & Rees 1996), a sustainable urban

environment is one that minimises the city’s dual role in

a catchment’s fragile equilibrium: the role of a sink for

resources and a source for pollution. Concentrating on

water as a key resource and a pollution transport vehicle

at the same time, it can be stated that the two main inputs

of water into the urban environment are water supply and

rainfall. Strategies for minimising fresh water demand for

public as well as private use within the city in the form of

Water Demand Management (WDM) can result in mini-

mising water resource consumption, thus attaining the

first minimisation goal. The same strategies coupled with

minimising rainfall-runoff entering the drainage system

(for example, using Sustainable Urban Drainage Systems

(SUDS) (e.g. D’Arcy & Frost 2001)) could result in less

wastewater generation, improving treatment costs and

attaining the second minimisation goal. Waste minimis-

ation by itself, however useful, should also be coupled

with the effect of these minimisation strategies on waste-

water quality: either directly (through the purification

capabilities of methods used for minimisation, e.g. grass

swales in rainfall-runoff source control, gully pots viewed

as reactors (Memon & Butler 2002)) or indirectly (through

the effect the minimised and more concentrated waste-

water volumes will have in treatment plants from an

engineering and a cost effectiveness point of view).

Conceptually this discussion may be relatively clear,

but in practice the identification, application and quanti-

fication of the effect of urban water management strategies

is a complex problem of a highly spatial nature (Larsen &

Gujer 1997; Seder et al. 2000). Each location within the

city boundaries has its own properties and its own set

of constraints (social, economic and engineering). The

decision-maker in urban areas asks for a higher quality

of information, including intelligent decision support for

time- and investment-critical planning. Taking into

account these site-specific characteristics rather than

drawing a black box around the cities results in more

realistic and therefore more applicable planning. The

environmental planner in the urban environment is thus

in need of tools that would be able to address the following

issues (Seder et al. 2000):

• integrate and coordinate information on a

domain-oriented scale;

• support analysis, observation, valuation and forecast

of environmental systems and their conditions;

• support decisions as a balance between economic

and ecological objectives based on expert

knowledge;

• use an information system which is natural to the

user and which offers transparency without

requiring knowledge of some computer language.

The stated requirements imply that the tools (or decision

support systems) should, in principle, integrate knowledge

and reasoning as an essential part of the system’s function-

ality while dealing with the inherent ambiguities and

uncertainties of any reasoning/decision-making process.

In this discussion we will be dealing with the uncer-

tainty implications of a specific type of urban water man-

agement problem: the object location problem, which is

defined as the determination of optimum locations for

facilities in a given geographical area with respect to

environmental and economic objectives. Solving an object

location problem within the urban environment is a com-

plex task, usually semi-structured, which requires multiple

objectives as well as expert judgement to be taken into

account (Seder et al. 2000). This is a demanding decision-

making environment, where optimal planning presup-

poses a synthesis of heterogeneous information of high

spatial resolution to ensure site-specific implementation

(Makropoulos et al. 1999). We argue that fuzzy inference

can assist the decision-maker by meeting all the above-

stated requirements, taking into account the uncertainty

and ambiguity involved in the decision process, inherent

in the urban planning environment.

METHODOLOGICAL AND MATHEMATICAL
DEVELOPMENT

Why fuzzy inference?

Mathematical paradigms have been slow in realising that

one of the most important ways of conveying information,

and therefore knowledge, is natural language (Ross 1995).
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Despite its inherent ambiguities, people speaking in the

same language have little problem in conveying their

thoughts and inferring consequents from antecedents.

This is actually the only way to teach and therefore com-

municate experiences, rules and accumulated knowledge.

It is also the only way people arrive at decisions in

everyday life, from the simpler to the more complex ones.

The uncertainty involved in these decisions due to the

imprecise nature of linguistic variables or linguistic rules is

something de facto acceptable in everyday human prac-

tice. Fuzzy logic provides a formal mathematical frame-

work for expressing linguistic variables and rules, and in

that context it should be clear that it would also inherit the

same ambiguity and imprecision, which follows human

reasoning and therefore decision-making in everyday life.

This fact should not be considered a drawback but rather

an intuitively familiar and thus acceptable fact.

Systems that use IF–THEN rules to represent human

knowledge within a fuzzy logic framework are called

Fuzzy Inference Systems (FIS) (Mendel 2001) and they are

extensively used in our decision support system structure.

Two fundamental characteristics of environmental plan-

ning, account for this fact: data scarcity and the need to

take decision-making into account, and simultaneously,

complex quantitative and qualitative criteria. There are

two types of FIS: type-1 and type-2. They both use

IF–THEN rules to derive consequents from antecedents

(both of which can be linguistic variables). Their main

difference is that, in the case of type-2 FIS, the fuzzy

membership functions (fmf) of antecedent and/or

consequent sets are also fuzzy.

In the following paragraphs, we will briefly discuss

type-1 and type-2 FIS and present a modular system

architecture for using them to reach spatially sensitive

decisions.

Fuzzy inference systems

Type-1 fuzzy inference systems

Type-1 FIS (Figure 1) are widely used in fuzzy control

engineering and signal processing applications. Such sys-

tems map crisp inputs to crisp outputs and are comprised

of four parts: a fuzzifier, a defuzzifier, a set of rules (IF–

THEN) and an inference procedure. Once the rules are

established, the system can be viewed as a mapping from

inputs to outputs and this mapping can be generally ex-

pressed as y = f(x) (Mendel 2000). A fuzzy set can be rep-

resented by its membership function (which, in the case of

type-1 FIS, is a crisp function), which assigns a value of the

interval [0,1] to each element x of the universe of dis-

course. This is the procedure undertaken by the fuzzifier.

The core analytical procedure in any FIS is the fuzzy

inference engine. A fuzzy inference engine is the way fuzzy

logic is applied to combine fuzzy rules into a mapping

from input to output fuzzy sets. The general form of the

Lth rule in a FIS is: IF x1 is FL
1 and x2 is FL

2 and . . . THEN

y is GL, where FL
1 . . . FL

p = AL. Therefore the rule can

re-expressed as AL
,GL or using membership function

notation mAL
,GL (x,y). It can be stated that

mAL
,GL (x,y) = [TmF(xi)]vmG(y) (1)

where T and v denote a t-norm (i.e. product or minimum).

These implications (t-norms) are called Mamdani implica-

tions.1 An input of the general form mA(x) of set A will be

mapped to the output set B as mB(y), by passing through

the rule

mB(y) = sup[mA(x)vmAL
,GL

(x,y)] = sup{[TmA(x)vmF(xi)]vmG(y)} (2)

Note that in discreet universes the supremum operation is

substituted by a t-conorm (i.e. a maximum operator).

1These implications have nothing to do with implication in traditional proposi-
tional logic.

Figure 1 | Schematic of a type-1 Fuzzy Inference System.
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Equation (2) is adapted to account for the specific charac-

teristics of the type of FIS used.

Type-1 FIS contain parameters (such as number of

rules, number and shape of fmfs, etc.) that can either be

pre-defined or can be tuned during a learning process

using input–output training pairs, derived from historical

records (e.g. using a neurofuzzy procedure).

Type-2 fuzzy inference systems

Both rules used to construct a FIS and membership func-

tions involved in the fuzzification and defuzzification

process are usually to a great extent uncertain. According

to Mendel (2000), the uncertainty stems from the follow-

ing reasons:

• There is uncertainty in the antecedents (field data).

• Words included in the rule-based system can mean

different things to different people.

• Consequents of the same rule, obtained by polling a

group of experts, can be different as the experts will

not necessarily agree.

Antecedent and consequent set uncertainties result in

uncertain fuzzy membership functions. Type-1 FIS using

type-1 fuzzy sets (or ordinary fuzzy sets) cannot capture

this uncertainty nor the uncertainty resulting from uncer-

tain rules (caused by uncertain knowledge used to con-

struct these rules). This kind of uncertainty can be better

handled by fuzzy sets whose membership function is also a

fuzzy set. These fuzzy sets are called type-2 or ultra-fuzzy

sets (Graham & Jones 1988). The concept was introduced

by Zadeh (1975) as an extension to the concept of ordinary

fuzzy sets (type-1). In type-2 sets, each membership value

of each element in a set is also a set, in contrast to type-1

fuzzy sets whose membership value is a crisp number. The

notion of type-2 fuzzy sets is, to a large extent, analogous

to our classic representation of random variables using at

least two moments (mean and variance). Type-1 fuzzy

membership functions are comparable to calculating only

the mean of a probability density function while type-2

take account of the dispersion around the mean (vari-

ance). In principle, just as in random uncertainty one can

work with higher-order moments, one can work with

higher-order fuzzy sets. The complexity, however, will

increase rapidly and therefore higher than second-order

systems are not used for practical purposes (Mendel 2000).

Type-2 fuzzy sets have been studied by a small number of

researchers including Dubois & Prade (1978, 1979), Yager

(1980), Turksen (1986), Park & Kim (1996) and Mendel

(2000, 2001). Figure 2 shows a type-2 fuzzy inference

system which uses antecedent and consequent sets whose

fmfs values for each point is a crisp set, within the interval

[0,1]. Such type-2 sets are called interval type-2 sets and

the interval in the secondary membership function can be

represented by its left and right end points (upper and

lower membership values for point x).

The grey area of the type-2 sets in Figure 2 is a

footprint of uncertainty (FOU) for the membership func-

tion whose value is uncertain but is known to lie in the

interval. The footprint of the uncertainty represents the

domain of the secondary membership function. The sec-

ondary membership function can be any type-1 fuzzy set

(in this example it is an interval set). The structure of a

type-2 FIS is very similar to the structure of a type-1 with

two important differences. (a) The antecedent and conse-

quent sets are type-2. Note that the triangular shape (seen

in Figure 2) is only one of the possible alternatives for

fmfs, including Gaussian, bell-shaped, etc. (b) The

de-fuzzification procedure is preceded by an analogous

operation, termed type-reduction, reducing the result of

the inference from a type-2 to a type-1 set. Regardless

of the defuzzification procedure used, the type-reduced

set is an interval set of the following structure

YType Reduced = [yleft, yright]. The main assumption behind

type reduction (i.e. finding the centroid of a type-2) is that

a type-2 set is comprised of a large number of embedded

type-1 sets, each associated with a weight which is a

function of their secondary membership functions

(Mendel 2001).

SDSS architecture

These FISs have been used, in this work, within the

context of a spatial decision support system (SDSS) to

address a multiple location selection problem in urban

water management. The system proposed is based on

the loose coupling principle of software integration
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(Malczewski 1999), which permits an increased flexibility

in components development. A conceptual diagram of the

proposed architecture can be seen in Figure 3. This dia-

gram identifies both the structure of the specific system

developed as well as the possibilities for modular exten-

sions. In the terminology adopted in the following para-

graphs, ‘modules’ deal with a specific part of the analytical

process and are included within an ‘application system’,

which is defined as the analytical engine supporting a

specific application in urban water management. One or

more ‘application systems’ are included within the bound-

aries of the ‘overall system’, which also includes the core

Geographical Information and Database Management

Systems as well as a Data Exchange System that allows

communication between the different system components.

Each new application system added could interact

with the database and the GIS through a general decision-

making process (Makropoulos et al. 2003) and share infor-

mation with the rest by exchanging ASCII files through a

central analytical engine.

The results of the application system on a specific area

of urban water management are presented and discussed

in the next paragraphs. The application system supports

the reduction of potable water demand by proposing

master plans for optimum sitting of water demand,

reducing technical measures.

Typically, an ‘application system’ includes three

major modules: fuzzy inference, aggregation and opti-

misation (see Figure 3). In the first module, the ante-

cedents (characteristic a of a specific location under

investigation) are linked with consequents (the suit-

ability sa for application of a specific strategy to a

specific location due to characteristic a). Aggregation

provides a composite suitability map for all antecedents

by using ordered weighted averaging (Yager 1988) and

optimisation selects the best combination of technical

measures for a given investment scheme based on the

suitability maps and the expected impact of the

measures in minimising water demand. In this dis-

cussion we will concentrate on the issue of using the

FISs to capture the uncertainty in locating the water

reducing technical measures (leakage reduction through

pipe replacement prioritisation, grey water recycling

and metering introduction (Foxon et al. 2000)) within

Figure 2 | Schematic of a type-2 Fuzzy Inference System.
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the city. For a detailed discussion of the decision-

making process, as well as on the mathematical

development associated with the aggregation and

optimisation modules, the reader is referred to

Makropoulos et al. (2003).

RESULTS PRESENTATION AND DISCUSSION

Presentation of the system and preliminary results on

uncertainty quantification

In this study we have utilised fuzzy membership functions

of a Gaussian shape. This is purely for computational

efficiency purposes because the Gaussian membership

function (being closed form) facilitates mathematical

computations (integration, differentiation, etc.). The

effect of such an assumption is not significant for two

reasons:

(a) Due to the complex fuzzification and defuzzification

procedures the effect of the actual shape of the input

and output fmfs on the crisp result is insignificant

(Mendel 2001). The same input–output relationships

could be approximated using any of the widely used

fmfs (triangular, Gaussian, bell-shaped, etc.) if these

functions are correctly tuned.

(b) Data are not sufficient in this case to dictate a

specific shape for either input or output fmfs,

although in principle, the nature of the problem

(the unknown function which the FIS tries to

Figure 3 | Modular system architecture.
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approximate) might favour some particular

shape.

The attributes taken into account for locating the three

technical measures in question can be seen in Table 1.

Information on all of these attributes served as input to the

FISs and were translated into suitability maps through

sets of simple rules such as IF x Acidic THEN leakage

vulnerability High, IF x Neutral THEN leakage vulnerabil-

ity Low, IF x Alkaline THEN leakage vulnerability

Medium.

Both input attribute maps and output suitability (or

vulnerability2) maps were of a raster GIS format. A raster

format is, in essence, a map in the form of a matrix, which is

(conceptually) created by placing a rectangular mesh on top

of the map of interest and using it to extract the information

of the map into a matrix with the appropriate number

of rows and columns. Each combination of rows and

columns of this matrix identifies the location of a cell.

The information within each cell is considered homo-

genous and is processed as such. Cells of 30 × 30 m2 were

used in the examples that follow. The term cell is used

henceforth to describe a specific location within the case

study area.

Specific facets of uncertainty within the system will

now be explored.

Uncertainty in the shape of the fuzzy membership

functions

The following examples of assessing the sensitivity of the

inference procedure to the parameters of the FIS is from

the soil aggressivity attribute (soil pH) of the leakage

reduction strategy. A set of simple linguistic rules were

modelled as an example:

IF x Acidic THEN leakage vulnerability High

IF x Neutral THEN leakage vulnerability Low

IF x Alkaline THEN leakage vulnerability Medium

The effect of the selection of a fuzzy membership function

shape to the output leakage vulnerability map was

assessed following the claim that the specific shape is not

particularly significant. Figure 4 quantifies the effect of

three (commonly used) shapes of antecedent and conse-

quent fmfs: Gaussian, bell-shaped and triangular. Table 2

includes the parameters used to specify the shapes of the

fmfs for each FIS.

The results obtained support the relevant literature

(e.g. Mendel 2001) claiming that the differences in the
2In this paper we use the term ‘vulnerability to leakage’ interchangeably with the
(more general) term ‘suitability for application of a leakage reduction strategy’.

Table 1 | Attributes of Water Demand Management strategies input to the SDSS

Strategy Leakage reduction Metering Grey water RC

Attributes 1. Soil aggressivity 1. Population density 1. Population density

2. Age + material 2. Income 2. Income

3. Traffic Type 3. Education 3. Education

4. Diameter 4. Renovation status

5. Distance to fire hydrants

6. Max. system pressure

7. Pipe density
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analysis caused by the shape of the fmf are not really

significant (this seems to be particularly the case between

the two most commonly used fmfs: the triangular and the

Gaussian). In the absence of specific reasons for the

selection of a shape, the designer is therefore to some

extent free to select a shape that is more easily handled by

the computational tools available. The fact that Gaussian

fmfs ensure a smooth transition between membership and

non-membership, that they are of closed form and there-

fore that they are computationally easier to handle and are

non-zero for all input values make them the most attrac-

tive of the three. As mentioned above, Gaussian fmfs will

be used throughout this work. Figure 5 presents the actual

outputs of the three FIS as GIS layers of vulnerability to

leakage due to soil aggressivity.

Figure 5 is a visual representation of the effect of the

linguistic rules and the associated fmfs linking acidic,

neutral and alkaline soil pH to pipe vulnerability to leak-

age. The clear advantage of this visualisation is the ability

of the decision-maker to visually quantify the impact of

the rules to the result as well as (based on these rules)

to visualise the effect of the attribute to the problem in

question.

In the example that follows we use the simple form of

IF–THEN rules mentioned above in order to investigate

the effect of the standard deviation of the fmfs, the stan-

dard deviation of the input data (in the case of non-

singleton FIS) and the footprint of uncertainty allowed by

the type-2 FIS.
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Figure 4 | Differences between FIS using different shapes of fmfs.

Table 2 | Parameters used to define the 3 fmfs of Figures 4 and 5

Antecedent fmfs Consequent fmfs

Triangular [a,b,c]:

f(x;a,b,c)�5
0, x%a
x{a
b{a

a%x%b

c{x
c{b

b%x%c

0, c%x

Acidic: [ 1 7, 0, 7]
Neutral: [4.5, 7, 9.5]
Alkaline [7, 14, 21]

Low: [ 1 0.47, 0, 0.47]
Medium: [0.02, 0.5, 0.98]
High: [0.52, 1, 1.47]

Generalised bell [a,b,c]:

f(x;a,b,c)�
1

1�Ux{c
a U

2b

Acidic: [3.5, 2.5, 0]
Neutral: [1.17, 2.5, 7]
Alkaline [3.5, 2.5, 14]

Low: [2.36, 2.5, 0]
Medium: [2.36, 2.5, 0.5]
High: [2.36, 2.5, 1]

Gaussian [s,m]:

f(x;�,m)�e
�

(x{c)2

2�2
Acidic: [3, 0]
Neutral: [1, 7]
Alkaline [3, 14]

Low: [0.2, 0]
Medium: [0.2, 0]
High: [0.2, 0]
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The three antecedent sets (the linguistic variables:

acidic, neutral and alkaline) were modelled with

Gaussian fmfs for two sets of parameters (see Table 3)

and the resulting suitability ratings can be observed in

Figure 6.

The increase in standard deviation, corresponding to

an increase in uncertainty as to the relative extents of the

sets, has, in this case, one specific effect. It increases the

number of input points receiving high scores in all three

consequent sets. The reason is that, by increasing the

Figure 5 | The soil pH attribute (lower left) and the resulting vulnerability layers from the same FIS using (a) bell-shaped, (b) Gaussian and (c) triangular fmfs.
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standard deviation of the antecedent fmfs, there is a tacit

acknowledgement of uncertainty as to which set a specific

input value belongs. For example, it is not possible to

clarify whether an income a is medium or high. Due to

that fact, a is assigned a high membership in more than

one set, and the defuzzification procedure (in this case a

centroid defuzzification3) results in a more neutral

response, with values for all inputs closer to a medium

value. This is why the increase is more pronounced in

low-to-medium vulnerability ratings while high vulner-

ability ratings have, in fact, been slightly decreased. The

physical meaning of this result is that higher design uncer-

tainty results in more ‘indifferent’ system-generated sug-

gestions. Figure 6 displays this overall increase in medium-

range vulnerability values within the case study area due

to the change of the shape of the antecedent Gaussian fmf.

Figure 7 displays two layers of leakage vulnerability due to

soil aggressivity (pH) corresponding to antecedent fuzzy

membership functions’ standard deviations of 1 and 2. It

also provides an example of the output of the fuzzy infer-

ence module of the SDSS. The difference between the two

outcomes is generally small (maximum difference'10%)

but its spatial variation provides the decision-maker with

a visual quantification of the uncertainty and its effect in

site-specific planning.

It should be noted that, due to the parameters used in

this example (summarised in Table 3), the resulting layers

in Figure 7 are quite different from the ones produced by

the inference procedure in Figure 5. This is because the

standard deviations of the Gaussian functions used in

Figure 7 are not sufficiently large to allow for an adequate

overlapping between the fuzzy sets needed to correctly

model the inference rules. In this case, pH = 4 is clearly

acidic but the set ‘acidic’ has a mean of 2 and a standard

deviation of 1 and 2 for the upper and lower maps of

Figure 7, respectively, and therefore pH = 4 is actually

receiving a low membership in set ‘acidic’. The example

serves two purposes: it illustrates the sensitivity of the3In the centroid defuzzification method, the crisp value of the output variable is
computed by finding the value of the centre of gravity of the consequent fuzzy set.
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Figure 6 | Cumulative graph of percentage of cells with suitability (vulnerability) ratings

over a specified suitability (vulnerability) value.

Table 3 | Parameters for antecedent sets in soil pH

Antecedent sets Mean SD (1) SD (1) SD (2)

Acidic 2 1 2 3

Neutral 7 1 2 3

Alkaline 10 1 2 3

Table 4 | Parameters used in the type-2 FIS resulting in Figure 5.19 outputs

Fuzzy
membership
function

Antecedent sets
(population density in
inhabitants/km2)

Consequent sets
(suitability to metering
introduction)

Low (mean: [ 1 20, 20], st.d.: 20) (mean: [ 1 0.15, 0.15], st.d.: 0.2)

Medium (mean: [80, 120], st.d.: 20) (mean: [0.35, 0.65], st.d.: 0.2)

High (mean: [180, 220], st.d.: 20) (mean: [0.85, 1.15], st.d.: 0.2)
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system to changes in parameters affecting the shape of

the fmfs and stresses the importance of parameters that

adequately cover the variables’ space and allow for a

meaningful (in terms of the rule base) overlapping of both

the antecedent and consequent fuzzy sets.

Uncertainty in the data

The proposed approach acknowledges the fact that data

input to the FIS are uncertain as well. For example, if pH

data are not collected for each and every point in the

network but are a result of interpolation from point

measurements (as is generally the case), there is consider-

able uncertainty as to the exact value at any specific point

depending, for example, on the interpolation procedure

(e.g. spline, kriging, inverse distance weighting) and the

distance to a control point (to name but a few possible

factors affecting data accuracy). Data uncertainty has been

taken into account by treating data not as a single number

(a singleton input) but as a fuzzy number, with—in this

case—Gaussian membership function, where the mean (and

therefore most probable value) is the value of the original

data measurement and the standard deviation is specified

by the user and applied to all inputs based on a belief in the

measurement accuracy (Figure 8). This means in practice

that there is a ‘most probable’ value for the data input

(equal to the measurement) but there is also a (lower)

possibility of the value being slightly lower or higher.

The analysis quantified differences resulting from non-

singleton inputs of varying standard deviations. The

results (Figure 9) indicate that, with increasing standard

deviation of the input measurements (and thus increasing

uncertainty), the numbers of network cells with high vul-

nerability ratings decrease, while the number of cells with

medium vulnerability ratings increase. The values of stan-

dard deviation used are 1, 3 and 5. The antecedent set’s

standard deviation was always equal to 1.

The reason for this effect of increased standard devi-

ation (and thus increased uncertainty) can be observed in

the schematic of Figure 10.

The effect of uncertainty in the input data, represented

here by increased standard deviation of the input fuzzy

number, is that the input value is associated with a pro-

gressively larger membership value to the antecedent set

(the leftmost set in Figure 10). This is in recognition of the

fact that more values are associated with the input value

(although with a smaller possibility4), and these values are

bound to have larger memberships than the ‘most prob-

able’ one in any antecedent set. The more uncertain a

fuzzy number is (i.e. the larger its standard deviation) the

larger its membership value is to all antecedent sets. The

defuzzification procedure (a centroid defuzzifier) calcu-

lates the crisp output as the value associated with the

4The term possibility is used here as the grade of membership of an input value to
a fuzzy set.

Figure 7 | The soil aggressivity vulnerability layers corresponding to standard deviations

(StD) of 1 and 2.
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centroid of the consequent set resulting from the appli-

cation of all relevant rules. If the result from the singleton

input was a neutral one (i.e. a medium suitability associ-

ated with the middle one of three consequent sets) the

effect of this increase is not significant. If, however, the

result was a small or large suitability, the increase in all

sets shifts the new result towards the middle, producing

more ‘indifferent’ results, as was to be expected from a

physical viewpoint. This increase of medium suitability

ratings at the expense of the high suitability ratings

explains the shape of Figure 9.

Uncertainty in the rules

Another interesting example of the SDSS results is the

output of the type-2 FISs where the user is able to incorpor-

ate his perception of uncertainty in the rules as well. This is

programmed by using, as antecedent and consequent set

fmfs, Gaussian functions with uncertain means, which are

assumed to lie in an interval [m1, m2] and a common

standard deviation. The example given below uses the

type-2 singleton FIS to assign suitability ratings for meter-

ing introduction based on population density. The user

specifies the intervals [m1, m2] for both antecedent and

consequent fmfs and the standard deviations (one for each

of 3 antecedent and 3 consequent fmfs). The output is in the

form of 3 maps containing the mean value of the outcome

as well as the minimum and maximum values for the same

locations. This approach can provide a transparent esti-

mation of the effect of rule uncertainty to the final proposed

composite scenario. The analysis (Figure 11) was per-

formed for antecedent fmfs with the parameters shown in

Table 4. Figure 11 shows three output suitability layers for

the same input [max: (upper map), mean: (centre map),

min: (lower map)] of a type-2 FIS, indicating the level of

analysis uncertainty associated with rule uncertainty.

The mean (centre map) result coincides with the result

obtained by the equivalent type-1 FIS with non-fuzzy

antecedent fmfs whose defining parameters (in this case

the mean) are given by the mean of the values of the

interval presented for each function in Table 4. For

example, the ‘medium’ population density fmf of the

equivalent type-1 FIS has a mean of 100 and a standard

Figure 8 | A fuzzy number quantifying data uncertainty.
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Figure 9 | Cumulative graph displaying the effect of increased data input uncertainty

(through changes in standard deviation) to the percentage of cells identified

as vulnerable.

Figure 10 | Fuzzification of two fuzzy numbers (ns1 and ns2) with different standard

deviations (SD of ns2>SD of ns1) and one crisp number (x(s)) which is also

the most probable value for the fuzzy numbers.
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deviation of 20. The advantage is in the fact that specifying

the (rule) uncertainty as an interval in the type-2 FIS

allows the result of the analysis to vary accordingly

(Figure 11). The visualisation of the uncertainty

propagation within the FIS is one of the most interest-

ing characteristics of the use of type-2 FIS within an

SDSS.

Figure 12 illustrates the envelope of uncertainty

(between the maximum and minimum value) incorporated

in the three layers of Figure 11 by identifying the changes

in the suitability ratings for households considered for

metering introduction. This provides the decision-maker

with an understanding of the uncertainty propagation

through the decision-making process, thus allowing for

more informed decisions. By identifying the elements

causing greater variations in the end result, the decision-

maker can identify information or knowledge gaps crucial

to the analysis and thus better manage the resources for

collecting them.

Results discussion

The use of rule based FISs presents a solution to the issue

of linking antecedent (field data) to consequent (suitability

for WDM strategy applications), such as linking overhead

traffic with leakage vulnerability of the water distribution

pipes below, through an unknown function.5 Using fuzzy

inference systems to assign suitability values to spatial

data makes use of the function approximation capabilities

of these systems and urban water management is a text-

book example of a case where the function linking ante-

cedents to consequents is not predetermined. The

question of the extent to which a FIS can adequately

approximate an unknown function was answered by

Wand & Mendel (1992), as well as by Kosko (1992). They

5Deterministic relationships for this kind of linking do not exist in the literature.
Probabilistic relationships, which can sometimes be found in the literature, are
heavily dependent on calibration parameters for specific test data. Most of these
relationships, whenever they exist, present few fundamental similarities.

Figure 11 | Three output suitability layers for the same input of a type-2 FIS, indicating

the level of analysis uncertainty associated with rule uncertainty [max: (a),

mean: (b), min: (c)].
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Figure 12 | Cumulative graph comparing the suitability ratings of the three outputs for

the case of population density attribute of metering introduction as a WDM

strategy.
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proved (for a number of specific FISs) a universal approxi-

mation theorem, in other words that FISs could uniformly

approximate any real continuous non-linear function to

an arbitrary degree of accuracy. A universal approxi-

mation theorem is an existence theorem. It implies that, by

using enough input and output fuzzy membership func-

tions, enough rules, correctly tuned, any function can be

approximated. It does not, however, explain how to build

such a FIS (Mendel 2001). In this case, the design made use

of linguistic variables (low, medium, high) with a degree of

uncertainty incorporated in type-2 fuzzy membership

functions. Linguistic variables and their calculus have

been the subject of on-going research ever since Zadeh’s

1975 paper on approximate reasoning (Zadeh 1975). In

summary it can be stated that although ‘words mean

different things to different people’ (Mendel 2001), there is

a general agreement as to their approximate meaning and

the degree of uncertainty associated with this difference in

meaning can be taken into account. The parameters used

in our case to set up the FIS were selected from values

proposed in the relevant literature.

This is considered an interesting application of FIS

from an environmental point of view and a potentially

useful add-in to an SDSS from a decision support point of

view. Type-2 non-singleton FIS incorporating data and

rule uncertainty in the decision-making process are also

considered powerful tools and coupling them with GIS to

visualise the result in the form of maps can quantify the

spatially variable effect of this uncertainty to urban water

management problems of the object location type.

Additionally the results indicate that the use of fuzzy

numbers instead of crisp data points for input to models in

general and decision support systems in particular can

effectively address problems of high data uncertainty and

ambiguity. The paper does not advocate the use of type-2

FIS instead of type-1, but it simply explores their potential

in quantifying to a larger extent the uncertainty associated

with both data and rules. The premise on which this

discussion of type-2 sets was based is that, when there is

ambiguity or uncertainty about the exact value of some

decisional attribute, we use fuzzy instead of crisp sets. Yet,

in type-1 sets, we are asked to determine the fuzzy mem-

bership function of that value to some (fuzzy) set exactly,

which seems counter-intuitive considering we are not

even able to determine its value (Mendel 2001) and thus

even less able to determine its membership in a set. In real

life, when rules are collected by experts, if we first query

the experts about the locations and spreads of the fuzzy

sets associated with antecedent and consequent terms, it is

very likely that we will get different answers from each

expert (Karnik et al. 1999). This leads to uncertainty about

the locations and spreads of antecedent and consequent

fuzzy sets. Such uncertainties can be incorporated into the

descriptions of these sets using type-2 membership func-

tions. Naturally, the same problem exists with type-2 sets

and the secondary membership function, which is in its

turn a crisp function. In principle, to be able to capture

uncertainty completely one should work with type-` fuzzy

sets. This is of course impossible for practical purposes.

Higher-order fuzzy sets are more complex and thus a

trade-off between complexity and quantified uncertainty

has to be reached. This paper argues that type-2 (singleton

and non-singleton) FIS are able to incorporate, to some

extent, rule uncertainty in the decision-making process

while still being applicable in practice for large-scale prob-

lems without significant computational burden. The fact

that the SDSS used their output in a GIS context to

visualise the result in the form of maps assists in the

quantification of the spatially variable effect of the uncer-

tainty to urban water management problems of the object

location type.

An interesting possibility in designing and using FIS

for analytical or decision support purposes is the potential

of tuning the FIS parameters (in this case the means and

variances of antecedent and consequent sets) by training

the original FIS through a neurofuzzy approach. This

enables the subjectivity in the design of a FIS to be

considerably reduced and partly answers the questions

about optimal design put forward above. Such an

approach requires input–output training data and changes

the parameters of the FIS by a back-propagation pro-

cedure, usually a steepest descent algorithm. The training

data should take the form of input–output pairs for each

inference system (i.e. measurements of input values (i.e.

soil pH at point (x,y)) and output leakage vulnerability

values of the adjacent water network pipe measured

through some user-defined indicator (e.g. corrosion

level)). There is, however, a problem associated with this
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methodology in our particular application, and that is the

lack of training data. This lack can be explained by the

following two factors. (a) Water company records are

scarce (at least in the public domain) and of unspecified

reliability. Information on all of the identified attributes

for the same network is even scarcer. (b) The suitability

rating is not always a measurable quantity. The case of

suitability for compulsory metering introduction depen-

dent on the financial level of the occupants is a good

example of this problem. This does not mean, however,

that the technique is not potentially useful: computerised

data of acceptable resolution and accuracy are becoming

more and more available and should, in principle,

continue to do so in the future and an expert rating could

take the place of actual measurements when the rating

itself is not a measurable quantity. In this case the FIS

would not model reality but the decision-making process

of the expert(s). There are, of course, cases where data

exist and can be processed to create input–output training

pairs, as is the case in pipe prioritisation for leakage reduc-

tion. Such a neurofuzzy inference system incorporating

additional knowledge from past network records and ex-

pert judgement of the system’s inference procedure was

developed and is currently being tested following the rec-

ommendations of Kim & Kassabov (1999), Fenner et al.

(2000) and Mendel (2001). The authors hope that they will

be able to report results shortly in a subsequent publica-

tion.

CONCLUSIONS

This paper discussed a mathematical framework for quan-

tifying uncertainty in an SDSS, which can be adapted to a

number of urban water management contexts. The use of

approximate reasoning (through the use of type-1 and

type-2 FIS) is justified by the extent to which linguistic

variables have to be used in the planning process when

necessary information includes engineering, social and

economical constraints. The authors feel that the tools

described here are generic enough to allow for similar

applications in other fields (Makropoulos & Butler 2001)

and that, when there is a level of uncertainty and ambiguity

involved in the decision-making process, the use of type-2

fuzzy inference systems coupled with a GIS to capture this

uncertainty and present it in a readable form (a map)

presents a promising development for environmental plan-

ning in general and urban water management in particular.
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