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Abstract 

In the field of Image Processing it is a common problem to search for the end 

points of lines in binary edge images generated using edge detection algorithms. Often 

this is done by using the Hough Transform, however in its native form the Hough 

Transform is only capable of finding line parameters and not the end points of those lines 

represented by the line parameters. In the past several enhancements to the Hough 

Transform have been published which deal with locating the end points associated with 

those parameters. This paper discusses one such enhancement which has some unique 

properties unlike any discussed in previous research. The enhancement involves the use 

of a hierarchical Hough Transform that makes use of a quad tree and an additive property 

such that the parameter space accumulator for a given sub-image can be stored implicitly 

in the tree and recovered by adding up the corresponding entries in the accumulators for 

each of the disjoint sub images. This paper will also discuss the trade-offs of time and 

space complexities as well as discuss one potential application in Augmented Reality 

which was the original motivation for this research. Comparisons to other hierarchical 

approaches to the Hough Transform will also be discussed. 
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Chapter 1 

Introduction 

1.1 Problem Overview 

In the field of Image Processing the extraction of geometric features from images 

is a very common problem. Over the years several different approaches have been 

devised to extract these features. These different approaches can be characterized and 

classified in several different ways. Some of the techniques involve global examination 

of the image while others only involve local examination of each pixel in the image. 

Further still, some techniques involve the decomposition of the image into sub-images in 

an attempt to simplify the problem. Some representative examples of these different 

approaches will be reviewed in this thesis, particularly the issues of hierarchies and image 

decomposition. The discussion will be primarily limited to the extraction of lines. 

However, some generalizations may be made for other mathematically defined features 

as well. 

The Hough Transform (HT) [7] is a common technique for extracting lines from 

images. In this thesis I will propose a variation of the standard HT called Spatial 

Decomposition of the Hough Transform (SDHT) [5]. The SDHT and its unique 

mathematical properties are the main contribution of this thesis. One of these properties, 

known as the additive property, will be described in greater detail in Section 3.3. This is 

the property that any accumulator arrays defined from a global origin which correspond 

1 
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with disjoint sub-images, when their corresponding entries are added together form the 

accumulator array corresponding to the merged sub-image. This property has several 

advantages and is a significant contribution to the HT. The HT and subsequent SDHT are 

part of the larger problem of finding lines in digital images and therefore, some suitable 

background information on the subject will be given in this chapter to familiarize the 

reader with the topic and some similar techniques before moving on to the details of the 

SDHT. 

1.1.1 Edge Detection 

Typically the first step in the process is to perform some form of edge detection 

such as Canny [2] on the image, thus generating a new binary edge image that provides 

the necessary segmentation of the original one. Edge detection algorithms operate on the 

premise that each pixel in a grayscale digital image has a first derivative with regard to 

the change in intensity at that point. If a change occurs at a given pixel in the image, then 

traditionally, a black pixel (from this point on known as a feature point) is placed in the 

binary edge image. If a change does not occur, then a white pixel is placed there instead. 

In general, the gradient is compared at each pixel that gives the degree of change at each 

point in the image. The degree to which this derivative is considered however remains an 

empirical problem. The question basically amounts to how much change in the intensity 

should be required in order to constitute a feature point in the binary edge image. Usually 

a predefined threshold value T is used to classify edge points. This is to simplify the 

voting process which takes place in the HT. Without some form of thresholding the 

voting process must consider varying degrees of change not commonly dealt with in 

previous literature. 
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In an attempt to find the accurate (or optimal) location of an edge, a second 

derivative is often used. The edge can be found at the point where the change in the first 

derivative is constant, corresponding to the local maximum / minimum. This is often 

referred to as a zero crossing because it is the point at which the second derivative equals 

zero but its left and right neighbors are non-zero and have opposite signs. 

It is often difficult to select the optimal threshold for mapping the grayscale image 

into a binary edge image of feature points. One of the primary reasons for this is due to 

non-uniform illumination in images. When shading cues are too subtle to pick up on, 

legitimate geometric features in images, primarily lines, which are the focus of this paper, 

are difficult to pick up on. Any attempt to fix this problem by lowering the threshold to 

allow for weaker lines to be detected, also tends to allow for the addition of a great deal 

of noise in the image. This noise hinders further steps in feature detection from finding 

the features of interest, rather than false positives. This problem may not seem to be 

significant to the reader at first glance, because of the initial desire to compromise the 

process by allowing it to be performed manually. This would involve letting the user run 

the edge detection algorithm once, and then, if the binary edge image does not properly 

display the features that the user deems to be of interest, run it subsequent times with 

varying thresholds until better results are achieved. This manual process may seem like a 

reasonable compromise at first, but in the case of robot vision, where the computer must 

take frames from video capture devices sequentially in real time and process them 

automatically, the compromise is of no use. Particularly in the field of Augmented 

Reality (AR) where time and accuracy constraints are of the utmost importance, this 

becomes even more of a problem. AR and its connection to image processing techniques, 
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particularly the method proposed in this thesis, will be discussed in greater detail in 

Section 6.3. 

1.1.2 Problem Subdivision 

In general it is common to solve complex problems by subdividing them into 

smaller and more manageable problems. This process reduces the complexity of the 

algorithms involved and increases their robustness. It would seem obvious that there 

could be some benefits to applying this methodology to the problem of extracting 

geometric features from images. There are two different ways in which this problem 

subdivision can be described in this problem domain. They are as follows: 

1. Determine some simple (primitive) features that can be detected more easily 

in an image and then, based on their arrangement determine if they form a 

reasonable foundation for a more complicated feature. 

2. Determine if a feature can be found in an image by subdividing the actual 

image itself such that the problem is reduced to simply checking for smaller 

portions of the feature in each sub-image nearby. Then it is necessary to verify 

if these smaller features can be legitimately combined to form a larger feature 

based on spatial proximity and orientation. 

In order to better understand the previous two concepts consider an example 

related to the first concept. Suppose one wishes to find a square in an image. Finding a 

square in an image might be easier if one subdivides the problem into finding parallel and 

orthogonal lines and then using those lines to decide if a square is present in the image. 

Furthermore one might then use the arrangement of squares found to determine if there is 

4 
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a basis for believing that a more complicated feature composed of squares is present in 

the image. This concept can be taken one step further by identifying the most primitive 

object in any image which is essentially a feature point. This general concept is the most 

common motivation for line finding algorithms. The assumption is that the lines have 

some importance given the circumstances and that they will be used for some broader and 

more important purpose later. The usefulness of finding lines in images will be discussed 

in greater detail in Section 1.4. 

The second concept has been experimented with often in the past, and has been 

proven to enhance the process of finding geometric features in images. This concept can 

be used in conjunction with the first concept and therefore is a more fundamental 

decomposition of the problem. This thesis will discuss in detail the search for lines in 

images and will limit the discussion to this search. This is mainly because aside from a 

single point, a line is the most primitive geometric feature that can be expressed in an 

image. Thus, lines serve as a starting point for finding other features. The search for 

curves and other more complicated geometric features will be left up to the reader to 

research further. Some interesting techniques for finding curves in images can be found 

in [14] and [15]. 

1.1.3 Problems with the Naïve Method 

There are several different methods for finding lines in images, some of which do 

not subdivide the problem domain at all. Therefore it is necessary to discuss these 

methods in greater detail highlighting their benefits and drawbacks. It is also important to 

consider the reason for having line finding techniques in the first place. It is important to 

understand why the naïve method is not sufficient for this purpose. Suppose no 
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consideration is given to improving the run time of this process. Then we would simply 

trace along the path of every possible line in the image and check for line segments that 

we wish to record by finding feature points within a predefined vicinity of each line. 

Observe the following pseudo-code for this naïve approach: 

Begin LineSearch(LineList) 

For Each 

For 

End 

End For 

End LineSearch 

Slope 'a' 

Each 

For 

Y-Intercept 'b' 

Each Point 'p' On 

If FirstPoint(p) 

p0 = p 

Else If LastPoint(p) Then 

pl = p 

LineList.AddLine(p0, 

End If 

End For 

For 

The Path 

Then 

pl ) 

Figure 1.1 Pseudo-code for the naïve approach 

It can be seen that the run time characterization of such an algorithm would be 

0(73 ) and prohibitive for all but the smallest of images. There is another problem with 

this approach. If a pixel in the image does not represent a feature point, then it will still be 

processed again for any other lines passing through it, even though it has already been 

established as being empty space in the image. Also it is not uncommon in line searching 

algorithms to perform some additional line verification processing. This is to consider the 

surrounding area of the line and decide if the line is in fact a line, rather than just an 

arbitrary collection of feature points in the image. Basically for each segment of feature 

points along the path, it is necessary to traverse all of the orthogonal points within a 

specified interval in order to perform line verification. If this is done, then the 
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neighboring lines will also be visited simultaneously. This means that every line will be 

visited several times depending on the width of the point interval chosen. In the next 

section, a more efficient approach to this problem known as the HT will be discussed. 

This is the approach that will serve as the basis for the concept discussed in this paper. 

1.2 The Hough Transform 

The HT is a robust method for finding lines in images that was discovered by Paul 

Hough. In 1952 Donald A. Glazer invented the bubble chamber for which he later was 

awarded the 1960 Nobel Prize in Physics. A bubble chamber is a cylinder filled with 

super heated transparent liquid which is surrounded by a constant magnetic field. 

Charged particles in the chamber nucleate bubbles of vaporized liquid and thus leave a 

helical trail behind them. A camera placed at the top of the chamber records the scene. 

Although Hough's 1962 patent [7] was originally filed for the purpose of detecting the 

paths of particles in the above mentioned bubble chamber images, it was later found to be 

useful for solving many other problems involving the search for lines in images as well. 

The main premise for the HT is as follows. For each line L, there exists a unique 

line L', which is perpendicular to L and passes through the origin. L' has a unique 

distance p and angle 0 from the horizontal axis of the image. This angle and distance 

define a point in parameter space sometimes known as Hough space. A point in image 

space has an infinite number of lines that could pass through it, each with a unique p and 

0. This set of lines corresponds to a sinusoidal function in parameter space. Two points 

on a line in image space correspond to two sinusoids which cross at a point in parameter 

space. That point in parameter space corresponds to that line in image space, and all 

sinusoids corresponding to points on that line will pass through that point. 
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The computer is incapable of checking an infinite set of lines because the 

algorithm would never end. Also, even if this were possible it would not be desirable 

because the image is digital, and therefore has a limited resolution not capable of 

representing differences in the orientation of lines beyond a certain degree of accuracy. 

This topic of line parameter accuracy will be discussed in Section 4.2. The solution to 

implementation is to quantize the parameter space by using a 2D array of counters where 

the array coordinates represent the parameters of the line. This is commonly known as an 

accumulator array. In this thesis, an element in this array will be referred to as a houghel, 

which is short for "Hough Element." The HT method for finding lines in images 

generally consists of the following three stages: 

1. Perform accumulation on the accumulator array using the binary edge image. 

2. Find peak values in the accumulator array. 

3. Verify that the peaks found correspond to legitimate lines rather than noise. 

The 31t1 step mentioned is not entirely necessary depending on the circumstances, 

however false detections of lines are not uncommon when using the HT. In Hough's 

original patent the line equation used to parameterize the lines was Equation 1.1. The 

unbounded nature of this equation combined with the not only possible but high 

likelihood of vertical lines in images made this scheme for parameterization rather 

flawed. In 1972 however Duda and Hart published [3] which described Equation 1.2 as 

being an unbounded parameterization for solving the problem. They described this as 

being the General Hough Transform (GHT) and this is the HT used most commonly 

today. The 1st step mentioned is the most important step because it reduces the problem to 
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finding peak values in an array. The pseudo-code for the HT accumulation process is as 

follows: 

Begin HoughTransform(Accumulator) 

For Every Feature Point (x, y) 

For Every Gradient Angle A 

p = y*sin(0) + x*cos(0) 

Quantize(p, 0) 

++Accumulator[p, 0] 

End For 

End For 

End HoughTransform 

Figure 1.2 Pseudo-code for the Hough Transform 

The two different formulas for the parameterization of a line are as follows: 

y=a*x+b (1.1) 

p = x*cos(0) + y*sin(0) (1.2) 

The HT has several benefits over the naïve approach to finding lines in images. 

The list of benefits is as follows: 

1. The HT has a general run time characterization of 0(12 ). 

2. The HT is not sensitive to gaps in line segments as a result of fuzzy images. 

3. The HT does not revisit feature points. 

4. The HT is capable of culling non-feature points from the problem space entirely. 

Unfortunately, the second advantage in the list above is closely related to the first 

disadvantage in the list below. The list of limitations to the HT are as follows: 

1. The HT does not consider the connectivity of feature points when voting in the 

parameter space and therefore does not record the end points of lines. 

2. The parameter space often has false peaks as a result of noise in images combined 

with other lines that intersect the line in question. 
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1.3 Non-Hierarchical Methods for Finding Lines 

Not all methods for finding lines in images are hierarchical methods. Many 

methods do not even make use of the HT. One such method discussed in [18] uses a 

polygonal approach where the outline of geometric features is obtained and afterwards a 

best-fit algorithm is applied to see if a line passes adequately through the convex hull 

formed by the feature points. This method is reported to be fast and efficient but is for the 

purposes of finding the exact end points of the lines in the image with precision. It should 

not be used in situations where only general information about line location is required. 

Another method for accomplishing this which will be discussed in further detail in 

Section 5.3 is [20]. This method employs the HT using a single accumulator array on a 

global scale but does so by recording the min and max range of the feature points that 

voted on each parameter pair. Thus, the following structure for an accumulator element 

also known as a houghel is used instead of the traditional element. 

typedef struct Houghel 

1 

unsigned short total_votes; 

unsigned short min_range; 

unsigned short max range; 

1 *LPHoughel; 

Figure 1.3 C/C++ Houghel definition 

Using this new structure at each point in the accumulator array allows for the 

ability to record the range of the line. Due to the problem explained earlier, in some 

houghels it is necessary to record the min and max range of the x component, while in 

others the min and max range of the y component, because there may be some vertical or 
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horizontal lines. The value of the angle of the line becomes necessary to distinguish 

which is being recorded when each vote is cast. This is not a significant problem however 

and leads to a rather efficient solution. After the accumulator array has been voted on the 

interval between the minimum and maximum values in the range is checked. 

1.4 Motivation of the Current Research 

Finding lines in images has several purposes for many different applications. 

They can often be used to find objects on the ground in satellite images. In the case of 

[16] road segments were extracted from images for the purposes of updating Geographic 

Information Systems (GIS) devices. In [11] the extraction of lines aids in the extraction 

of culturally important architecture which can then be stored in the computer as a fully 

3D textured model. This concept in particular is similar to one that is of importance in the 

research in this article because it involves the extraction of 2D lines which are then 

mapped into 3D space and used to model the structure found in the image. In [22] palm 

lines are extracted in order to perform the recognition of palm prints. Similarly, in [24] 

the HT is used to extract thumb prints and even perform iris recognition. In [23] the lines 

are extracted from form documents, often with complicated backgrounds that make their 

extraction more difficult. 

It would seem readily apparent that the ability to find lines in images is 

advantageous to solving many detailed problems. The HT as described in Section 1.2 is a 

sophisticated global technique for finding the parameters of lines in images but lacks the 

ability to find the end points of those lines. In previous literature hierarchical techniques 

have been used to subdivide a digital image for the purposes of devising the locality of 

the end points found using the HT. Much of the research devoted to this concept however 

11 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

horizontal lines. The value of the angle of the line becomes necessary to distinguish 

which is being recorded when each vote is cast. This is not a significant problem however 

and leads to a rather efficient solution. After the accumulator array has been voted on the 

interval between the minimum and maximum values in the range is checked.

1.4 Motivation of the Current Research

Finding lines in images has several purposes for many different applications. 

They can often be used to find objects on the ground in satellite images. In the case of 

[16] road segments were extracted from images for the purposes of updating Geographic 

Information Systems (GIS) devices. In [11] the extraction of lines aids in the extraction 

of culturally important architecture which can then be stored in the computer as a fully 

3D textured model. This concept in particular is similar to one that is of importance in the 

research in this article because it involves the extraction of 2D lines which are then 

mapped into 3D space and used to model the structure found in the image. In [22] palm 

lines are extracted in order to perform the recognition of palm prints. Similarly, in [24] 

the HT is used to extract thumb prints and even perform iris recognition. In [23] the lines 

are extracted from form documents, often with complicated backgrounds that make their 

extraction more difficult.

It would seem readily apparent that the ability to find lines in images is 

advantageous to solving many detailed problems. The HT as described in Section 1.2 is a 

sophisticated global technique for finding the parameters of lines in images but lacks the 

ability to find the end points of those lines. In previous literature hierarchical techniques 

have been used to subdivide a digital image for the purposes of devising the locality of 

the end points found using the HT. Much of the research devoted to this concept however

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was done in the 1980's when memory was in short order and therefore suggesting a 

technique that would require a larger amount of it was unthinkable. Due to this limitation 

every technique always began with the use of a smaller accumulator derived from a local 

coordinate system at the top left hand corner of each sub-image. Almost all other 

variations after that point were limited to the type of decomposition and the form of the 

hierarchy. The techniques required numerous passes to the HT system and suffered from 

the problem of having to always map line parameters from local coordinate systems back 

to the global coordinate system in order to match line segments up with each other, if so 

required. Therefore the SDHT was devised as a new technique for modern computers 

which is capable of solving these problems with the trade off of higher memory 

requirements. It is in the opinion of the author that this particular research was not 

possible during the time in which this kind of research was originally being conducted. 

Therefore, it is worth a second look, now that significant changes have taken place in the 

computer industry. 

To summarize, the main concept which will be discussed in the remaining 

chapters is the decomposition of binary edge images into disjoint sub-images each with 

their own parameter space defined from the global origin of the original image. The use 

of a quad-tree in the discussed implementation allows for the implicit storage of 

quantized accumulator arrays representing parameter spaces at each level of 

decomposition. The use of a global origin for all parameter spaces reduces the problem of 

grouping co-linear line segments to a function of proximity in parameter space. 
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The main contributions of this thesis are listed here: 

1. A simple and mathematically elegant solution is devised for the spatial 

decomposition of the image which is easier to implement than data structures such 

as pyramids devised in previous research papers. 

2. The property that each level of a quad-tree implicitly stores the parameter spaces 

at all previous levels of the tree. 

3. The property that grouping co-linear line segments found in the image may be 

simplified to the process of grouping all line segments found within a 

predetermined proximity of each other in parameter space. 

4. The fact that the modified HT algorithm unlike its predecessors is a one pass 

algorithm, only needing to perform the accumulation process once. 

1.5 Thesis Outline 

In the first chapter we have examined the general problem of finding lines in 

images as well as several different approaches and why the HT is advantageous to 

solving the problem. The motivation for the SDHT technique has been addressed and so 

Chapter 2 will go into greater details with various adaptations to the HT and in particular 

put focus on the pros and the cons of pyramid hierarchies used to solve the problem as 

they are the most relevant to this topic of research. In Chapter 3 the properties of the 

SDHT and their advantages as well as disadvantages will be discussed. Implementation 

details as well as resulting images will be included as well. In Chapter 4 the issues of 

spatial resolution for both the global image as well as the sub-images will be covered. In 

Chapter 5 the parameterization of the accumulator arrays and the problems entailed there 

will be discussed in detail, particularly with new problems raised with the SDHT. 
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Chapter 5 will also discuss the issue of how to choose the range constraints of the 

continuous parameters which can be found in the image. In Chapter 6 a sample problem 

in Augmented Reality (AR) will be discussed as well as how the SDHT applies directly 

to it. Chapter 7 will conclude with a summary of the discoveries made as well as some 

suggestions for future research in the area. 
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Chapter 2 

Traditional Spatial Decomposition Techniques 

2.1 Introduction 

In the previous chapter we discussed the general problem of finding lines in 

images and more particularly the benefits of the HT. Although we discussed the possible 

usefulness of using spatial decomposition as a way of breaking this general problem into 

a series of sub problems we did not give any specific examples of how this was done in 

the past. Past research attempts have commonly experimented with a paradigm known as 

the pyramid method. This method, while different from the SDHT, has several 

similarities, and therefore needs to be examined in terms of its advantages and 

disadvantages in order to better understand the general problems associated with the 

SDHT. 

Quad-trees and pyramid structures are used for many purposes in both the field of 

image processing as well as in the field of computer graphics. Naturally it would make 

sense to experiment with these data structures to see what possible benefits they could 

have in this specific problem domain. Pyramid structures, particularly the one used in [6, 

17, 19], represent overlapping sub-images. Thus, they are capable of offering refinement 

in a manner that the SDHT is not. The SDHT however as we shall see in the next chapter 

is capable of storing the necessary information for refinement implicitly. This is an 
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sense to experiment with these data structures to see what possible benefits they could 

have in this specific problem domain. Pyramid structures, particularly the one used in [6, 

17, 19], represent overlapping sub-images. Thus, they are capable of offering refinement 

in a manner that the SDHT is not. The SDHT however as we shall see in the next chapter 

is capable of storing the necessary information for refinement implicitly. This is an
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interesting trade-off between these two ideas that is certainly worth looking at. Another 

trade-off has to do with the actual accumulation process associated with each structure. 

With a pyramid structure there must be a separate accumulation process for each 

sub-image represented in the pyramid. Since many of the sub-images overlap this means 

that several feature points are accumulated multiple times by the algorithm. In a typical 

quad-tree this is not the case because each sub-image is disjoint from all other sub-

images. Therefore each feature point need only be accumulated once to achieve the 

desired result. Pyramid methods are also somewhat more complicated to program than 

quad-trees and in computer science in general simple and elegant solutions are usually 

preferable over intricate and complex ones. In Sections 2.2 and 2.3 the structure of the 

pyramid and the structure of the quad-tree are reviewed in detail. 

2.2 The Structure of the Pyramid 

In [6, 17, 19], the pyramid structure is actually defined as being a hierarchy in 

which each level of the hierarchy consists of a number of 4x4 sub-images of pixels, 

who's 2x2 central sub-images of pixels composes the next higher level in the structure 

(Figure 2.1). The neighboring sub-images are also considered when grouping lines at 

higher levels. Each level of the pyramid represents the entire image broken down into a 

different number of sub-images. Given P + 1 levels, each level L, 

contains 2P-L x 2P-L sub-images. The lowest level of the pyramid, level 0, represents the 

finest subdivision. The highest level of the pyramid denoted by P, represents the entire 

image without any subdivision. At each level of the pyramid the number of sub-images 

decreases by a factor of 4. So if there are N sub-images at level L then level L — 1 must 

have N / 4 sub-images. The HT is called once for every sub-image and then these lines 
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found are matched up with lines found in larger overlapping sub-images at the next level 

of the pyramid. Any of the same lines found are propagated to a higher level in the 

hierarchy. The process is then repeated until the top of the pyramid is reached. Naturally, 

as the level in the pyramid increases the HT accumulator arrays must increase in size as 

well in order to deal with increased spatial dimensions of the images. Due to this 

structure it is impossible to connect lines in different sub-images without performing 

necessary calculations to map them to a common global coordinate system. This is 

because every accumulator array is defined from a different local origin than that of its 

neighbors. Thus, although smaller accumulators can be used for smaller sub-images, 

eventually the entire image must be processed anyway and some time must still be lost 

when performing the verification necessary to determine connectivity and co-linearity 

between line segments in neighboring sub-images. 

One of the benefits to this structure is that sometimes, when dealing with smaller 

images, it becomes increasingly easy for slight variations and noise in two short co-linear 

line segments, part of a larger line segment, to become decreasingly co-linear due to their 

partitioning. When this occurs they may still be grouped together within reason using the 

quad-tree family of implementations, however it becomes increasingly difficult and 

usually similarity thresholds with regard to their co-linearity must be relaxed to allow for 

this. With the pyramid methods however there is the use of overlapping sub-images and 

therefore, information is gained more than once for any given set of feature points lying 

in these regions. This is because the problem of having a precise and steadfast partition 

has been resolved by having a softer boundary that reflects the spatial connectivity 

needed to overcome this problem. The reused feature pixels help to alleviate this issue 
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while introducing the issue of increased run time as mentioned in the previous section. 

This reuse of feature points should not be confused with a change in pixel resolution at 

higher levels of the pyramid. Each sub-image still contains the same pixel resolution. 

Only the dimensions of the sub-images change at higher levels. The reason for the 

trapezoid shape of Figure 2.1 is because lines found in the central sub-images, (shown in 

black), are the only ones considered in the larger sub-image directly above at the next 

highest level. The neighboring sub-images are merely used to gather further evidence for 

line segments already found in the central sub-images, if they contain co-linear line 

segments. This is how the reuse of feature points is achieved because the neighboring 

sub-image at level L + 1 will also acquire evidence from some of these neighboring sub-

images at level L. Level L + 1 does not represent level L at a slightly smaller pixel 

resolution. 

Central Sub-images 

Neighbor Sub-images 

Level L+1 

Level L 

Figure 2.1 The Pyramid Structure 
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2.3 The Structure of the Quad-Tree 

The quad-tree structure in this problem domain is defined as being a hierarchy in 

which an image can be represented as a series of disjoint sub-images. Each level of the 

quad-tree represents four sub-images in the global image and each of those sub-images 

may be decomposed even further into four more sub-images recursively until the sizes of 

the sub-images have reached a desired minimum (Figure 2.2). This representation allows 

for the problems discussed above but also allows for some interesting properties 

depending on the implementation. Due to the fact that each sub-image (assuming the tree 

has sufficient levels) is relatively small, smaller accumulators may be used as is the case 

with the pyramid structures. Also similar to the pyramid structures is the fact that each 

accumulator is derived from a local origin at the top left corner of the sub-image to which 

it is associated with. Therefore the problem of determining co-linearity is still present. 

However, due to the disjoint representation provided by the quad-tree, information found 

at higher levels can be found implicitly assuming that a slightly different technique is 

used. The SDHT, which is a member of the quad-tree family of implementations, was 

described in Section 2.1 as having this particular property and as being able to acquire 

information at higher levels for the purposes of refinement in line segment detection. 

Unlike other quad-tree methods whose main advantage is the use of smaller accumulator 

arrays for the purposes of saving on accumulation time, the SDHT sets out to abandon 

this advantage in the hopes of opening up a whole new set of properties which will allow 

for a greater understanding of the line segments detected in the image depending on the 

implementation. The SDHT defines all of its accumulators from the global origin in an 

attempt to simplify the grouping process required to map short line segments to longer 
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line segments. The quad-tree structure when used in this way supports efficient 

computation but with an increased cost in memory. Due to increases in memory storage 

by modern computers, as is discussed in Chapter 5, the ability to find line segments 

accurately within a reasonable time frame is preserved. Another slightly different 

approach to using a quad-tree in conjunction with the HT for the purposes of 

decomposition can be found in [12]. Now that we are familiar with the differences in the 

two most common approaches used to structure this problem with, we will make use of 

the next chapter to discuss the finer details of the SDHT and its properties. 

Sub-images 

Figure 2.2 The Quad-Tree Structure 
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Chapter 3 

Properties and Techniques 

3.1 Understanding the Problem 

In the previous chapter several different adaptations to the HT were discussed. 

Some of these adaptations were hierarchical and involved the decomposition of the image 

space. The focus of this paper as discussed in the first chapter is to describe a new 

method for decomposing image space in an attempt to localize image features such as 

lines, and reduce the complexity of the problem. We would like to find the end points of 

line segments in binary edge images. However, many techniques do not allow for this. In 

papers [9, 10] it is possible to take a parameter space and map it perfectly back to the 

original image. This however, still does not provide information about the line segment 

end points. Previous methods discussed took advantage of the smaller resolution of sub-

images by using smaller accumulators, and thus, improving the time needed to perform 

accumulation. Several problems were introduced by this technique that will be addressed 

by the SDHT. The additive property of the SDHT serves as the foundation for the 

technique, making it possible to overcome some of the drawbacks to previous 

hierarchical methods and will be discussed in detail in this chapter. 

The pyramid methods for spatial decomposition regardless of their 

implementation always suffer from the same problem of having to re-accumulate 

overlapping sub-regions. Even if this accumulation is fairly limited it still exists as a 
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drawback to the method and requires a second look. Suppose we wish to have 

information about the decomposition of the image space at different levels of resolution. 

Given this scenario we would have to re-accumulate several times at different levels in a 

similar way to the pyramid methods. This is obviously undesirable and we wish to find a 

way to accumulate at all levels simultaneously. If only one accumulation is performed 

however, then only one global accumulator is acquired and local information about the 

locations of the image features is lost during the voting process. 

3.2 Quad-Tree Implementation 

The problem discussed above arises from the lack of localized information about 

the sample points being voted on in parameter space. This information which is known at 

the time of the voting process is lost thereafter. The key to the method proposed here is to 

preserve this knowledge during the voting process. This causes only a slight increase in 

complexity and memory space but allows for a more detailed line segment extraction 

process later on. The vote is recursively propagated in a quad-tree whose definition is 

such that the root node represents the full image and each of the four sub-trees represents 

a quadrant of the parent node for each node in the quad-tree. 

The quad-tree, used to represent the image, recursively segments it into four sub-

images, each of which has its own corresponding parameter space as defined from the 

global origin rather than a local one. A vote for a feature point is only made to a leaf node 

whose parameter space corresponds to the spatial location of the image block which 

contains the feature point in question. Each leaf node represents the parameter space 

manifold of a disjoint subset of feature points within the global set of image points I. 

Thus, the intersection of these parameter space subsets is the empty set. In addition to the 
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parameter space represented, the total number of feature points located within each of 

these disjoint subsets is also recorded in each leaf node. This value however, as it is 

propagated down the quad-tree is added to the total of each branch node on the way 

down. This leads to the property that the total feature count for each quad-tree is equal to 

the sum of the feature counts of all four sub-trees. This allows for the pruning of sub-

trees falling below a specified threshold and thus representing image regions largely 

unpopulated by feature points. 

3.3 The Additive Property 

In performing the localized voting process one of the main concerns is the 

availability of global peak information potentially lost as a consequence of localized 

information. The local quad-tree has an additive property however which allows for the 

acquisition of the original global parameter space manifold. This property allows for the 

arbitrary acquisition of the parameter space manifold for any disjoint quadrant subset of 

feature points in the global image INxN. Thus, it is possible for adjustable refinement of 

the spatial resolution of the line segment end points. The additive property asserts that the 

quantized parameter space of each quad-tree is equal to the summation of that of its sub-

tree parameter spaces. Let Q represent an arbitrary non-leaf node of a quad-tree in the 

data structure whose implicit parameter space manifold A, corresponds to a disjoint 

quadrant of M2 points JAM such that J mxm c INxN . Let 0 ,nw, Qne, Q. and Qse represent 

the northwest, northeast, southwest and southeast sub-trees of Q respectively. Where F 

represents the total number of feature points found within J MXM, let Fmv, Fne, Fs, and Fse 

represent the number of feature points found within the four disjoint quadrants of Jmxm. 

As well, let Amv, Ane, Asiv and Am represent their respective parameter space manifolds. 
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Then Equations 3.1, 3.2 and 3.3 are true by definition. Equation 3.4 subsequently holds 

for any quad-tree Q and the higher resolution information can be obtained through 

addition. Let the ED operator denote the addition of every corresponding element in two 

parameter space manifolds. For the results of Equations 3.2, 3.3 and 3.4, see Figure 3.1, 

which represents the subdivided parameter space of the edge image found in Figure 3.5b. 

VQ I a,. ,Q,,„Qs,„ ,g e c Q F„,„ + Fne + FsH, + Fse = F (3.1) 

VQ I a n,,,a,,,Q,„,,Q„ g Q Q„„, nQ,,e n Qsi, nQ , , e 0 (3.2) 

VQ IQ„,„Q„,Q,„,,Q.,e g_Q Q„„,uge ue w,L.)Q„ Q (3.4) 

VQI Q„.,Q„e,Q.„„,Qs e g Q An. e 3 ' Ane @ As. E I) As e = A (3.5) 

(a) (b) (c) (d) (e) 

Figure 3.1 Accumulators (a) Full Image; (b) Top Left Sub-Image; (c) Top Right Sub-

Image; (d) Bottom Left Sub-Image; (e) Bottom Right Sub-Image 

In order to create a quad-tree structure to contain the localized parameter space 

manifolds needed for spatial information, there is a tradeoff which needs to be discussed 

with regard to the degree of memory required to create the tree, as well as to acquire 

adequate resolution for the line segments of the image in question. The accumulator 

arrays representing the parameter space manifolds must be composed of two byte integers 
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in order to sufficiently hold votes large enough to cover most image sizes. There are two 

ways to implement the tree structure depending on the trade-offs deemed acceptable by 

the user. One method is to allow only the leaf nodes of the quad-tree to contain 

accumulator arrays. This means that the accumulator arrays at any other sub-tree in the 

structure are purely implicit and must be derived using the additive property. This is the 

implementation discussed in this paper and of greater efficiency in cases where the same 

parameter space data will not be used repeatedly or propagated back up the hierarchy in 

an attempt to generate groupings at higher levels as in [17]. Although, if implicit storage 

is used, efficient hierarchical line grouping can still be achieved by only applying the 

additive property to accumulator cells which are, or are near to peak values within the 

parameter space at the local level. The results shown in this paper did not demonstrate 

line groupings but this certainly can be achieved. There are two formulas for representing 

this storage method. The first is in terms of block sizes and the second is in terms of tree 

depth. Let each sub-image JMXM of the image iNxN have a block size of M2. Let d denote 

the maximum depth of the quad-tree from the root, such that the depth at the root is zero. 

Let Total,„,p denote the total number of accumulator arrays needed to represent each leaf 

node of the quad-tree, thus, implicitly storing accumulator arrays at arbitrary quad-tree 

depths. Let Totalexp denote the total number of accumulator arrays needed to represent 

every node of the quad-tree at all depths, thus, storing the arrays explicitly. Equation 3.5 

holds in the former case and Equation 3.6 holds in the latter. 

2 

( 1171) = 4d = Total,„,p (3.5) 

E LP3 =Total„p
/3=0 

(3.6) 
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Let Totaljmp denote the total number of accumulator arrays needed to represent each leaf 

node of the quad-tree, thus, implicitly storing accumulator arrays at arbitrary quad-tree 

depths. Let Totalexp denote the total number of accumulator arrays needed to represent 
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= 4 = Total imp (3.5)

^  -  Totalexp (3.6)
p=o
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It can be noted that the above additive property is held for arbitrarily shaped disjoint 

image subdivisions. 

One of the benefits of the decomposition of the HT is that it does not introduce a 

significant penalty in the overall run time characterization of the algorithm due to the fact 

that a quad-tree is being used for the voting process. This means that if the total number 

of feature points is u, the total number of quantized units of 0 is v, and the total number of 

sub-images is w, then the run time characterization of the voting process would 

be 0(log4 w" = 0(uv). The pseudo-code can be seen in Figure 3.2. 

The implementation described has one slight limitation with the run time of the 

voting process that is caused by the propagation of votes down the quad-tree with each 

new feature point being processed. This can be improved with a slightly modified 

accumulation algorithm. The new algorithm involves the complete traversal of the quad-

tree to arrive at each leaf node. At this point, accumulation on all of the feature points in 

the corresponding sub-image J m„m is performed. With this slight modification to the 

algorithm the total features denoted by F are recorded at the leaf node, and then returned 

to the parent tree so that all levels of the tree retain information about the feature count. 

The pseudo-code can be seen in Figure 3.3. 
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Begin GetLocalAccumulator(x, y, 0) 

++F 

If IsLeafNode(Q) then 

Return A 

Else 

Return GetLocalAccumulator(x, 

End If 

End GetLocalAccumulator 

Y 

Begin Accumulate ( irsixhir Q) 

For each feature point (x, y) in INxN 
A = Q.GetLocalAccumulator(x, y) 

For ( e = Ornin; e <= 0.a.; 0 += de) 
p = x*cos(0) + y*sin(0) 

Quantize(p, 0) 

A.Vote(p, 0) 

End For 

End For 

End Accumulate 

Qchild) 

do 

Figure 3.2 Top down SDHT accumulation pseudo-code 

Begin Accumulate(4.14, Q) 

If IsLeafNode(Q) then 

For each feature point (x, y) in J Amd do 

++F 

For (0 = kin; e <= emax; a += de) 

p = x*cos(0) + y*sin(0) 

Quantize(p, 0) 

A.Vote(p, 0) 

End For 

End For 

Else 

F = Accumulate (JA,f),A,f

Fne = Accumulate (JA,Nm ge) 

= Accumulate ( Jm.m Qsw 

Fse = Accumulate(J mxm, Qse) 

F = F + Fne + + Fse

End If 

Return F 

End Accumulate 

Figure 3.3 Bottom up SDHT accumulation pseudo-code 

27 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

B egin  G etL o c a lA c cu m u la to r (x ,  y ,  Q)
++F
I f  I s L e a f N o d e (Q) th en  

Return A
E l s e

Return G etLoca lAccum ulator  (x, y ,  Qchiid) 
End I f  

End G etLoca lA ccum ulator

Beg in  Accumulate  ( JWxW, Q)
For each  f e a t u r e  p o i n t  (x,  y) i n  I NxN do 

A = Q . G etL o c a lA cc u m u la to r (x ,  y)
F o r  ( 0  =  0 m in /  6  ^-=  Qmax/ 0  t =  d 0 ) 

p = x * c o s ( 0 )  + y * s i n ( 0 )
Q u a n t i z e ( p ,  0)
A .V o te ( p ,  9)

End For 
End For 

End Accumulate

Figure 3.2 Top down SDHT accumulation pseudo-code

Begin Accumulate ( JMxM ,  Q)
If IsLeafNode(Q) then

For each feature point (x, y) in ^mxm do
++F
For (0 = 0min; 0 <= 0max; 0 += d0)

p = x*cos(0) + y*sin(0)
Quantize(p, 0)
A.Vote(p, 0)

End For
End For

Else
F nw =  Accumulate ( JMxU ,  Q„w )
Fm = Accumulate ( JMxM , Qne)

Fsw =  Accumulate ( JMM , Q„ )
Fse =  Accumulate ( JMxM ,  Qse)
F  = F  + F  + F + Fnw ne sw se

End If
Return F

End Accumulate

Figure 3.3 Bottom up SDHT accumulation pseudo-code
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The actual quad-tree used in these algorithms in the C++ programming language 

is shown below and a more detailed examination is given for each data member of the 

tree. This structure is designed to allow for a perfect sub-division of the image into sub-

images of equal resolution. The spatial block boundaries are stored in the structure 

because they take very little memory and allow for some faster processing when selecting 

feature points within the image sub-region. 

typedef struct Tree 

1 

ParameterSpace 

Block 

PeakList 

int 

Tree* 

1 *LPTree; 

parameter_space; 

spatial block; 

peak_list; 

feature count; 

trees[4]; 

Figure 3.4 C/C++ quad-tree definition for the SDHT 

The above structure is merely a suggestion for the general case of recursive image 

subdivision. It does not necessarily provide the optimal solution for all problems that can 

be encountered by the SDHT in image processing. This will become more apparent in 

Chapter 6 when applications in augmented reality are discussed in full. Another issue 

related to parameter spaces is their potential storage on the hard drive. Suppose one 

wishes to perform the SDHT but not immediately process the accumulator arrays 

generated. The accumulators, each corresponding to a different sub-image can be stored 

on the hard drive but at a somewhat high cost, due to their size. The SDHT contains an 

accumulator for each sub-region that is the same size used for the global image. It can be 

noted that there are several lines which could never possibly intersect a given sub-image, 

which are represented in the quantization of the parameter space. This is a significant 
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problem with the SDHT that will be discussed in greater detail in the next chapter. In 

terms of accumulator storage, this is not a significant problem, because empty 

accumulator entries, houghels, are represented with zeros and therefore represent 

redundancy that is easily dealt with by run length encoding and various other 

compression techniques. 

In addition to this form of compression one might see the potential for another 

type of compression which is the implicit storage of parameter spaces. Since we have 

already shown by the additive property that parameter spaces at higher levels in the quad-

tree are stored implicitly, it stands to reason that if the quad-trees at lower levels in the 

quad-tree are saved to the hard drive, then these higher level quad-trees are stored there 

implicitly as well. One may see another potential form of compression though with the 

additive property and this is with the storage of accumulator arrays related to overlapping 

sub-images. This would seem like a possibility at first but unfortunately, this is not the 

case. If two overlapping sub-images are accumulated separately then the sub-image that 

is created by their overlap and the two sub-images that are created by their subtraction 

from each other in set theory cannot be recovered. This is due to the uncertainty involved 

with determining how many votes in the overlapped sub-image accumulator can be 

attributed to each of the other sub-images. So this property is not something that can be 

achieved with the SDHT. Therefore, Equations 3.2, 3.3, and 3.4 are not just mere 

suggestions for the additive property, but are steadfast rules, never to be broken. 

Figures 3.5, and 3.6 are digital images where N = 512 and M = 32. Therefore, by 

Equation 3.5, d = 4 . As can be seen, not all lines were perfectly detected due to 

thresholding issues, which will be discussed in Chapter 5. The lines in Figures 3.5c, and 
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3.6c were acquired separately and not grouped together in any way. There is an important 

issue involved with this however because there are different approaches that could 

possibly be used when grouping line segments. Any line of feature points passing through 

several sub-images, when subdivided into smaller line segments tends to become 

fragmented and discontinuous. This relates to the issue of edge detection, as was 

discussed in the introduction of this paper. Figure 3.6a was provided courtesy of [4]. 

The lines, due to the noise and imperfection associated with edge images, tend to 

be found at slightly different orientations. In past image space subdivision methods, such 

as the pyramid implementations, there was a problem with grouping line segments into 

larger lines because each parameter space associated with a sub-image was defined from 

a local coordinate system and therefore required some transformations in order to get the 

lines in the same coordinate system again to group them. With the SDHT however, this is 

not the case because each accumulator array is defined from the global coordinate system 

so line segments can be matched up quite easily by comparison. 
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(a) Original Image 

I 

• •••••••• 

(b) Edge Detected Image 

(c) HT Results 

Figure 3.5 The building example. 

(a) Original Image 

(b) Edge Detected Image 

2<

(c) HT Results 

Figure 3.6 The stapler example. 
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Figure 3.5 The building example. Figure 3.6 The stapler example.
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From a theoretical standpoint, by the additive property if a line is found at a given 

point in the parameter space of a sub-image, then that same line should be found at the 

same location in the parent sub-image. Due to the quantized nature of both the digital 

edge image and the parameter space accumulator array, this property rarely holds in a 

real world implementation and the peak is usually found somewhere nearby instead. Due 

to this nature it becomes necessary to refine the process for grouping line segments. So 

suppose we have two lines, denoted by LO and Ll, represented by peak values, each 

found in different accumulator arrays from each other, which were derived from disjoint 

sub-images. Assume that both LO and LI each have their own end points p0 and pl. 

Now with this in mind, to refine the process we simply perform the following two 

steps to decide if LO and Ll should be grouped together into a longer line segment in 

image space: 

1. Verify that LO and Ll can be found within a given minimum proximity from each 

other in parameter space 

2. Verify that the end points of LO and Ll are within a given minimum proximity 

from each other in image space. 

If both of these steps were accomplished then the simple merging of the end 

points p0 and pl that were in close proximity to each other, as verified in the second step, 

is all that is required to combine the two line segments into a larger line segment. The 

problem with this method, however, is that it does not necessarily reflect the line segment 

of best fit to the feature points that it was derived from originally. In order to accomplish 

this, we need to remember that for each line segment that composes the larger line 

32 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

From a theoretical standpoint, by the additive property if a line is found at a given 

point in the parameter space of a sub-image, then that same line should be found at the 

same location in the parent sub-image. Due to the quantized nature of both the digital 

edge image and the parameter space accumulator array, this property rarely holds in a 

real world implementation and the peak is usually found somewhere nearby instead. Due 

to this nature it becomes necessary to refine the process for grouping line segments. So 

suppose we have two lines, denoted by LO and LI, represented by peak values, each 

found in different accumulator arrays from each other, which were derived from disjoint 

sub-images. Assume that both LO and LI each have their own end points pO and p i.

Now with this in mind, to refine the process we simply perform the following two 

steps to decide if LO and LI should be grouped together into a longer line segment in 

image space:

1. Verify that LO and LI can be found within a given minimum proximity from each 

other in parameter space

2. Verify that the end points of LO and LI are within a given minimum proximity 

from each other in image space.

If both of these steps were accomplished then the simple merging of the end 

points pO and p i  that were in close proximity to each other, as verified in the second step, 

is all that is required to combine the two line segments into a larger line segment. The 

problem with this method, however, is that it does not necessarily reflect the line segment 

of best fit to the feature points that it was derived from originally. In order to accomplish 

this, we need to remember that for each line segment that composes the larger line

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



segment there is a disjoint sub-image associated with it. Observe the added information 

which can be derived from Equation 3.7 given that p is the total number of line segments 

contributing to the larger line segment and J, is a given sub-image with a corresponding 

accumulator array A„ where a, is a given peak entry (i.e. houghel) located in A,. 

UP 
J i =.11 EA; naiE A' (3.7) 

i=1 

Given that this is the case, we do not need to re-accumulate at all. We only need 

to add together the corresponding accumulator arrays involved and search for the peaks 

again. The accumulators are rather large so we need only add the houghels together that 

are in close proximity to both LO and L1. By doing this, in virtually any situation we may 

simply find the maximum peak in the region which is generally quite efficient in terms of 

run time. Most likely though, this added accuracy is not particularly needed and therefore 

not particularly worth the added processing required to achieve it. This can be seen by 

observing the results in Figure 4a. In addition, there is the possible problem that if there 

are two lines which both occupy the same given set of disjoint sub-images, (most likely 

parallel lines), and one is slightly longer than the other, then the shorter line will never be 

found by adding together the corresponding accumulator arrays and finding the 

maximum peak value because the value for the longer line will always be returned. Even 

if only the houghels in close proximity are added together there is still the chance that the 

lines are close parallel lines, (which is quite common in many man made structures), and 

the approach will still fail. 
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Chapter 4 

Spatial Resolution Issues 

4.1 Relationships between N and M 

When considering the effectiveness of any extension to the HT such as the SDHT 

it is necessary to consider the spatial resolution of the image being processed. The larger 

the size of an image N is, the more feature points there are likely to be and the longer the 

processing will take. Another consideration is M, the size of the parameter space 

accumulator array which must also increase in size to accommodate a larger image. The 

full continuous range of the gradient angle must remain the same but the step size must 

decrease in order to maintain a reasonable degree of accuracy. The retina size must 

increase as well and so the continuous range of the gradient length increases, yet the step 

size remains the same. These observations are of great importance because unlike all 

other methods using the HT, the SDHT uses an accumulator large enough to sustain 

accuracy for the whole image with each sub-image. 

The traversal of such large accumulators can cause problems with the run time of 

the algorithm. This is one of the reasons why modern researchers often times hesitate to 

use any form of the HT at all when searching for lines in images. Generally, the HT is 

reserved for smaller images and is not tested on larger ones. Another important issue 

regarding the spatial resolution of the image is the issue of image subdivision. Suppose a 

constant value of M is chosen for the block size that will be used with the image. If N is 
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the size of the image, then the larger the value of N, the more subdivisions it will take to 

achieve the desired sub-image size of M. Another important point to note is that as N 

increases, d, (the depth of the tree structure), increases at a fairly moderate rate. However, 

just one increase in d results in a multiplication of the total number of sub-images by 

four. Therefore, it is possible to actually run out of memory even with the most modern 

of computers because each sub-image requires such a large accumulator array. This may 

seem like a significant problem but in reality it does not rule out the possibility of adding 

up sub-regions of the accumulators in order to refine line parameters. The reason for this 

is that each accumulator can be created, searched, and then dispensed of individually, 

without having to have them all exist in memory at the same time. If a patch of houghels 

in the accumulator needs to be saved then this is still not a significant problem because 

most sub-images will not have more than one or two lines anyway, at the lowest level of 

the quad-tree, and therefore, there is very little storage space required even in rather large 

images. Typically, the only time several lines can be found in the same sub-image at the 

lowest level of the quad-tree is when several lines intersect with each other to form the 

corner of some man made structure displayed in the digital image. In cases like this if the 

sub-images are sufficiently small, such as a block size of M = 8, then not enough 

information is lost to constitute a problem in anything but the most stringent of 

applications. 

4.2 Grouping Problems 

When performing the SDHT with smaller sizes of M, another problem, aside from 

larger quad-tree sizes and memory storage requirements occurs. This is the problem of 

trying to group lines found in the images. This is not a new problem however. Some 

35 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

the size of the image, then the larger the value of N, the more subdivisions it will take to 

achieve the desired sub-image size of M. Another important point to note is that as N  

increases, d, (the depth of the tree structure), increases at a fairly moderate rate. However, 

just one increase in d  results in a multiplication of the total number of sub-images by 

four. Therefore, it is possible to actually run out of memory even with the most modem 

of computers because each sub-image requires such a large accumulator array. This may 

seem like a significant problem but in reality it does not rule out the possibility of adding 

up sub-regions of the accumulators in order to refine line parameters. The reason for this 

is that each accumulator can be created, searched, and then dispensed of individually, 

without having to have them all exist in memory at the same time. If a patch of houghels 

in the accumulator needs to be saved then this is still not a significant problem because 

most sub-images will not have more than one or two lines anyway, at the lowest level of 

the quad-tree, and therefore, there is very little storage space required even in rather large 

images. Typically, the only time several lines can be found in the same sub-image at the 

lowest level of the quad-tree is when several lines intersect with each other to form the 

comer of some man made structure displayed in the digital image. In cases like this if the 

sub-images are sufficiently small, such as a block size of M  = 8, then not enough 

information is lost to constitute a problem in anything but the most stringent of 

applications.

4.2 Grouping Problems

When performing the SDHT with smaller sizes of M, another problem, aside from 

larger quad-tree sizes and memory storage requirements occurs. This is the problem of 

trying to group lines found in the images. This is not a new problem however. Some

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interesting research into the perceptual organization of line segments has been done in 

[13]. In this thesis we intend to look at this problem in a more natural way from the 

general framework provided by the SDHT. Although the SDHT reduces the problem of 

finding co-linear line segments to checking their proximity in parameter space, this can 

be more difficult than it first appears when sub-image sizes decrease. The smaller a sub-

image is the more reduced the spatial resolution and therefore, the less information we 

have about the orientation of the line segment. Since edge detection can often result in 

noisy edge images we have the problem of trying to discern if two line segments 

correspond to the same line when they seem to be a fair distance from each other in 

parameter space. We find ourselves in the difficult situation of having to choose some 

sort of maximal distance in parameter space that we are willing to accept as evidence of 

co-linearity. When the sub-images are smaller, the slightest bit of noise makes a much 

larger contribution to the overall voting pattern. What we end up with are several short 

lines, which are at different orientations from each other, but clearly are part of the same 

line in image space. When the sub-image sizes increase, the noise becomes less of a 

contributing factor and thus the lines are easier to match up in terms of proximity in 

parameter space, and thus, co-linearity. It may seem then that the best solution to the 

problem is to use much larger sub-image blocks. This is only true to a certain degree 

however, because as larger sub-images are chosen, less information about the locality of 

the end points of the line segments can be obtained. So there is always this trade-off in 

results between the sub-image size and the quality of the results. Larger sub-images will 

give stronger evidence for the co-linearity of line segments while giving less information 

about their exact positions. Often a legitimate line segment will be picked up on and 
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extended further than it should due to a lack of more refined knowledge as to its locality. 

Smaller sub-images will give much weaker evidence for the co-linearity of line segments, 

and will require a larger distance measure to determine if they are in close proximity in 

parameter space, but they will give more information about the actual end point locations 

and length of the line segments. The following Figures, 4.1 (a), (b) and (c) display this 

trade-off. It can be seen in Figure 4.1a that with a block size of M= 8 the SDHT provides 

the most accuracy about line segment location but many of the longer lines are still 

fragmented because they could not be grouped properly. A block size of M = 32, in (4.1 

c) has the reverse problem but M = 16 in (4.1 b) works quite well for our intents and 

purposes. It is also important to note that what we are searching for are strictly straight 

lines in images. Many images have lines that appear to be straight but have some slight 

curvature to them, such as in the stapler image below. Therefore, it is natural for some of 

these lines to be interpreted as different line segments. 

In summary, the spatial resolution of the image has an effect on the results of the 

line segment detection, as does the parameter space resolution. The larger the block sizes 

are the stronger the evidence for line segment co-linearity and the less information there 

is to localize the end points of those lines. It may also be valid to note that if an image has 

slightly curved lines, such as the one used in Figure 4, then smaller sub-image sizes may 

not be desirable. 
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Chapter 5 

Parameterization 

5.1 Importance 

In the previous chapters, some key elements of the SDHT were discussed such as 

the background of the line finding problem in general, as well as spatial decomposition of 

images and the additive property. These chapters only discussed the transformation 

process between image space and parameter space. They did not properly address the 

problem of how to resolve any issues dealing with parameterization. These issues deal 

with the problems of the HT in general because they are directly related to the 

implementation of the accumulator arrays used to quantize the parameter space and are 

not specific to the SDHT. However, due to the problems addressed in Chapter 4, they are 

even more important with the SDHT than they are with other HT adaptations. Therefore, 

it is important to re-examine some previously researched ideas to see if any new insights 

or ideas can be derived which could possibly help for the purposes of the method 

discussed in this paper. 

Parameterization does not just deal with the issues of selecting the optimal 

equation for the HT, but it must also deal with the issue of making sure that the range 

constraints for the parameters with regard to the image are valid and that there is minimal 

redundancy. It must also ensure that the run time is efficient for finding peaks and that 

the number of false positives in the parameter space is kept to a minimum, among other 
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things. The following sections will deal with these issues in greater depth and explore 

some of the pros and cons to various approaches to each problem from the past, while 

offering suggestions for some new approaches which make more sense with the slightly 

different paradigm of subdivision being proposed here. 

5.2 Choosing Equations 

Originally, the HT proposed by Paul Hough used Equation 1.1 to parameterize a 

line in the image that would be mapped to parameter space. In the previous literature, the 

problem of this equation being unbounded was resolved by creating two different 

equations and using two different parameter spaces. The second parameter space would 

rely on a similar equation to Equation 1.1 where the dependent and independent axes are 

reversed. As mentioned in the introduction, Equation 1.2 was proposed to solve this 

problem of Equation 1.1 being unbounded and was renamed the GHT which is most 

common in literature to this day. However, having two accumulators with Equation 1.1 

was still deemed a suitable solution to the problem and merely a petty implementation 

issue with regard to the overall usefulness of the HT. There is much more to this issue 

however. When implementing the accumulator arrays the need for two of them and the 

need to search two of them, creates added problems for run time even though they tend to 

be somewhat smaller in general. If a technique such as the SDHT is used, this creates a 

much larger problem because this means that two accumulators must be used for every 

sub-image in the original image space. The amount of memory can increase very rapidly 

if this is the case. This has to play a factor when using a hierarchical method. There are 

other problems though aside from the amount of memory used. Each parameterization is 

represented slightly differently in parameter space. Since peak values in the accumulator 
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array represent evidence for lines in the image we must consider the manner of 

representation of those peaks in parameter space as well. When Equation 1.1 is used, 

peaks are represented by heavy intersections of lines in the parameter space. When 

Equation 1.2 is used, however, peaks are represented by heavy intersections of sinusoidal 

curves in the parameter space. These differences may seem trivial, but they can 

potentially lead to more problems later on when finding peaks. There are various 

proposed methods for thresholding out false positives (i.e. peaks corresponding to noise) 

in accumulator arrays and these methods can become hindered by a poorly constructed 

accumulator. 

5.3 Peak Finding and Thresholding 

A peak, by the most basic definition, is any houghel in the accumulator array 

which is larger in value than all other houghels adjacent to it in the accumulator. This 

simple definition, while mathematically correct, still requires some modifications because 

of the false positives that are so prevalent in accumulator arrays. When searching for 

peaks in an accumulator array the problem of thresholding always becomes an issue. Just 

as there was a problem with the derivative threshold in edge detection, as described in 

Section 1.1.1, there are trade-offs that must be accepted with the GHT and any extension 

of it. For some images and some situations this lack of accuracy would be acceptable, 

however, for other applications it is not. Therefore, several researchers in the past have 

looked into this problem in an attempt to find a reasonable solution. One common 

method involves the search for maximal peaks in accumulator arrays. The idea is as 

follows. The accumulation array is formed. Then, the houghel with the largest value in 

the accumulator is found. Once this value is found it is compared with at least some 
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minimal threshold to see if it is at least worth considering as a line in the image. If this is 

the case then all feature points that placed a vote for that houghel are removed from the 

list and the accumulator is cleared before repeating the process again. The pseudo-code 

can be seen in Figure 5.1. 

Begin HT(Accumulator, FeaturePointList, PeakList) 

Do 

Clear(Accumulator) 

Accumulate(FeaturePointList, Accumulator) 

Peak = FindMaxPeak(Accumulator) 

If Peak Threshold Then 

PeakList.Add(Peak) 

For Each Point do 

If Associated(Point, Peak) Then 

FeaturePointList.Remove(Point) 

End If 

End For 

End If 

While Peak Threshold 

End HT 

Figure 5.1 Max peak re-accumulation pseudo-code 

This technique produces perfect peaks every time because it completely 

eliminates the possibility of false detections caused by overlapping features in the image 

space. Also, the maximal peak in the accumulator array is always guaranteed to be a 

legitimate peak regardless of the constraints. The only true question is of the significance 

of it. The field of image processing is full of these questions regarding the expectations of 

the user, and therefore, this cannot be helped nor should it be considered a serious flaw to 

the technique. There are some more serious problems to this though. In a circumstance in 

which run time is of no concern, this may be an interesting technique to examine when 

looking for perfect results. However, when run time is of great importance this becomes a 

major issue because the HT, when applied to an image, is generally a global technique. 
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Globally an image may have many long lines and many feature points along those lines. 

If the accumulator array must be cleared and voted on again for every possible line then 

this could be quite time consuming. One of the benefits is that every time a new line is 

found the feature points associated with it are removed from the list of viable feature 

points and therefore, do not require further processing in any re-accumulations. Also, it is 

important to note that the order in which the lines will be found is in the order of longest 

to shortest, and therefore, the lines with the most feature points are the ones to be culled 

from the image first. This is another advantage to the technique. These benefits are not 

enough however to overcome the re-accumulation in complex images where several lines 

will need to be found. There is another flaw as well. Suppose that there are thick lines in 

an image. Suppose also that the step size of the parameters in the accumulation array, are 

set to be for lines that are only one pixel width thick and are one pixel width apart from 

each other. In this situation the parameter space will have several patches where several 

neighboring houghels will contain near identical values representing close parallel lines. 

When the above technique is used it will return the maximum peak in the accumulator 

array which identifies a line in the image but when the corresponding feature points are 

removed from the list, only the ones that are directly responsible for that exact line in 

image space are the ones that will be removed. Therefore, the close parallel lines in 

continuous image space that are actually part of the same thick line in quantized image 

space will remain with their feature points in the list to vote in the next iteration of the 

loop. This means that the same thick line will be found as several thin lines within the 

thick line and will detract from the overall understanding of the line being extracted from 

the sub-image. Some thick lines are difficult to avoid in binary edge images due to 
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inconsistencies in the gradients supporting each line. Some lines are well supported while 

other lines we also desire to extract are not. Therefore, setting a proper threshold to 

acquire all desired lines is sometimes not possible. This problem can sometimes be 

solved with line thinning algorithms. 

The question remaining is as to how this technique applies to hierarchical 

methods of the HT such as the pyramid methods like the one described in [6, 17, 19], as 

well as the SDHT described in this paper. This technique was used with great success in 

[17] and managed to get line segments of excellent quality within a reasonable time 

frame given the technology of the time. The reason for this was due to the nature of the 

pyramid technique. The technique allowed for much smaller accumulator arrays 

corresponding to each overlapping sub-image. This means that the time taken to search 

for maximum peaks, as well as re-accumulate was greatly reduced, and so the rather brute 

force nature of the above described technique became acceptable, given the new 

circumstances. The implementation of this technique however, was rather messy and ad-

hoc. The accumulators described had houghel elements defined as the following: 

typedef struct Houghel 

1 

unsigned short value; 

PointList pl; 

1 *LPHoughel; 

Figure 5.2 Definition of Houghel Structure for linked list. 

As can be seen above, each houghel had a linked list of feature points associated 

with it in order to record each feature point that placed a vote there. The voting sub-

procedure performed had to be modified to add the point currently being processed to the 

point list shown above. This is not a serious modification but is somewhat messy due to 
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the fact that clearing the accumulator array means emptying a linked list for each 

houghel. The maintenance and dynamic allocation of so many lists of feature points 

certainly is not desired. Another slightly different approach would have been to use a 

typical houghel definition and merely traverse the full list of feature points afterwards to 

solve the Equation 1.2 where the parameters are equal to the peak houghel found in the 

accumulator array. Any feature point for which the equation can be solved, must have 

voted for that houghel, and therefore, should be removed from the list for the next 

iteration of the algorithm. This approach was justified in [17] however, due to the small 

size of each accumulator being used to represent the sub-images. 

With the SDHT, this approach can be used to acquire optimal results. However, it 

suffers somewhat of a time penalty, due to the much larger size of the accumulators, as 

described in Chapter 4. This time penalty is not as bad as it may seem at first glance 

however because there are several factors to take into consideration which aid in the 

speed and design of the algorithm. Finding the global maximum value in an accumulator 

array, even if the accumulator is rather large, is still a relatively fast process, and certainly 

does not take as long as finding every local peak by scanning some local region for each 

houghel entry. Therefore, even with the larger accumulator sizes proposed by the SDHT, 

this is not a significant problem. In addition, as mentioned before we need not maintain a 

linked list of feature points for each houghel in the accumulator in order to determine 

which feature points to remove. We may simply solve Equation 1.2 for each feature point 

to determine which ones contributed to the best line and then remove each feature point 

for which Equation 1.2 can be satisfied. This, in and of itself may seem to be a rather 

lengthy and time consuming process but this is not always the case for two reasons. 
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array, even if the accumulator is rather large, is still a relatively fast process, and certainly 

does not take as long as finding every local peak by scanning some local region for each 

houghel entry. Therefore, even with the larger accumulator sizes proposed by the SDHT, 

this is not a significant problem. In addition, as mentioned before we need not maintain a 

linked list of feature points for each houghel in the accumulator in order to determine 

which feature points to remove. We may simply solve Equation 1.2 for each feature point 

to determine which ones contributed to the best line and then remove each feature point 

for which Equation 1.2 can be satisfied. This, in and of itself may seem to be a rather 

lengthy and time consuming process but this is not always the case for two reasons.
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The first reason is that the sine and cosine functions, which are typically time 

consuming, may be pre-calculated in look up tables for the values needed. If this is done 

then at only a slight increase in memory, Equation 1.2 becomes trivial to solve quickly in 

terms of run time. Only two multiplications and one addition would be required. For a 

step size in 0 of 1°, the sine and cosine tables would each only require an array of floating 

point values with a size of 180. By doing this, the run time of the accumulation process is 

improved as well. The second reason is that we need not always traverse the list of 

feature points, in order to determine which ones, were the contributing feature points to 

the best line. This is because we are not interested in re-accumulating unless we know 

that there will be enough feature points left over to possibly form another line in the 

parameter space. After removing the contributing feature points (i.e. points which satisfy 

Equation 1.2), we may check the size of the list. This list size will allow us to determine 

if we wish to re-accumulate. However, before we even go through this process we 

already have the information needed in order to determine how many feature points will 

be remaining afterwards. This is because we may simply take the total number of feature 

points, and subtract from that number, the total number of votes received by the global 

maximum (i.e. global peak) in the accumulator array. Due to the fact that this number 

represents how many feature points contributed to it we know how many should be left 

over afterwards. If this number is not sufficient for forming another significant line then 

we may simply clear out the list of feature points and consider the processing for this sub-

image to be finished. 

When sub-dividing the edge image like this and extracting the feature points from 

the sub-images first, we make it possible to cull some feature points from the length of a 
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more global line which are not of particular significance and are not worth accumulating. 

This makes the technique faster this way, than it would be when used globally. Random 

noise that falls on the line in other areas of the image will be removed and not considered 

as they would use the HT as a global technique. Also, it is important to remember that 

although this iterative re-accumulating technique must run until there are no more lines 

for each sub-image it is rare for any sub-image to have more than two lines intersecting 

it. Therefore, the accumulation almost never happens more than once anyway and due to 

the advantages explained above, the amount of processing required to determine if a re-

accumulation is necessary is trivial and can be done in 0(1) time. This is especially true 

once the sub-images reach a size of M= 32 or lower. 

There is another rather simple yet interesting method though that was briefly 

mentioned in Chapter 1 that must be revisited. This method when combined with the 

SDHT could yield an improvement to the method. In [20], a modified houghel definition 

was used as was described in the introduction. This method, while being a global 

adaptation to the HT, managed to use a modified accumulator in order to achieve local 

information about lines. The premise was that the absolute ranges of the lines were 

recorded in the houghels during the voting process so the end points could be verified 

later without having to verify their entire geometric path. This is an interesting idea that 

could perhaps be combined with the SDHT because it would allow for a 25% decrease in 

the amount of memory required for the final decomposition, while allowing some very 

accurate results when finding the end points of the lines. The reason for this is that in the 

SDHT, each houghel contains a 2-byte integer to record the total number of votes 

accumulated. The memory required for a quad-tree implementation with a depth of d is 
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always equal to the memory required at depth d-1 multiplied by 4. Therefore the memory 

required would be (4d — 4). If we were to combine the idea explained in [20] however 

with the SDHT, then every houghel would have two more 2-byte integers in order to 

record the ranges line segments. This means that the size of each houghel is multiplied by 

3. Therefore, given that this technique finds the absolute end points of the lines, we could 

combine it with the SDHT to gain one more level of depth in the tree and so the cost in 

memory would be (3d — 3) instead. Due to the fact that the image has already been 

decomposed, we can trust with relative confidence that the end points recorded in the line 

segments are the actual end points and not the result of noise in the image. This is 

particularly true as the sub-image sizes get smaller. The added run time to accumulate 

would be within reason and the technique would benefit from the trade-off 

5.4 Range Constraints 

The implementation of the HT has been described rather inconsistently in the 

literature and does not always require the same constraints depending on the 

circumstances surrounding the application in question. Therefore, it is crucial that a 

proper explanation is given for the various constraints and the reasons why they were 

chosen for the examples shown in this paper. Due to the fact that not all lines on the 

Cartesian plane pass through the image, suitable values must be chosen for the minimum 

and maximum values of p and 0. Upon inspection, it becomes apparent that if the image 

is N2 then the constraints must be as shown in Equations 5.1 and 5.2. The sign of p can 

sometimes be determined by the range of 0, as can be seen in Equation 5.3. 

— < u
71" 

n<  
37r 

4 4 
(5.1) 
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NI 2 

(5.2) 

(5.3) 

The constraint on p can be shown in the construction of two isosceles triangles 

such that the base of one is formed by the upper border of the image and the other by the 

left-most image border. Each triangle has two 45° angles at the base and one 90° angle 

opposite the base. This construction illustrates the full range of lines which can possibly 

intersect with the image. Figure 5.3 illustrates this construction. Although, in theory all 

gradient lengths p should be positive, Equation 5.2 shows that this is not always the case. 

Therefore, it is necessary to account for all possible negative gradient lengths which 

could be represented in the mapping process. Given that the image is N2, the bases of the 

triangles constructed must also be N. The other triangle segments, excluding the bases, 

must all be congruent to each other, and have a length of Aril . 

Figure 5.3 Isosceles Triangles demonstrating p range constraints. 

In [3], Duda and Hart proposed the ranges detailed in Equations 5.4 and 5.5. This 

would seem acceptable at first glance, however, as was discussed above, there is still a 

great deal of redundancy with the range chosen for p. In [8], the ranges are chosen as 

shown in Equations 5.4 and 5.6. In addition, [8] asserts Equation 5.7. The above 
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construction shows that Equation 5.6, although being an improvement to Equation 5.5, 

still displays some waste when compared with Equation 5.2. 

0<e9 7r 

—A 

2 <6<71- 1;•< 0 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

There is another approach to consider when looking at range constraints though. It 

is clear to see that no line could ever possibly have a gradient angle 0 (as measured from 

the x axis), between it and 31/r  or 3/ . So obviously, it is not necessary to solve 
2

Equation 1.2 for any angle in this range. Clearly, only 3/4 of a circle, need to be 

considered in terms of the 0 range. We know however, that the often value of p will be 

negative, and therefore, we must consider the representation of negative p values as Duda 

and Hart did. If, however, we wish to represent all lengths as positive, this can be done by 

using Equation 5.8 as the range for 0, Equation 5.9 as the range for p, and solving 

Equation 1.2 differently. Basically, only n- radians need to be traversed when 

accumulating but the accumulator itself must have entries to store all the quantized values 

of 0 for Equation 1.2. If a p value is positive then it stays as it is. If p is negative however, 

then we simply change the sign to get p' and add 7r to 0 to get 0'. The pseudo-code for 

this can be seen below in Figure 5.4. One thing to consider with this approach is that the 

accumulator must still consider the full range of Equation 5.8, so the accumulator size 

must be larger to accommodate it. As well, there is a slight change in the run time of the 
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accumulation procedure because we must use an "if' statement every time for 

modification of the (0, p) pair when necessary. 

—rc 
<0<71" 

2
(5.8) 

0_ pN..5, (5.9) 

Begin HoughTransform(Accumulator) 

For Every Feature Point (x, y) 

For (0 = 0; 0 n; 0 += de) 

p = y*sin(0) + x*cos(0) 

If p < 0 Then 

P 

e 
End If 

Quantize(p, 0) 

++Accumulator[p, 0] 

End For 

End For 

End HoughTransform 

= -p 

+= n 

Figure 5.4 HT Pseudo-code using Equations 5.8 and 5.9 as range constraints 
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accumulation procedure because we must use an “i f ’ statement every time 

modification of the (0, p) pair when necessary.

—  <e <n  (5.8)
2

0 < p  < N^ f l  (5.9)

B eg in  HoughTransform(Accumulator)
For Every F e a tu r e  P o in t  (x, y)

For (9 = 0; 9  ̂ n; 0 += d0) 
p = y * s i n ( 9 )  + x * c o s ( 9 )  
I f  p < 0 Then

P = -P  
9 += n 

End I f
Q u a n t i z e ( p ,  9) 
++ A ccum ula tor[p, 9]

End For 
End For 

End HoughTransform

Figure 5.4 HT Pseudo-code using Equations 5.8 and 5.9 as range constraints
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Chapter 6 

An Application Example 

6.1 Introduction to AR 

Augmented Reality (AR) which is similar to Virtual Reality (VR) is a relatively 

new area of research in the field of computer science. Unlike VR which can be defined as 

the creation of virtual objects in virtual environments, AR can be defined as the creation 

of virtual objects in real environments. The goal of AR is to integrate those virtual objects 

into the real environment in real time. AR has several practical purposes. One of which, 

directly relates to the contribution of this thesis. AR has the ability to enhance a user's 

perception of the world. It provides information about that world that is not readily 

available or immediately detectable by their senses. This means that it can be used to 

amplify their knowledge of a given situation so that they can make more informed 

decisions. This basic property has allowed for many successful applications such as 

textual annotations used to give instructions when repairing various devices. It can be 

used in several areas such as construction and architecture, path planning, scientific 

visualization, mechanics, entertainment, military devices, Global Positioning Systems 

(GPS) and even in medicine. The most beneficial application would be medicine, 

however, because of tracking problems this is only used in training situations due to the 

degree of error involved and the high degree of accuracy required in the medical field. 

This problem with tracking is due to the fact that in order for a display device to display a 
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virtual object overlaid in a real world environment it must know the position and 

orientation of the user's eyes. This way, it can correctly decide the camera coordinates of 

the system in order to transform the object properly. Often times though, this information 

is difficult to obtain and takes more time than is feasible for a real time application. Later, 

in Section 6.3 however, we shall explain how the SDHT can potentially be beneficial 

with solving this tracking problem in the field of AR. 

6.2 Available AR Technology 

There are three different implementation methods related to AR. These methods 

are listed here as follows: 

1. Optical Combining Methods. 

2. Video Blending Methods. 

3. Monitor Based Methods. 

Both of the first two implementations in the list involve the use of a Head 

Mounted Display (HMD) which is a visor that projects what the user sees into the user's 

eyes. These displays are different in that they each operate under separate paradigms and 

each allow for their own set of advantages and disadvantages given various situations. 

The optical combining methods use optical combiners located in the HMD to reflect light 

directly into the user's eyes in order to create the illusion of virtual objects in the scene. 

The real world can still be seen through the lens, however, but at a slightly reduced light. 

This is because the lens must block some light from the real world in order not to drown 

out the light from the optical combiners. This is one of the drawbacks to this 

implementation. However, some HMD devices are sophisticated enough to only block 

lights from the real world that are at the same wave lengths used by the optical 
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combiners. In order to perform tracking with this method, a sensor for detecting changes 

in 3D position and orientation are required. 

The video blending method involves the use of a different kind of HMD. With 

this method, the real world is entirely occluded, similarly to VR. There is a video 

recording device placed on the HMD which records the scene in front of the user and the 

HMD displays it. When the image is displayed computer graphics techniques are used to 

render virtual objects in the scene. The monitor based methods work in much the same 

way except that a video camera is used to film a scene and the position and orientation of 

the camera are used to determine the camera mapping matrix for the virtual objects. The 

recording made by the camera is played out on a monitor, which is viewed by the user. In 

this sense, the monitor based methods are almost similar to many movies that combine 

real scenes with computer graphics with the difference of course being that AR is done in 

real time, rather than being pre-rendered. 

One key problem with any method of AR is the actual blending of virtual objects 

due to the fact that there is not sufficient 3D information if any, for the real world 

environmental scene. We only know the distance at each pixel for the virtual objects in 

the scene. So suppose a virtual chair is located at an (x, y, z) position behind a real dinner 

table. This causes a problem for many AR systems because when the chair is rendered it 

will not seem as though it is behind the dinner table. This is usually solved with various 

sensors capable of detecting the distances of real world objects in front of the user (i.e. 

camera position). This topic, while interesting, is not particularly related to the research 

in this thesis, and therefore, shall not be discussed in greater detail. In addition, the 

optical blending combiner methods are also not of particular value with regard to the 
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SDHT, and shall not be discussed further in favor of the video blending methods. For an 

excellent survey of AR and the problems associated with it, see [1]. 

6.3 Video Blending and Robot Vision Connection 

As mentioned before, video blending methods allow the system to acquire an 

image of the real world in front of the camera at any given moment. This added 

information with regard to the scene is of particular interest to us because it allows us to 

perform computer and robot vision techniques in order to gain a greater understanding of 

the situation. The understanding in which we are looking for in particular is that of the 

position and orientation of the view point of the user. With this information, we are then 

capable of discerning where the virtual object should be displayed, assuming that it is 

even within view of the camera at all. Depending on the circumstances and the particular 

application involved, there may be many different ways in which this information will be 

acquired. In some cases, fiducials are used in order to track objects that we wish to 

enhance or annotate in some meaningful way. This eases the tracking problem somewhat 

because it allows for the recognition of the object in the scene. A typical fiducial might 

be simply a circle or a square of a predefined color. Locating these kinds of markers in an 

image is certainly not something of particular difficulty for modern day image processing 

methods. It is also not a particularly time consuming process either. Using fiducials 

however may seem to be somewhat unnatural, as it requires us to specifically prepare the 

environment that we are working in, in order to assist with AR. 

As useful as fiducials can be, they always involve the physical modification of the 

environment in order to acquire assistance in the image processing problem. This is not 

particularly difficult but it would certainly be of greater interest to us if we could create a 
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new method for determining position and orientation of the user's eyes based on the 

natural environment. If there are certain primary pieces of information that already exist 

naturally in the environment then we wish to make use of them in a meaningful way. One 

such common feature would be the corner points found in rooms indoors. Typically, most 

rooms have walls which are orthogonal to each other and a ceiling which is orthogonal to 

the walls. Only in rare situations with more complex architecture is this not the case. 

Therefore, we may take advantage of this previously known information in order to 

derive information about the environment. Whenever a corner exists in a room, it always 

maps to a 'Y' crossing in the 2D domain (Figure 6a). This 'Y' crossing, if found in the 

image, could be used to determine the information necessary for AR. The process is as 

follows: 

1. Acquire the lines from the image which correspond with the 'Y' crossing. 

2. Determine the end points of the lines to form the 'Y' crossing. 

3. Find the angles between the lines in the 'Y' crossing. 

4. Map the 'Y' crossing to the 3D domain to determine the distance and orientation 

of the viewpoint from the HMD. 

These steps may seem rather simple but there are some problems that arise when 

we attempt to do this, such as in step 2. This is where the SDHT is of value. We are 

interested in knowing if the 'Y' crossing is an orthogonal intersection of two walls and a 

ceiling, or of two walls and a floor. This is because either intersection could potentially 

be used to solve this computer vision problem in the field of AR. We are also interested 

in finding the lines and their respective end points rather quickly because in AR this is of 

high importance. The user does not want to wait long for the computer to confirm the 
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position and orientation. There are several problems that are encountered by using a 

standard HT for this problem, or for that matter, any other form of spatial decomposition 

related to the HT. With the standard HT there is the problem of having to find all of the 

lines in the image and then compare them to each other later in order to find a common 

intersection between 3 lines. This tends to be a difficult problem because nothing is 

known about the locations of the lines other than their global end points which are found 

by intersecting them with the boundaries of the image. The legitimate intersection can be 

calculated between them. However, due to the fact that the 'Y' crossing can be right side 

up or up side down, we don't know which of the global end points to replace with the 

intersection point for each line segment. 

Using a spatial decomposition technique will give us this information, which is a 

much simplified case of the previous images provided earlier in this paper. The reason for 

this is that we have a-priori knowledge of the object we are looking at in the first place. 

Due to this knowledge, we may simply subdivide the image into four equal sections, 

resembling the decomposition that would result if a quad-tree with a depth of 1 was used 

in the previous discussions. The process is now much easier to resolve because due to the 

nature of the scene, there really should only be one true line in each sub-image at most. If 

the maximum peak value is found to be of significance in each of the accumulators then 

the proper line has been found in general. So the process is greatly reduced. The end 

points can be found by simply finding both global end points for each of the 3 lines. One 

of these end points for each one will be legitimate, while the other one will be a global 

extension of the line segment. The invalid global end point for each line segment merely 

needs to be replaced by the intersection of the 3 lines. Due to these simplifications in the 
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problem domain, it really makes no sense to use a pyramid or quad-tree type structure to 

perform this, because that kind of refined information is not necessary and would take far 

too long for an AR application. In addition, it is also inappropriate to spatially decompose 

the image using a local origin for each line segment. This is because once all of the lines 

have been acquired, they will all be in different coordinate systems, and therefore, finding 

their intersection will suddenly be much more difficult. This is why a simplified version 

of the SDHT is the most appropriate solution for the problem. 

The process simply involves the accumulation of all four accumulator arrays 

defined from the global origin for each sub-image. Then, the maximum peak 

corresponding to the top two sub-images are found, in an attempt to search for a right 

side up 'Y' crossing. If this is done properly, then the bottom two accumulators can be 

added together by Equation 3.4 to give us the accumulator corresponding to the entire 

bottom half of the image. Once this is done, the best peak value is found in that 

accumulator as well and is assumed to be the line segment forming the bottom portion of 

the 'Y'. A common intersection must then be found between all 3 lines, within a pre-

specified degree of accuracy and within a certain proximity to the center of the image. If 

this can be done, then the spatial information we have already obtained may be used to 

determine which of the global end points to replace with the intersection point between 

the lines. If a significant peak value could not be found in each of the accumulator arrays 

corresponding to the top half of the image, then the reverse process would take place in 

order to find an upside down 'Y' crossing. 

In Figure 6a, there is the problem of the existence of several spider webs in the 

corner that was used for the image. As well, the limited shading information also makes it 
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difficult to edge detect properly. This relates to the discussion on edge detection from 

Chapter 1. In Figure 6b, we can clearly see the effects of these problems. The spider webs 

are detected by the edge detection algorithm and show up in the binary edge image. They 

add additional noise that could potentially lead to false positives in other techniques. 

Also, the bottom line in the 'Y' crossing was difficult to pick up on and can only faintly 

be seen. This difficulty arises from the higher first derivative threshold required in an 

attempt to eliminate noise caused by the spider webs. The SDHT however, when used in 

this particular application, only needs to find the best peak for each accumulator, and 

therefore, these false detection problems are solved easily and quickly. Even in difficult 

situations where there is increased noise in the image, these problems can easily be 

resolved by finding the best peaks possible and ignoring the rest. A common example of 

this would be a stipple ceiling which tends to add a great deal of noise to a binary edge 

image. As can be seen in Figure 6c, all 3 lines were found correctly by the algorithm and 

therefore could be used later in further processing for AR. Only the SDHT and how it 

relates to this problem was actually implemented and researched however. Further steps 

in this computer vision process are not part of this research. 
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(c) 

Figure 6 SDHT Applied to Indoor Corner Image for Use in AR: (a) Original 

Image; (b) Binary Edge Image; (c) SDHT Results 
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(C)

Figure 6 SDHT Applied to Indoor Comer Image for Use in AR: (a) Original 

Image; (b) Binary Edge Image; (c) SDHT Results
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Chapter 7 

Conclusion 

7.1 Thesis Summary 

In this thesis we have discussed the general problem of finding lines in images 

and several approaches to the problem devised in recent years. In particular we have 

discussed the concept of using hierarchies and spatial decomposition of binary edge 

images to determine the locality of their end points. We have devised a novel new 

approach to this spatial decomposition which we refer to as the SDHT. We discussed 

both the benefits and the drawbacks to the use by the SDHT of a global origin with each 

accumulator corresponding to a sub-image. The additive property which allows for the 

implicit storage and efficient acquisition of accumulators to parent sub-images, gives us a 

new paradigm for the HT and other transforms as well such as the Radon Transform. 

The SDHT has the drawback of using larger accumulator arrays but with most 

modern computers this is not an overly significant problem as it was in the 1980's when 

this research was more prevalent. The use of these larger accumulators however, allows 

for the reduction of the line co-linearity problem to a mere proximity problem in 

parameter space. As well, the ability to directly apply Cramer's Rule to these lines to 

acquire their intersection points for various applications such as AR has also been 

achieved. The SDHT serves as an appropriate and efficient choice for the discovery of 

`Y' crossings in images which would require more complex, and possibly much slower 
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techniques otherwise. The iterative modification of the GHT when applied to the SDHT 

is rather efficient due to the fact that there are very few lines in small sub images and 

usually only one line needs to be found. The use of Equation 1.2 to determine which 

points to remove from the feature point list allows us to avoid the problems of 

maintaining a linked list of points at every node in the accumulator array. The a-priori 

knowledge of how many feature points will be in the point list (after the points 

contributing to the previous peak value have been removed), allows us to avoid this 

process altogether and bypass any further processing with this accumulator if we know 

that there are not enough significant feature points left. 

We have discussed the several approaches taken in the past to choosing the 

gradient angle and gradient length constraints. We have also introduced a novel new 

approach that reduces redundancy in the accumulator arrays, particularly along the 

quantized gradient length. We have proven this choice of range constraints to be more 

efficient and to have no redundancy. 

This thesis has also shown the relationship between the image sizes and the sub 

image sizes chosen when applying the quad-tree method to the SDHT. We have shown 

through examples that when the sub-images size increases, there is more co-linearity 

information present but less spatial location information. We have also shown that when 

the sub-images decrease in size, there is more spatial location information but there is 

less co-linearity information, and therefore, proximity constraints in the parameter spaces 

used to derive co-linearity must be relaxed to achieve adequate results. 

66 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

techniques otherwise. The iterative modification of the GHT when applied to the SDHT 

is rather efficient due to the fact that there are very few lines in small sub images and 

usually only one line needs to be found. The use of Equation 1.2 to determine which 

points to remove from the feature point list allows us to avoid the problems of 

maintaining a linked list of points at every node in the accumulator array. The a-priori 

knowledge of how many feature points will be in the point list (after the points 

contributing to the previous peak value have been removed), allows us to avoid this 

process altogether and bypass any further processing with this accumulator if we know 

that there are not enough significant feature points left.

We have discussed the several approaches taken in the past to choosing the 

gradient angle and gradient length constraints. We have also introduced a novel new 

approach that reduces redundancy in the accumulator arrays, particularly along the 

quantized gradient length. We have proven this choice of range constraints to be more 

efficient and to have no redundancy.

This thesis has also shown the relationship between the image sizes and the sub 

image sizes chosen when applying the quad-tree method to the SDHT. We have shown 

through examples that when the sub-images size increases, there is more co-linearity 

information present but less spatial location information. We have also shown that when 

the sub-images decrease in size, there is more spatial location information but there is 

less co-linearity information, and therefore, proximity constraints in the parameter spaces 

used to derive co-linearity must be relaxed to achieve adequate results.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.2 Future Research 

There are several different variations to the HT, many of which do not involve 

hierarchies such as quad-trees or pyramids at all. Many do not even involve any spatial 

decomposition of the edge images. This paper only discussed the use of the SDHT on the 

GHT. In the future perhaps, due to the orthogonal nature of the SDHT to all other non-

hierarchical approaches, it may be of value to research how other variations of the HT 

could improve the results of the SDHT. In addition, there may be better ways for the 

decomposition of the binary edge image. In this thesis we made the suggestion of a quad-

tree for the general case. However, as long as Equation 3.4 is satisfied, and the sub-

images are disjoint from each other, then there is really no need for the sub-images to all 

be rectangular. They may be of arbitrary shapes and sizes, depending on the application 

involved. One particular field of research, known as Attributed Vector Quantization [21], 

could play an interesting role in choosing more appropriate sub-images in future research. 

In this thesis, we have discussed the application of the SDHT to the field of AR 

and to the specific problem of finding 'Y' crossings in binary edge images. In the future 

however, it may be of value to find some other geometric patterns commonly found in 

indoor or outdoor scenes which the SDHT could be specially adapted to. As well, an 

entire process in AR for determining the position and orientation of the view point for the 

user was discussed but only the first portion of the process was discussed, as it applied to 

the SDHT. Future research may be of value to solving the problems associated with the 

later stages of the process. 
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