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Abstract

Although support vector machines (SVMs)
are theoretically well understood, their under-
lying optimization problem becomes very ex-
pensive if, for example, hundreds of thousands
of samples and a non-linear kernel are consid-
ered. Several approaches have been proposed
in the past to address this serious limitation.
In this work we investigate a decomposition
strategy that learns on small, spatially defined
data chunks. Our contributions are two fold:
On the theoretical side we establish an ora-
cle inequality for the overall learning method
using the hinge loss, and show that the re-
sulting rates match those known for SVMs
solving the complete optimization problem
with Gaussian kernels. On the practical side
we compare our approach to learning SVMs on
small, randomly chosen chunks. Here it turns
out that for comparable training times our
approach is significantly faster during testing
and also reduces the test error in most cases
significantly. Furthermore, we show that our
approach easily scales up to 10 million training
samples: including hyper-parameter selection
using cross validation, the entire training only
takes a few hours on a single machine. Finally,
we report an experiment on 32 million train-
ing samples. All experiments used 1iquidSVM
(Steinwart and Thomann, 2017).

1 Introduction

Kernel methods are thoroughly understood from a the-
oretical perspective, used in many settings, and are
known to give good performance for small and medium
sized training sets. Yet they suffer from their computa-
tional complexity that grows quadratically in space and
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at least quadratically in time. For example, storing the
entire kernel matrix to avoid costly recomputations in
e.g. 64GB of memory, one can consider at most 100 000
data points. In the last 15 years there has been wide
research to circumvent this barrier (cf. Bottou et al.
(2007) for an overview): Sequential Minimal Optimiza-
tion |Platt| (1999) allows for caching kernel rows so that
the memory barrier is lifted, parallel solvers try to lever-
age from recent advances in hardware design, matrix
approximations |Williams and Seeger| (2001) replace the
original n X n kernel matrix, where n is the number
of samples, by a smaller approximation, the random
Fourier feature method |Rahimi and Recht| (2008]) ap-
proximates the kernel function by another kernel having
an explicit, low-dimensional feature map, which, in a
second step, makes it possible to solve the primal prob-
lem instead of the usually considered dual problem,
see [Sriperumbudur and Szabo| (2015) for a recent theo-
retical investigation establishing optimal rates for this
approximation. Moreover, iterative strategies |[Rosasco
and Villa) (2015)); [Lin et al.| (2015) modify the under-
lying regularization approach, e.g. by controlled early
stopping. Finally, various decomposition strategies
have been proposed, which, in a nutshell, solve many
small rather than one large optimization problem.

In this work we also focus on a data decomposition
strategy. Such strategies have been investigated at least
since Bottou and Vapnik| (1992); [Vapnik and Bottou
(1993). The most simple such strategy, called random
chunks, splits the data by random into chunks of some
given size, train for each chunk, and finally average the
decision functions obtained on every chunk to one final
decision function. Recently, this approach has been
investigated theoretically in [Zhang et al. (2015]).

Obviously, the drawback with this approach is that
the test sample has to be evaluated on every chunk:
for example, if every chunk uses 80% of its training
samples as support vectors, then the test sample has
to be evaluated using 80% of the entire training set.
From this perspective, a more interesting strategy is to
decompose the data set into spatially defined cells, since
in this case every test sample has only to be evaluated
using the cell it belongs to. In our example above, this
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amounts to 80% of the cell size, instead of 80% of the
entire training set size. Clearly, the difference of both
costs can be very significant if, for example the cell size
ranges in between say a few thousands, but the training
set contains millions of examples. The natural next
question is of course, whether and by how much one
suffers from this approach in terms of test accuracy.

Spatial decompositions for SVMs can be obtained in
many different ways, e.g., by clusters/Cheng et al.[ (2007,
2010)), decision trees Bennett and Blue| (1998)); [Wu et al.
(1999); (Chang et al.| (2010), and k-nearest neighbors
Zhang et al.| (2006). Most of these strategies are inves-
tigated experimentally, yet only few theoretical results
are known: [Hable| (2013) proves universal consistency
of localized versions of SVMs. Oracle inequalities and
optimal learning rates have been shown in [Meister
and Steinwart| (2016 for least squares SVMs that are
trained on disjunct spatially defined cells.

In the theoretical part of this work we expand the re-
sults in [Meister and Steinwart| (2016) to the hinge loss.
Besides the obviously different treatment of the approx-
imation error, the main difference in our work is that
the least squares loss allows to use an optimal variance
bound, whereas for the hinge loss such an optimal vari-
ance bound is only available for distributions satisfying
the best version of Tsybakov’s noise condition, see .
In general, however, only a weaker variance bound is
possible, which in turn makes the technical treatment
harder and, surprisingly, the conditions on the cell radii
that guarantee the best known rates, more restrictive.

In the experimental part we use 1iquidSVM (Steinwart
and Thomannl [2017) to train local SVMs on some well-
known data sets to demonstrate that they provide an
efficient way to tackle large-scale problems with millions
of samples. As we use full 5-fold cross validation on
a 10 x 10 hyper-parameter grid this shows that SVMs
promise to achieve fully automatic machine learning.
It takes only 2-6 hours to train on data sets with 10
millions of samples and 28 features, using only 10-
30GB of memory and a single computer. Finally, we
distributed our software onto 11 machines to attack a
data set with 30 million samples and 631 features.

In Section [2] we give a description of local SVMs. In
Section [B|we define them for the hinge loss and Gaussian
kernels and state the theoretical results. To motivate
this we give in Section [4 a toy example. In Section [f]
we describe the extensive experiments we performed.
The proofs and more details are in the supplement.

2 The local SVM approach

In this section we briefly describe the local SVM ap-
proach. To this end, let D := ((z1,41),---, (Tn,Yn))

be a data set of length n, where z; € R and y; € R.
Local SVMs construct a function fp by solving SVMs
on many spatially defined small chunks. To be more
precise, let (A;);j=1,..m be an arbitrary partition of
the input space X. We define for every j € {1,...,m}
the local data set D; by

Dj:={(z,y) € D:xz € A;}.

Then, one learns an individual SVM on each cell by
solving for a regularization parameter A > 0 the opti-
mization problem

S Ly f())

. 1
o, = argmin X[ ], + -
feH; zi,yi€D;

for every j € {1,...,m}, where H; is a reproducing
kernel Hilbert space over A; with reproducing kernel
kj: Ajx A; = R, see[Steinwart and Christmann| (2008,
Chapter 4), and where L : Y xR — [0, o0) is a function
describing our learning goal. The final decision function
fpx : X = R is then defined by

m

foa(@) =14, (z)fp,a(x).

j=1

To illustrate the advantages of this approach, let us
assume that the size of the data sets D; is nearly the
same for all j € {1,...,m}, that means |D;| = n/m.
For example, if the data is uniformly distributed, it
is not hard to show that the latter assumption holds,
and if the data lies uniformly on a low-dimensional
manifold, the same is true, since empty cells can be
completely ignored. Now, the calculation of the kernel
matrices K;-’l = kj(z;,2;) for z;,y; € Dj scales as

2 2.d
O(m~<n) -d):o(” )
m m
In comparison, for a global SVM the calculation of the

kernel matrix K%' = k(x;, ;) scales as

O(nz-d),

such that splitting and multi-thread improve that scal-
ing by 1/m. Similarly, it is well-known that the time
complexity of the solver is

o(m-()") =0l (3)): W
m m

where a € [1, 2] is a constant, and the test time scales as
the kernel calculation (see Table@in the supplement for
experimental corroboration and |Steinwart et al.| (2011}
Theorem 6) for theoretical bounds). In all three phases
we thus see a clear improvement over a globally trained
SVM. Moreover, while SVMs trained on random chunks
have the same complexities for the kernel matrix and
the solver, they only have the bad complexity of the
global approach during testing.
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3 Oracle inequality and learning rates
for local SVMs with hinge loss

The aim of this section is to theoretically investigate the
local SVM approach for binary classification. To this
end, we define for a measurable function L : Y x R —
[0, 00), called loss function, the L-risk of a measurable
function f: X — R by

Rup(f) = /X | Ll @) P ).

Moreover, we define the optimal L-risk, called the Bayes
risk with respect to P and L, by

R’i,p =inf{Rrp (f) | f: X — R measurable}

and call a function f7 p : X — R, attaining the in-
fimum, Bayes decision function. Given a data set
D :=((z1,11),..., (%n,yn)) sampled i.i.d. from a prob-
ability measure P on X x Y, where X C R? and
Y := {—1,1}, the learning target in binary classifica-
tion is to find a decision function fp: X — R such that
sign fp(z) = y for new data (z,y) with high probabil-
ity. A loss function describing our learning goal is the
classification loss Lcjass : Y X R — [0, 00), defined by

Lclass(y7 t) = 1(0,00] (y . Sign t)v

where sign 0 := 1. Another possible loss function is the
hinge loss Lpinge : ¥ x R — [0, 00), defined by

Lhinge(y7 t) = maX{O, 1-— yt}

for y = +1, t € R, which is even convex. Since a well-
known result by Zhang, e.g. Steinwart and Christmann
(2008, Theorem 2.31), shows that

RLclaSS,P(f) - Rz < RLhinng(f) - thmgc,P

class, P —

for all functions f : X — R, we consider in the following
the hinge loss in our theory and write L := Lpiyge. We
remark that for the hinge loss it suffices to consider
the risk for function values restricted to the interval
[—1, 1], since this does not worsen the loss and thus the
risk. Therefore, we define by

t := max{—1,min{¢,1}}

for t € R the clipping operator, which restricts values
of ¢t to [—1,1], see [Steinwart and Christmann| (2008|
Chapter 2.2). In order to derive a bound on the excess
risks RL,P(fD,)\)—REVP, and in order to derive learning
rates, we recall some notions from [Steinwart and Christ-
mann| (2008, Chapter 8), which describe the behaviour
of P in the vicinity of the decision boundary. To this
end, let n: X — [0,1] be a version of the posterior

probability of P, that means that the probability mea-
sures P(-|z), defined by P(y = 1|z) =: n(z), v € X,
form a regular conditional probability of P. We write
Xy ={zeX:n(x)>1/2},
X1 ={zeX:nx)<1/2}.

Then, we call the function A, : X — [0, 00), defined by

diSt(J?,Xl) ifx € X_q,
Ay (x) = < dist(z, X_1) ifz € X7,
0 otherwise,

distance to the decision boundary, where dist(z, A) :=
infyrea ||z — 2'||]2. Thus we can describe the mass of
the marginal distribution Py of P around the decision
boundary by the following exponents: We say that P
has margin-noise exponent (MNE) g € (0, c0) if there
exists a constant cyng > 1 such that

/ 12n(z) — 1| dPx (z) < (emngt)?
{An(z)<t}

for all t > 0. That is, the MNE /3 measures the mass
and the noise, i.e. points x € X with n(z) = 1/2,
around the decision boundary. Hence, we have a large
MNE if we have low mass and/or high noise around
the decision boundary. Furthermore, we say that P
has noise exponent (NE) ¢ € [0, 0] if there exists a
constant cyg > 0 such that

Px({re X : |2(@) — 1] <)) < () (2)

for all € > 0. Thus, the NE ¢, which corresponds to
Tsybakov’s noise condition, introduced in [ITsybakov
(2004), measures the amount of noise, but does not
locate it. For examples of typical values of these expo-
nents and relations between them we refer the reader
to |Steinwart and Christmann| (2008, Chapter 8).

For the theory of local SVMs it is necessary to specify
the partition. Hence, we assume in the following that
X C [-1,1]¢ and define for a set T C X its radius by

rp =inf{e > 0:3 s € T'such that T C By(s,¢)},

where Ba(s,e) :={t € T : ||t—s||2 < e} with Euclidean
norm || - ||z in R%. In the following let (A;);—1...m be
a partition of X such that all its cells have non-empty
interior, that is /Olj # () for every j € {1,...,m}, and
such that for r > 0 we have

ra; <r< 16m . (3)

A simple partition that fulfills the latter condition
is for example the partition by cubes with a specific
side length. We refer the reader to Section [ for the
computation of another type of partition satisfying .
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In the following we restrict ourselves to local SVMs
with Gaussian kernels. For this purpose, we denote for
every j € {1,...,m} by H,,(A;) the RKHS over A;
with Gaussian kernel k., : A; x A; — R, defined by

ko (2, 2') = exp (=7 [l — 2'[13)

for some width ; > 0. Furthermore, we define for
f € H,,(A;j) the function f: X 5 Rby

7 L f(x)v .TCGA]',

Then, according to |[Eberts and Steinwart| (2015,
Lemma 2) the space H,, := {f : f € H,,(4))}
equipped with the norm

HJEHHW = ||fHij (A;)

is an RKHS over X. Thus, local SVMs for Gaussian
kernels solve the optimization problem

. 2 1
Fyay .y =agmin NI FIG +~ Y Ly, f(),
FeE vj n
feHy; zi,Yi €D;

for every j € {1,...,m}, where \;,v; > 0. Then, for
the vectors v := (71,...,%m) and X := (A1,..., Am)
the decision function fp a ~ : X — R is defined by

Foan(@) =D fD,00 (@), (4)
j=1

Note that the clipped decision function fD7 Ay X —
[—1,1] is then defined by the sum of the clipped em-
pirical solutions fpj, A;; since for all x € X there is
exactly one fp, x;~, With fp; x; 4, (x) # 0. We finally
introduce the following set of assumptions:

(A) Let (A4;)j=1,..m be a partition of X and r > 0,
such that for every j € {1,...,m} we have /olj #0
and . In addition, for every j € {1,...,m} let
H,,(A;) be the RKHS of the Gaussian kernel k.,
over A; with width v; > 0. Furthermore, we use
the notation ymax := max{vy1,...,Ym}-

Now, we present an upper bound on the excess risk for
the hinge loss and Gaussian kernels.

Theorem 3.1. Let Y ={-1,1} and let L : Y xR —
[0,00) be the hinge loss. Let P be a distribution on X x
Y with MNE 8 € (0,00) and NE q € [0,00]. Moreover,
let (A) be satisfied. Then, for all p € (0,1), n > 1,
T>1witht <n, A= (A1,...,An) € (0,00)™, v =

Y1y, ¥m) € (0,7]™ the SVM given by satisfies

Re,p(foany) —Rip
a1

m
—d TN a+2
S Cﬁ,d,p,q <Z A]’yj + ’V’g’bal‘ + (E) !

Jj=1

p
m

q+1
2 oy o 1 o
+ [ (DN T Px(4)) | no
j=1

with probability P™ not less than 1 — 3e™7, where the
constant Cg q4.p,q > 0 depends only on d, 3,p and q.

The main idea for the proof is that fp x ~ is an SVM
solution for a particular RKHS. To be more precise,
it is easy to show with a generalization of [Eberts and
Steinwart| (2015, Lemma 3) that for RKHSs fI%. on X
and a vector A := (A1,...,Ap) > 0 the direct sum

H::@m_j:{f:ij;fjeﬁw foralljeJ}

=1 =1

is again an RKHS if it is equipped with the norm
m
2 _ g2
171 = 3 Al Al
=

Obviously, fpa~ € H. We remark that the latter
construction actually holds for RKHSs with arbitrary
kernels. For the proof it is necessary on the one hand to
chose suitable RKHSs in order to bound the approxima-
tion error and on the other hand to bound the entropy
numbers of the operator id : H, (4;) — LQ(PX‘Aj),
which describe in some sense the size of the RKHS
H,,(Aj). Unfortunately, such bounds contain con-
stants which depend on the cells A; and which are in
general hard to control. However, for Gaussian kernels
we obtain such bounds if we restrict y; by r for every
je€{1,...,m}, which explains our restriction to Gaus-
sian kernels. Moreover, the proof actually shows that
v < r can be replaced by ; < cr for a constant c,
which is independent of p,m, 7, A and . Furthermore,
using this entropy number bound leads to a dependence
of a parameter p on the right-hand side of the oracle
inequality, where small p lead to an unknown behaviour
in the constant Cg 4p,4. This problem is well-known
in the Gaussian kernel case, see Steinwart and Scovel
(2007) or Eberts and Steinwart| (2011)), and there is not
given a solution for this problem yet.

Let us assume that all cells have the same kernel pa-
rameter v and regularization parameter A\. Then, the
oracle inequality stated in Theorem coincides up
to constants and to the parameter p, which can be
chosen arbitrary small, the oracle inequality for global
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SVMs stated in |Steinwart and Christmann| (2008, Theo-
rem 8.25) for 7 = co. Furthermore, we remark that our
oracle inequality is formally similar to the inequality
for local SVMs for the least square loss, see [Eberts and
Steinwart| (2015, Theorem 7) if we assume that the
Bayes decision function is contained in a Besov space
with smoothness o = 3/2.

In the next theorem we show learning rates by choosing
appropriate sequences of 1, Ay, j and vy, ;.

Theorem 3.2. Let 7 > 1 be fired and v €
(O, W—ijﬂq-ﬁ-l)] Under the assumptions of Theo-

rem [3.1] and with

-V

'n = CGn
__(B+d)(gtD)
)\n_’j = cor,n Pttt |
_ (g+1)
Yn,j = €3N Bg+2)+d(q+1) |
for every j € {1,...,my,}, we have for alln > 1 and

&> 0 that

Rep(fDAn,) —RLp

q+1 _ B(a+1)
< CppedgT ™ -1 Blar2)talerD T¢

holds with probability P™ not less than 1 — 3e™", where
An = (Mai)iz1,.om, as well as vy, = (Yn.i)i=1....m,
and where Cg 1. ¢ 4.4, C1, C2,C3 are positive constants.

Note that the restriction of the parameter v in Theo-
rem [3.2] is set to ensure that sup, > Vn,; /T < o0, as
we mentioned after Theorem [3:1] The learning rate
stated in Theorem [3.2] coincides always with the fastest
known rate which can be achieved by a global SVM,
cf. |Steinwart and Christmann| (2008, Theorem 8.26
and (8.18)). Let us consider some special cases for the
parameters 5 and ¢g. In the case of "benign noise", that
is ¢ = 00, our learning rate reduces to
nFRatE

and is only less sensitive to the dimension d if 3 is large.
Next, let us assume that ¢ = 1 such that P has a rather
moderate noise concentration and that S = 2, which
means that we have additionally much mass around
the decision boundary. For examples of distributions
having these parameters we refer to the examples in
Steinwart and Christmann| (2008, Chapter 8). The
chosen parameters ¢ and 3 yield the rate

n_ﬁ'i_g

and we observe that the dimension d has a high impact,
which means that the rate gets worse the higher d. We
refer the reader to Section [d] where we created a toy
example for a distribution having these parameters g

and ¢ and where we compare this rate with the experi-
mental one. Since the class of considered distributions
contains the ones, whose marginal distribution Py is
the uniform distribution, a bad dependence on d is not
surprisingly as these distributions usually among those
which cause the curse of dimensionality. However, if
the data lies for example on a day-(low)-dimensional
rectifiable manifold M, we believe that one is able to
improve the rate since one would learn the local SVM
only on a few cells—instead of learning on m = O(r?)
cells, one only has to learn on m = O(r%) cells.

Clearly, to obtain the rates in Theorem we need
to know the parameters 3 and ¢q. However, such rates
can also be obtained by a data-dependent parameter
selection strategy without knowing the parameters. For
example, [Eberts and Steinwart| (2015) presented for
the least-square loss the training validation Voronoi
partition support vector machine (TV-VP-SVM) and
showed that this learning method achieves adaptively
the same rates as the rates for local SVM for the
least-square loss. We remark that this method can
be adapted to our case, that is for the hinge loss, since
a key ingredient is an oracle inequality having the struc-
ture of [Eberts and Steinwart| (2015, Theorem 7), which
is given in our case, as we mentioned in the discussion
before Theorem [3.2] For more details to parameter
selection methods we refer the reader to [Eberts and
Steinwart| (2015, Section 5) and |Steinwart and Christ-
mann| (2008, Chapter 6.5 and Chapter 8.2). At this
point we finally remark that the mentioned adaptive
strategies obtain the rate

B(g+1)
n~ Farmtaern 5
B(g+1)

B2 rdlerD; Conse-
quently, for larger v, which lead to faster training times,

the range of adaptivity becomes smaller, and vice-versa.

for all f and ¢ satisfying v <

4 Toy Example

To illustrate the theoretical results we now give a toy
example by mixing two multivariate Gaussians, one for
y = 1 and one for y = —1, see Figure [I We define
X :=[-2,2]? and z1 := (1,0,...,0) € X and ¥ := 0.6.
Moreover, we set for all events A C X x Y:

P(A):=9 (x)dz + (1 -19) N P(z)dz,

A+
where AT :={z | (z,1) € A} and A~ :={z | (z,-1) €
A}. Here ¢ and 1) are the densities of the multivariate
normal distribution around the origin, and 21 resp. and
of variance 1 and £ resp. on X. In this case n(z) can

be calculated and it is easy to see that the decision
boundary is an ellipsoid, the NE is ¢ = 1, and the MNE



Spatial Decompositions for Large Scale SVMs

Figure 1: Toy model: Mixture of two Gaussians. The
decision boundary is depicted as almost a circle and
the dotted lines mark a Voronoi partition induced by
the black center samples.

is 8 = 2. Hence, we can use Theorem [3.2] by using
1

I

YT Evd T an
_2+d __1

)\n = Ccan C’Hrd7 /yn =c3n 3+d |

to achieve the rate n~ 35T, A (even faster) rate than
the theoretical from Theorem [3.2]

dim

)

1

- bayes error (ogarithmic)

baye
/e

10500
training set size (logarithmic)

Figure 2: Obtained excess risks for the toy models
at dimensions 4, 8,16. We decrease the maximal data
radius per cell as in Theorem (average of 20 runs).
The rates from Theorem [3.2] are marked in dashed lines
with normalization to match the first data point.

5 Experiments

We now use the developed methods for large scale data
sets in order to understand whether the theoretical
and synthetic results also transfer to real world data.
We intend to demonstrate that partitioning allows for
large n to give efficiently good results, but only if one
uses spatial decomposition. As discussed above, global
kernel methods become unfeasible for n > 100 000, but
there is already known the decomposition method of
random chunks: split the data into samples and train
on these smaller sets first, then average predictions
over these samples. We will see that spatial decompo-
sitions often outperform random chunks in terms of
test error—while testing is much faster. We did not
consider any other method for speeding up SVMs, e.g.
random fourier features, since these can be naturally

combined with our spatial approach. Indeed, if such
a method is faster than a global SVM on data sets of,
say 20.000 and more samples, then one could also use
this method on each cell of that size, which in turn
would further decrease the overall training time of our
approach. In this sense, our reported training times
are a kind of worst-case scenario.

In Section [5.1] we will demonstrate that the spatial
decomposition approach even can be used for problems
with dozens of millions of samples and hundreds of
dimensions, that is too big for a single machine.

HIGGS HEPMASS GASSENSOR

2e-041

v 1e-04+

I I " + + *+| 0e+00 4
0.1 1.0 10.0 0.1 1.0
Susy COVTYPE

0.15 i Ceea .
0.22-, = R T x----m  0.087

n ¥ 0.10- A .
021 ‘&, taa I 0.06 irgresseeaeeees .
T -
Foow 0051 ——
+ 0.04+

test error
X
4+

01 10 01 0.1
SKIN cell size
0.0025 - - 1 . = 2000
-+ 5000
0.0020 - 10000
0.0015 -4~ + 15000

0.0010 - F=ooo--ee

. +
0.0005- k\%

U
0.1

decomposition type
— spatial

---+ random chunk

training set size (in millions, logarithmic)

Figure 3: Test errors for large-scale data sets. The
training set size is the most influential factor for spatial
decompositions. Bigger cell sizes give only sometimes
earlier better results. Random chunk decomposition
only profits from bigger and not from more chunks.

Table 1: Overview of the data sets we used.

Name train size test size dims Source
HIGGS 9899999 1100001 28 UCI
HEPMASS 7000000 3500000 28 UCI
GASSENSOR 7548087 838678 18 UCI
SUSY 4499999 500001 18 UCI
COVTYPE 464 429 116 583 54 UCI
COD-RNA 231805 99 347 9 LIBSVM
SKIN 196 045 49012 3 UcCI

For the data sets, we looked on the UCI and LIBSVM
repositories for the biggest examples, which did have
firstly a suitable learning target, secondly only numer-
ical features, and thirdly not too many dimensions
since for high dimensions spatial decompositions be-
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come at least debatable. Hence, we did not consider
any image data sets. See Table [1| for an overview of
the data sets and the train/test splits. We trained on
one hand using the full training set, and on the other
hand using a sample of the full training set of the 6
sizes n = 50 000, ...,1 000 000, 2 500 000.

Even though our theoretical results are by control of
radii, in applications it is more important to control
the computational cost, namely the maximal number
of samples in the cells as we discussed in Section [2]
Hence, for each cell size 2000, 5000, 10000, 15000, each
of the 7 training sets was first split spatially into cells
of that size and a SVM was trained on each cell. This
means that on each cell five-fold cross validation was
performed for a 10 x 10 geometrically spaced hyper-
parameter grid where the endpoints were scaled to
accommodate the number of samples in every fold, the
cell size, and the dimension. Then, for the full testing
set the test error was computed by assigning each test
sample to the cell it spatially belongs to and the cell’s
SVM was used to predict a label for it. For comparison
we also performed these experiments using random
chunks: FEach training set was split uniformly into
chunks of size 2000, 5000, 10000, 15000. There, due to
time constraints, for the bigger data sets we calculated
the testing error using a test set of size 100 000.

We used 1iquidSVM (Steinwart and Thomann) 2017)),
our own SMO-type implementation in C++. As ar-
chitecture, we used Intel® Xeon® CPUs (E5-2640 0
at 2.50GHz, May 2013) with Ubuntu Linux. There
were two NUMA-sockets each with a CPU having 6
physical cores, but multi-threading was only used to
compute the kernel matrix in training and the test
error. The data-partitioning and the solver are single-
threaded. Even though there were 128GB RAM per
NUMA-socket available, the processes were limited to
use at most 64GB to give results which could be com-
pared on other workstations. The smaller cell sizes use
considerably less memory. But this way, we restricted
us to only use cell sizes up to 15 000. For random
chunks in the biggest cases even that was impossible.

Table 2: Time to train the local SVM including 5-fold
cross-validation on a 10 x 10 hyper-parameter grid.

2000 5000 10000 15000
training time (in min.)

HIGGS 308 679 1358 1992
HEPMASS 145 316 624 964
GASSENSOR 90 214 421 636
SUSY 121 261 513 779
COVTYPE 9 18 39 54
COD-RNA 4 9 16 25
SKIN 2 6 10 16

Table 3: Time to predict using random chunks divided
by time to predict using spatial decomposition. Since
RC becomes to expensive this is using 100 000 training
and test samples.

2000 5000 10000 15000
HIGGS 74 34 15 10
HEPMASS 84 28 14 6
GASSENSOR 667 513 254 414
SUSY 88 35 19 11
COVTYPE 153 61 26 19
COD-RNA 139 52 18 6
SKIN 25 10 8 4

The results on real world data sets give a clear picture.
It can be seen in Figure [3] that increasing the training
set size enhances the test error in most cases dramati-
cally. All data sets but susy show that by using spatial
partitioning one is able to attack large-scale problems
nicely. Remark that all cell sizes give almost the same
error. Yet smaller cell sizes give it faster (see Table ,
only for HIGGS and HEPMASS bigger cells achieve the
same test error already using fewer training data. Big-
ger cell sizes can give better test error, although in the
trade-off time vs. error, they play not too big of a role,
cf. Figure [d]in the supplement. In contrast, for the ran-
dom chunks strategy the cell size plays the most crucial
role for the test error and the error quickly saturates
at some value. The error can only be made smaller by
using bigger cell sizes, and hence much more expensive
training and even more testing time, see Table [3] Fi-
nally, our spatial decomposition seems overwhelmed
with susYy and exposes the same saturation effect as in
random chunk and does not achieve to beat that.

5.1 Big-data: ECBDL 2014

One of the most important aspects of spatial decom-
positions is that this makes the process cloud scalable,
since the training and testing on the cells trivially
can be assigned to different workers, once the data
is split. To demonstrate this we used Apache Spark,
an in-memory map,/reduce framework. The data set
was saved on a Hadoop distributed file system on one
master and up to 11 worker machines of the above type.
In a first step, the data was split into coarse cells by
the following procedure. A subset of the training data
was sampled and sent to the master machine where
1000-2000 centers were found and these centers were
sent back to the worker machines. Now each worker
machine could assign locally to every of it’s samples the
coarse cell in the Voronoi sense. Finally a Spark-shuffle
was performed: Every cell was assigned to one of the
workers and all its samples were sent to that worker.
This procedure is quite standard for Spark. It had to
be performed only once for the data set.
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Table 4: More detailed times at fixed cell size 2000 (in seconds). The testing phase is given per 100 000 test
samples. The last column gives the maximal resident size over all of training and testing (in GB).

name time (in seconds) used in phase RAM
part. kernel calc. solver wvalid. sel  test
HIGGS 40 2887 11862 994 1030 322 31
HEPMASS 26 2022 4235 682 560 208 22
GASSENSOR 21 2354 729 633 541 166 21
SuUSsYy 18 1296 4419 448 374 141 13
COVTYPE 3 138 206 44 47 13 3
COD-RNA 1 69 76 20 21 7 1
SKIN 1 53 21 18 11 3 1

In the second step every such coarse cell-mow being
on one physical machine-was used for training by our
C++ implementation discussed above: this in particular
means that each coarse cell was again split into fine
cells of some specified size and then the TV-VP-SVM
method was used. For these experiments we used a
20 x 20 hyper-parameter grid. Obviously this now
was done in parallel on all worker nodes. The test set
was also split into the coarse cells and then by our
implementation further into fine cells for prediction.

To give an experimental evaluation we used the classi-
fication data set introduced in the Ewvolutionary Com-
putation for Big Data and Big Learning Worksho;ﬂ
(ECBDL). The data set considers contact points of
polymers. It has 631 dimensions and 32 million training
(60GB disk space) and 2.9 million test samples (5.1GB
disk space). One of the major challenges with this is
a rather strong imbalance in the labels—there are 98%
of negative samples. Therefore the competition used a
scoring of "TruePositiveRate - TrueNegativeRate".

Certainly this data set is not ideally suited for local
SVMs: on one hand it certainly has higher dimensions
than we would hope. On the other hand the imbalance
in the data has to be treated by hand. For this we
used the hinge loss with weight 0.987 after trying out
different weights on a validation sample of size 100 000.
For the training calculations, the use of the full 128GB
memory per socket allowed us to use (fine) cell sizes up
to 100 000. The splitting was not optimized and took
about an hour. Training and testing took 32.2 hours
on our 11 worker machines, see Table

Our off-the-cuff scores range from 0.422 to 0.456. That
would have landed us in the middle of the scores at
the beginning of the competition. Of the seven teams
three had their first submissions between 0.3 and 0.42
and at some point found a way to boost it to 0.45 or
more. One of these, the team HYPERENS, used stan-
dard and budgeted SVMs with bayesian optimisation
of parameters and started with submissions scoring

! See http://cruncher.ncl.ac.uk/bdcomp/| and http:
//cruncher.ncl.ac.uk/bdcomp/BDCOMP-final.pdf.

around 0.34-0.38 and after ten days found a way to
score over 0.45 and achieving in the end 0.489 using 4.7
days of parameter optimisation in a 16-core machine.
The three best teams scored from start over 0.47. The
winning team EFDAMIS used feature weighting and ran-
dom forests and its best model took 39h of Wall-clock
time in a 144-core cluster (not used exclusively) which
is comparable to the training time of our best model.

Generally, we suppose that in such competitions the
best results are achieved by careful hand-optimisation
of the features and the hyper-parameters. We on the
other hand aspire to realize fully automatic learning
and hence are not aiming to beat such results.

Table 5: Results for the ECBDL’14 data set. Increasing
the cell size achieved to increase the score = TPR-TNR.

cell size time Score TPR TNR work nodes
10 000 4.8h 0.422 0.656 0.643 7
15 000 7.2h  0.433 0.664 0.652 7
20 000 9.3h 0.438 0.664 0.660 7
50 000 14.0h 0.453 0.666 0.679 11
100 000 32.2h 0.456 0.667 0.680 11

6 Conclusion

The experiments show that on commodity hardware
SVMs can be used to train with millions of samples
achieving at least decent errors in a few hours—even
including 5-fold cross validation on a 10 x 10 hyper-
parameter grid. The results for ECBDL demonstrate
that local SVMs scale trivially across clusters. Hence,
cloud scaling of fully automatic state-of the art SVMs
is possible. Together with the statistical guarantees
in Theorem [3.2]it is clear that local SVMs provide a
reliable and broadly usable machine learning system
for large scale data.
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