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Abstract

With increases in the availability of geo‐referenced data, there has been a push for

developing better methods to study demographic processes across space. This paper

reviews the recent developments in “spatial demography” and argues that an impor-

tant aspect has been neglected, namely, the focus on the dynamics and interactions

of population change across space, which is an area that should be central to the field.

Frameworks for analysing spatial demography were first proposed in multiregional

demography. This paper revisits these methods and then describes how methods

developed by geographers, economists, and other social scientists for analysing spatial

data may be better integrated to study spatial population dynamics.
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1 | INTRODUCTION

Geo‐referenced data on populations and demographic processes are

now widely available. As a result, demographers, geographers,

economists, and other social scientists have been exploring spatial

patterns of these data to better understand population change. We

review the recent developments in the field of spatial demography

and argue that it is currently missing an important unifying framework

that was first proposed in the late 1960s but apparently forgotten

(Bell, 2015).

In the past 15 years, there have been several prominent special

issues and papers focusing on spatial demography (i.e., Matthews,

Janelle, & Goodchild, 2011; Matthews & Parker, 2013; Voss, 2007;

Wachter, 2005). The articles included in these collections have largely

consisted of spatial analyses of geo‐referenced demographic indica-

tors and analyses of migration, as well as techniques for mapping or

dealing with spatial autocorrelation in regression models. Traditional

notions of spatial demography, as the study of the dynamics and pro-

cesses of spatial population change, are surprisingly missing. This may

be due to preferences for broad conceptualisation or to disagreement

of what spatial demography represents. It may also be due to the lack

of training and courses available to conduct spatial analyses on demo-

graphic processes (De Castro, 2007).
wileyonlinelibrary.com/jou
For example, in the introduction to the special issue on “spatial

demography” published in the Proceedings of the National Academy

of Sciences,Wachter (2005, p. 15300) provides the following viewpoint:
rnal/psp
Spatial demography extends across space and time, from

the changing face of the everyday world of present

experience to glimmerings of our remote origins and

interconnections. It brings sciences together: geography

and demography, political and social sciences,

mathematics, statistics, physics, and biology.
As another example, Weeks (2016: 108) defines spatial demography

as simply
“… the application of spatial concepts and statistics to

demographic phenomena.”
In this paper, we argue for a more specific conceptualisation of spatial

demography as a guiding framework—one that was first proposed in

the late 1960s by Rogers and, more recently, described by Sweeney

(2011: 1)
“… focuses on place‐dependence, relative location, and

interaction to gain insights into population level

processes and individual‐or household behavior.”
© 2018 John Wiley & Sons, Ltd. 1 of 13
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This notion of spatial demography distinguishes the field from the spa-

tial analyses being conducted in other well‐recognised fields of popu-

lation geography, spatial statistics (including spatial econometrics),

regional science, and spatial analyses conducted in public health, polit-

ical science, sociology, and social statistics.

Our main line of argument is as follows. Demography is the study

of population, and as such, it places population dynamics at the core of

analysis. Central to the field of demography is population composition

and the factors that cause the composition to change. Fertility, mortal-

ity, and migration are the mechanisms underlying demographic

change. They have distinct age‐ and sex‐specific patterns. Conse-

quently, age and sex are key stratification variables that distinguish

demography from other disciplines. Because age is determined by

the date of birth and people born around the same time period share

important collective experiences that influence their demographic

behaviour, the birth cohort is also an important stratification variable

in demography. Other stratification variables, such as education,

marital status, and ethnicity, may be added to account for the effect

of population heterogeneity on population dynamics. Therefore,

spatial demography is the study of how populations and their composi-

tional structures change and interact across space.

The study of geography, on the other hand, utilises place and space

as its central and unifying theme. Population geography, therefore, is

about how location‐specific contexts and connectivity across space

drive population change. It focuses on the impacts of location‐specific

qualities on populations and the reasons for the differences found

across space. This field also includes techniques for mapping population

data and utilising geographic information systems for analysis. Spatial

demography and population geography have much in common, but

they differ in focus, with spatial demography focusing on population

structure and dynamics, and population geography focusing on the

influence of spatial location and distribution on populations.

Demographic processes may be viewed from a variety of perspec-

tives. For example, consider the study of fertility. The current spatial

demography literature suggests that any study of fertility is, by defini-

tion, demographic. We disagree. There are many disciplines interested

in fertility. A geographer may be interested in the patterns of fertility

and how they vary across space. A public health researcher may be

interested in the demand for infertility treatment. And a demographer

may be interested in how fertility is related to the population at risk of

producing the births and the implications for population change.

Perspective is important. If the interest is focused on populations

and how they change and interact across space, then it may be said

to be demographic. However, if the interest is in the spatial patterns

of population change, then it may be said to be geographic.

Consider another example of migration. A geographer would be

interested in why migrants from particular origins go to particular

destinations. A sociologist might be interested in how migrants are

accepted into society. A political scientist might focus on the policies

of entry and access to citizenship. And a demographer would think

that an out‐migrant from one place is an in‐migrant to another and

that the migration would have implications on the age and sex struc-

tures of both populations. These simplified examples are used to

illustrate how one activity may be viewed from multiple perspectives.

Of course, most disciplines borrow from other disciplines—what
makes them distinctive is the perspective or direction they take in

conducting their arguments and lines of research.

In reviewing the recent literature, we find that the current field of

spatial demography largely consists of techniques to describe varia-

tions across space and methods for dealing with spatial autocorrelation

or spatial context, which is really the realm of population geography or

spatial statistics (see, e.g., the overview of recent developments by

Matthews & Parker, 2013). For spatial demography to be a distinctive

field of enquiry, we argue that demography (i.e., the study of popula-

tion) needs to be at the core of the thinking. Thus, our purpose in this

paper is to redirect some of the current methodological developments

in spatial analysis of social data towards improving how we understand

the dynamics and intersections of population change across space and

over time. In other words, we seek to draw researchers interested in

demographic change away from focusing primarily on the analysis of

the spatial patterns (i.e., realm of geography) towards analysing the

underlying dynamics and processes of demographic change across

space. Migration is the link between populations across space and

those interactions, therefore, represent a key component in under-

standing spatial population change.

The boundaries of spatial demography do not necessarily need to

be fixed, and in this writing, an inflexible and exclusionary paradigm is

not proposed. Several scholarsmay even argue that making that the dis-

tinction is unproductive in our common search for knowledge because

the mechanisms of demographic change depend strongly on location

and spatial connectivity. Our aim is to contribute to a discussion that

clarifies the core of demography in the study of population distributed

in space. We understand there are many good reasons and benefits

for fields of enquiry to overlap and learn from each other. Indeed, we

find spatial demographic research in the main journals of, for example,

demography, geography, economics, and sociology. We believe that a

stronger core that distinguishes spatial demographic theory and

analyses from those conducted in other social spatial sciences would

enhance the field, and in this critique, we highlight some of the unique

lines of enquiry spatial demographers could conduct with such a core.

In our exposition of what spatial demography should be centred on,

we focus on the dynamics of population change and how these dynam-

ics affect different populations across space. We first review the cur-

rent situation of research in journals where spatial analysis of

population plays an important role, including the new Spatial Demogra-

phy journal and recent special journal issues on the topic. Second, we

revisit the early work on spatial population dynamics, which focuses

on extensions of the incorporation of location (place of residence) in

the dominant toolkit of demography, including the life table, the demo-

graphic accounting equation, the cohort component projection model,

and the stable (steady state) population model. Third, we present a

framework for how indirect estimation techniques can be utilised to

model spatial population dynamics. Finally, we discuss current obsta-

cles and make recommendations for future research.
2 | BACKGROUND

There are currently two demographic‐orientated journals where geo-

graphic data play an important role. The journal of Population, Space
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and Place started in September 1995 as the International Journal of

Population Geography but, in 2004, changed its title and broadened

its scope to “geographical population studies.” This journal describes

its purpose as follows:
The scope of the journal is international, covering

developed and less developed countries and embracing

all the main fields of interest in population studies,

including: population and society; fertility, mortality

and migration; quantitative and qualitative methods

of population analysis; ageing populations; census

analysis; spatial demography; population policies; theory

and population; population distribution and change; and

population and development …. The editors welcome

contributions from researchers in all fields of population

studies who are interested in geographical issues.
Note that this journal lists spatial demography as one of the areas of

interest. It also uses the wider field description of “population

studies” rather than “demography.”

The second demographically orientated journal is Spatial Demog-

raphy, which issued its first volume in 2013. Its statement on the

journal's scope is as follows:
Spatial Demography focuses on the spatial analysis of

demographic processes. This cross‐disciplinary work

involves modern demographic data visualization,

enhanced geo‐referenced data availability, and spatial

statistics, facilitated through full color graphics, motion

video tools, and a quick time‐to‐publication. The journal

publishes research articles, essays, research reports,

data sources, computing software, teaching notes, and

book reviews on a wide range of topics of interest to

the social demographer.
Since its first issue (and at the time of this writing), there have been

46 research articles published in this journal. Of these 46 articles, we

categorised 26 to be population geography, 8 to be spatial statistics,

5 to be health geography, and 1 to be political geography. Only six

articles dealt with core demographic issues of population change

with four on urbanisation (Bocquier, 2015; Buettner, 2015; Chandra-

sekhar & Sharma, 2015; Strozza, Benassi, Ferrara, & Gallo, 2016),

one on human development and fertility (Porter, 2017), and one

on indirect estimation techniques for international migration (Wilson,

2017). Not one of the articles considered interacting populations

across space as described in the next section.

Aside from the two journals above, there are several other

journals that publish articles related to spatial analyses of population.

For example, the Journal of Regional Science
… publishes original analytical research at the intersection

of economics and quantitative geography …. This includes

rigorous methodological contributions and seminal

theoretical pieces … in urban and regional research,

planning, geography, and the environment. The

Journal of Regional Science continues to publish work

that advances our understanding of the geographic
dimensions of urban and regional economies, human

settlements, and policies related to cities and regions.
Also, the journal Applied Spatial Analysis and Policy describes its ratio-

nal as
A geographical perspective has always been crucial to the

understanding of the social and physical organisation of

the world around us. The techniques of spatial analysis

provide a powerful means for the assembly and

interpretation of evidence, and thus to address critical

questions about issues such as crime and deprivation,

immigration and demographic restructuring, retailing

activity and employment change, resource management

and environmental improvement …. Geographical

location is critical in much of this work which

extends across a wide range of disciplines including

demography, actuarial sciences, statistics, public sector

planning, business planning, economics, epidemiology,

sociology, social policy, health research, environmental

management.
Clearly, all the above journals are targeted towards a wide range of

social scientists and practitioners conducting spatial analysis. What

is not clear is where spatial demography fits. In Population, Space

and Place, it is included as a subdiscipline of interest, whereas the

journal of Spatial Demography suggests spatial demography is

a more general area of research covering a wide range of social

science topics.

In addition to the above journals dedicated to the spatial analysis

of population studies, there have been some key initiatives on the

topic of spatial demography. In 2005, there was a special issue on

spatial demography in the Proceedings of the National Academy of

Sciences that included seven papers (Wachter, 2005). In 2007 and

2008, Population Research and Policy Review published 15 papers

(across two issues) for a special issue on spatial demography (Voss,

2007). In 2013, Demographic Research published six papers as part of

a special issue on spatial demography (Matthews & Parker, 2013).

Finally, in 2016, an edited volume entitled, Recapturing space: New

middle‐range theory in spatial demography, was published by Springer

as part of a new book series on spatial demography (Howell, Porter,

& Matthews, 2016).

Missing from all of the above works are theories and applica-

tions related to dynamic spatial population change that embed

cohort and life course mechanisms. Most of the recent literature

is more or less in line with traditional population geography

and regional science, or what Population, Space and Place terms

‘spatial population studies.’ Core demographic thinking is clearly

absent and so are the foundational ideas laid down by Rogers,

Willekens, Wilson, Rees and others starting in the late 1960s

(Rogers, 1966, 1968, 1975; Rogers & Willekens, 1976; Willekens &

Rogers, 1978; A. G. Wilson, 1974; A. G. Wilson & Rees, 1974a,

1974b, 1975; Woods & Rees, 1986). Voss (2007) attributes spatial

demography to Woods (1984). To our knowledge, the term “spatial

demographic analysis” was used about 10 years earlier by Rees and

Wilson (1973).
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At present, knowledge and techniques of spatial demography

have to come from a wide array of sources. Some notable works

include Rogers' (1975, 1995) texts on multiregional mathematical

demography, Woods and Rees' (1986) “population structures and

models,” Plane and Rogerson's (1994) “geographical analysis of

population,” Smith, Tayman, and Swanson's (2001) “state and local

population projections,” Stillwell and Clarke's (2011) “population

dynamics and projection methods,” and Swanson and Tayman's

(2012) “subnational population estimates.” Moreover, students often

learn about the basics of demography in the context of another

(larger) discipline, such as sociology, geography, or economics, which

could explain for the general absence of demography in spatial

demography.

Age, cohort, and location are central to spatial demography. That is

precisely the thinking that led the urban and regional planner Rogers,

the geographer Rees, and others to develop spatial demographic

accounting and multiregional/spatial demography. Rogers started from

mathematical demography (i.e., Keyfitz) and input–output modelling,

whereas Rees started from geography and introduced Stone's socio‐

demographic accounting framework with age as the central variable.

The centrality of age in demography leads to the interest in the

life course, and the mechanisms underlying the typical age profiles of

fertility, mortality, and migration. The life course links the empirical

age regularities observed in demographic processes and the explana-

tory factors producing and changing them over time. The life course

perspective also channels the effects of historical factors (and contex-

tual factors in general) on the processes causing population change.

These factors generate cohort effects and explain the centrality of

them in demography (since Ryder, 1965) and the practice of stratifica-

tion of populations along cohort lines in order to describe, explain, and

predict population change.
3 | FOUNDATIONS OF SPATIAL
DEMOGRAPHY

3.1 | Introduction

Life course transitions include, for example, transitions from being

single to being married, from being employed to being unemployed,

from being in school to having graduated, from living in region i to

living in region j, and from being alive to being dead. Work in

multistate demographic analysis has produced a generalisation of

classical demographic techniques that unifies most of the methods

for dealing with transitions between multiple states of existence

(Land & Rogers, 1982; Willekens, 2014: Chapter 7). Part of this work

has been to demonstrate how multiple decrement mortality tables,

tables of working life, nuptiality tables, tables of educational life,

and multiregional life tables are all members of a general class of

increment–decrement life tables called multistate life tables. Similarly,

projections of populations classified by multiple states of existence

can be carried out using a common methodology of multistate projec-

tion, in which the core model of the population dynamics is either a

generalisation of the continuous age–time model of Lotka or the dis-

crete age–time model of Leslie.
In spatial demography, the timing and location of demographic

outcomes are linked to transitions in the individual life course. For

instance, a divorce or job loss in one place may trigger migration to

another place, or conversely, a migration may result in family separa-

tion or unemployment in the destination location. The distinction

between multistate demography and multiregional demography is

largely dependent upon whether the life course transitions focus on

movements between places or between other life states. Of course,

one may be interested in the relationships between spatial transitions

and other social or economic transitions people make in their life

course. For instance, one might want to study the likelihood of unem-

ployment for a person who migrates to a particular region, relative to

someone who does not migrate, or to someone who migrates to

another region in the system.

Consider the four hypothetical populations presented in

Figure 1. Traditional demography would treat each population inde-

pendently from each other and compare their patterns. We refer

to this treatment of spatial units as uniregional demography.

Early developments in spatial demography (multiregional demogra-

phy) connected the four populations through the processes of

origin–destination‐specific migration and allowed the populations to

simultaneously evolve over time. This analytical framework greatly

enhanced our understanding for how subnational populations

interact and change over time. And it is this perspective that we

believe is central and missing from the recent literature on spatial

demography.

In the next subsection, we review the basic aspects of multire-

gional life tables and projections, which form the analytical foundation

for studying spatial demographic change. Here, location is an essential

attribute of individuals and that attribute changes during the life

course. The multiregional life table describes a population in which

children are born in different regions and may leave the region at

any age, may later move on to another region, or return to the region

of birth. Death may occur at any age and in any region. For example,

consider a cohort of rural‐born babies and a cohort of urban‐born

babies. A rural youth might migrate to an urban area at a given age

to go to school or to join the urban labour force; he or she might

return several years later as an adult having married an urban‐born;

if unsuccessful in entering the rural labour market, he or she might

decide to migrate once again, raising his or her children in yet another

urban or rural region. This framework allows one to analyse the dura-

tion of time spent in each region, controlling for the initial conditions

in life. Combining these calculations with information regarding the

spatial nature of the population of interest provides analysts with

much in terms of explaining the evolutions and spatial interactions of

regional populations over time.

The natural starting point for thinking about population change

is the probability that an individual born or living in a given region

will survive for a given number of years, stay in the region, migrate

to another region, and return later or move to on to other regions.

By way of illustration, consider two regions, urban (U) and rural (R).

An individual of exact age x at time t was born at t−x, denoted by

B(t−x). The population change can be described by birth cohort or

by age. The two approaches are illustrated here. The urban popula-

tion aged x at t depends on the number of urban‐born and rural‐
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born children and on their survival and migration between birth and

age x:

KU x; tð Þ ¼ BU t−xð Þ UlU x; t−xð Þ þ BR t−xð Þ RlU x; t−xð Þ; (1)

where Ki (x,t) denotes the population in area i, at time t and age x,

and jli (x) denotes the probability that a child born in area j at time

t − x is alive and residing in area i at age x. A child may have

migrated frequently but is living in U at exact age x at time t.

A similar equation to the one above can be written for the rural

population aged x at t. In this equation, only two locations are consid-

ered for each x‐year old: place of birth and place of residence at age x.

Additional locations may be considered during the life course.

Consider an age and time interval of h years. The urban population

at age x + h and time t + h may be expressed as

KU xþ h; tþ hð Þ ¼ KU x; tð Þ pUU x; tð Þ þ KR x; tð Þ pRU x; tð Þ; (2)

where pki (x,t) is the probability that an individual residing in area k

at age x survives and resides in area i at age x + h at time t + h. A

similar equation may be written for the rural population at age x + h

at time t + h.

Extensions of these models to multiple locations (systems of

regions) are briefly presented in the Sections 3.2 to 3.4. A system of

regions requires multiple equations as those given above and, because

of migration is origin‐ and destination‐specific, the equations must be

solved simultaneously. Matrix algebra offers convenient and efficient

methods for solving systems of equations. The life table is briefly cov-

ered in Section 3.2 and population projection in Section 3.3. Section

3.4 addresses a further extension, where a migration is included

between the system of regions and areas outside the system. A sys-

tem of regions that interacts with other systems is an open system.

Systems that do not are closed systems.
3.2 | Multiregional life tables

The life table is a central concept in demography. Its use to express

the facts of mortality in terms of survival probabilities and their

combined impact on the lives of a cohort of people born at the

same moment has been so successful that, in the words of Keyfitz

(1968: 3), “we are incapable of thinking of population change and

mortality from any other starting point.” The natural starting point

for thinking about spatial population change is the multiregional life

table, its theoretical derivation, and its empirical calculation. Probabil-

ities of surviving and migration are central to the multiregional life

table. They are derived from death rate and migration rates, estimated

from data.

Rogers (1975, 1995) and colleagues have shown that the rates

and probabilities can be combined in matrices, which is the starting

point of the application of the mathematical theory of matrices. Let

M(x) denote the matrix of death rates and migration rates within the

age interval x to x + h. The definition and configuration of the matrix

are described by Rogers and need not concern us here. Two types

of life tables are usually distinguished: a cohort life table, which con-

siders as input death and migration rates that vary with age and in

time, and period life tables, in which the rates vary with age but not

in time. In the period life table, we can derive

Iþ h
2
M xð Þ

� �
l xþ hð Þ ¼ I −

h
2
M xð Þ

� �
l xð Þ; (3)

whence

P xð Þ ¼ Iþ h
2
M xð Þ

� �−1
I −

h
2
M xð Þ

� �
: (4)

Those familiar with uniregional life‐table construction methods

will recognise in Equation (4) the conventional formula for deriving

life‐table probabilities from observed rates (Rogers & Ledent, 1976).

The only difference in the multiregional version is that matrices appear

in place of scalars.
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3.3 | Multiregional projection models

An important and fundamental application of the survivorship proba-

bilities and proportions found in a multiregional life table is population

projection. Multiregional projection models are of two kinds: continu-

ous age–time Lotka models and discrete age–time Leslie models.

Moreover, migration between the system of regions and other popu-

lation systems may be included in the projection models.

A continuous age–time model of a closed single‐sex population

may be defined for a multiregional system by means of a straightfor-

ward generalisation of the classical Lotka model. Beginning with the

number of female births in each region, Bj(t) say, we note that women

aged x to x+dx in state i at time t are survivors of those born x−dx to x

years ago and now living in region i, that is, ∑r
j¼1Bj t−xð Þjli(x)dx, where

x≤t. At time t, these women give birth to [∑r
j¼1Bj t−xð Þjli (x)]mi(x)dx chil-

dren per year while in region i. Here, jli(x) denotes the probability that a

baby girl born in region j will survive to age x in region i, and mi(x) is the

annual rate of female childbearing amongst women aged x to x+dx in

region i. Integrating this last expression over all ages x and focusing

on the population at times beyond the last age of childbearing gives

the homogeneous equation system

B tð Þ ¼ ∫
β
0m xð Þl xð ÞB t−xð Þdx: (5)

The discrete age–time model of multiregional demographic growth

is expressed by means of a matrix operation of the population projec-

tion process: a multiregional population set out as a vector is multi-

plied by a growth matrix that projects that population forward

through time. The projection calculates the region‐specific and age‐

specific survivors of a multiregional population of a given sex and adds

to this total the new births that survive to the end of the unit time

interval. This process may be described by the matrix model

K tþ 1ð Þ ¼ G tð Þ K tð Þ; (6)

where the vector K (t) sets out the multiregional population disaggre-

gated by age and region, and the projection matrix G (t) is composed

of zeros and elements that represent the various time‐varying age‐

specific and region‐specific components of population change. If G

does not vary in time, Equation (6) stabilises when G is raised to suc-

cessively higher powers. The asymptotic properties of the projection

Equation (6) have been extensively studied in mathematical demogra-

phy. It describes the dynamic equilibrium that is fully characterised by

the rates of fertility, mortality, and migration in a base period and that

emerges in the long term, when the effects of the initial age composi-

tion and spatial distribution of the population is phased out. The

equilibrium population is used to separate the effects on population

growth and distribution of demographic rates (rate effect) and popula-

tion structure (composition effect). This body of theory draws on the

properties of matrices with nonnegative elements and, in particular,

on the Perron–Frobenius theorem. Thus, concepts such as the stable

equivalent population can be used as a basis for analysing the relative

importance and long‐term potential consequences of current demo-

graphic processes across spatial units.
The stable equivalent population is the total which, if distributed

according to the stable vector K1, would ultimately grow at the same

rate as the observed K(0) projected by the projection matrix as

GnK(0). The ultimate growth ratio is the dominant eigenvalue of the

projection matrix G. The associated right eigenvector, K1, defines the

stable population across ages and states. The left eigenvector, VT
1,

describes the reproductive potential of the multiregional population.

The product VT
1K 0ð Þ is known as the total reproductive value of the

initial population (Rogers & Willekens, 1978), a notion first set out

by Fisher (1929: 27).

Implicit in every multiregional projection matrix is a stable distri-

bution across ages and regions, expressible in terms of age composi-

tions and state shares. Deviations from these compositions and

shares, in the initial age‐by‐region distribution, ultimately disappear,

but in the short to medium run, they create fluctuations and distur-

bances in age profiles and in allocations over regions (Liaw, 1986).

3.4 | The spatial dynamics of multiregional
population models “open” to other population systems

The ages at which immigrants are admitted can be shown to make a

significant difference in the ultimate population size and spatial distri-

bution and so can the region of entry. Multiregional versions of the life

expectancy and the reproductive value may be used to assess these

impacts. For example, Rogers (1990a: 315) shows that if in the closed

model described by Equation (6) with constant projection matrix, we

add a count of immigrants from another population system, X, on

the assumption of unchanging rates and a fixed immigration stream

one finds that the population that will result in t years is

K tð Þ ¼ GtK 0ð Þ þ I−Gð Þ−1 I−Gt� �
X: (7)

Here, international migrants exiting the system are included as

rates or probabilities in the G matrix and treated as attritions, similar

to deaths. And, if fertility is below replacement level, then the stable

equivalent population can be shown to be

Q ¼ I–Gð Þ−1X; (8)

where Q is the stable (in this case, stationary) population equivalent of

the observed population, K(0). Studying how regional populations are

changing in relation to multiregional population stability provides an

indication of the speed and potential long‐term consequences of

recent demographic events. By doing so, we can also assess how effi-

cient populations are redistributing across space. In reality, we expect

the demographic rates to change and respond to various economic

and social processes over time. However, it is useful to have a bench-

mark for which to compare such changes.
4 | ISSUES IN APPLIED MULTIREGIONAL
DEMOGRAPHY

4.1 | Data and accounts

Empirical studies in multiregional demography often begin with data

set out in tabular form, which describe changes in stocks that have
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occurred over two or more points in time. These changes arise as a

consequence of increments and decrements associated with events,

such as births and deaths, and with flows of individuals between differ-

ent regions.

When all of the appropriate elements in such tables have been

filled in with numbers, they generally are referred to as accounts.

And when, as is often the case, some data are unavailable, ingenuity,

and indirect estimation are used to supply the missing entries. Promi-

nent amongst such techniques are various row and column balancing

methods that have been successfully implemented in economics

(input–output matrices), transportation planning (origin–destination

traffic flows), and statistics (contingency tables).

The idea of arranging monetary transactions in a system of

interlocking statements, in which total inflows are forced to equal total

outflows, is a familiar habit of thought in economics. The utility of

imposing a similar habit to the inescapable accounting interrelation-

ships that arise in spatial demographic data is just as important.
4.2 | Movements and transitions in multiregional life
tables

During the course of a year or some such fixed interval of time, a num-

ber of individuals change their current region of residence. A move out

of a region of residence is an event, a separation. A mover is an indi-

vidual who has made a move at least once during a given interval of

time. A migrant, on the other hand, is an individual who at the end

of a given time interval no longer inhabits the same region of resi-

dence as at the start of the interval. The migrant has made a transition

from one region to the other. The act of separation from one region is

linked with an addition to another. Thus, paradoxically, a multiple

mover may be a nonmigrant by this definition; if, for example, a partic-

ular mover returns to the initial region of residence before the end of

the unit time interval, no ‘migration’ is registered.

The crux of the life‐table construction problem is the estimation

of age‐specific survival probability transition matrices, P(x), by use of

data either on interstate moves or on interstate transitions (i.e.,

“Option 1” and “Option 2,” respectively, in Rogers, 1975, 1995).

Because the data on multistate flows can come in the form of move

counts or people counts, the methods used must be specific to each

kind of data (Rees & Willekens, 1986). Irrespective of the form of

the data, however, no statements about probabilities can be made

without a conversion of ‘moves’ information to ‘people’ information

at some point in the analysis.
4.3 | Origin dependence in migration flows

Studies of the spatial patterns of directional migration flows have

found that individuals who have moved before are more likely to do

so again and to destinations that they have lived in earlier in life, espe-

cially their birthplace (DaVanzo, 1983; Eldridge, 1965; Newbold, 1997;

Rogers, 1990b; Waldorf, 1995). The most important consequence is

that the probabilities of return migration to their region of birth are

significantly higher than those of the average individual, and their

age‐specific migration rates differ in the age profile.
If birthplace specificity is introduced, then each age‐specific,

origin–destination‐specific flow can be expressed as the sum of three

distinct categories of migrants: (a) persons leaving their region of birth:

primary migrants; (b) persons returning to their region of birth: return

migrants; and (c) persons migrating neither from nor to their region of

birth: onward migrants. The motivations and patterns associated with

return migrants typically are quite different from those of non‐return

migrants.

Because the migration patterns of return migrants are significantly

different from those of non‐return migrants, the incorporation of such

differentials in spatial processes can sometimes produce unexpected

results. For example, such results can identify the reason for a strongly

positive correlation between rates of out‐migration and in‐migration

across different regions. Moreover, they can answer the question

whether the elderly are more likely to return home (Rogers, 2015:

Chapter 4). Unfortunately, these data are not easy to obtain for many

countries because of the reluctance of official statistics agencies to

publish very detailed data matrices due to the risk of disclosure of

individuals, and sampled data are usually not of sufficient size to cap-

ture the relatively small numbers of people moving between regions.
4.4 | Shrinking very large population projection
models

An increasing number of demographers find themselves in the some-

what frustrating position of being asked to provide accurate popula-

tion projections at very fine levels of detail with resources that are

scarcely adequate for carrying out such projections at much more

aggregate levels of resolution. Prominent amongst them are those

called upon to produce consistent projections of regional populations

disaggregated by location, age, sex, ethnicity, and such indicators of

class and welfare as employment category and income. Imagine the

daunting task faced by a demographer of projecting, in a consistent

manner and in such detail, the future populations of the nearly

300 metropolitan areas of the contemporary United States. To pro-

duce consistent projections means avoiding net migration rates and

uniregional projections for each metropolitan area. How best to

“shrink” the huge multiregional model? What approaches are available

to reduce the dimensionality of the fundamental problem? Fortu-

nately, there are some examples of very large and detailed population

projections from which we can draw experiences from, notably Wilson

(2011) for local areas in New South Wales, Australia, Rees, Wohland,

Norman, and Boden (2012) for ethnic projections across local author-

ities in the United Kingdom, and Lutz, Butz, and KC (2014) for human

capital projections for all countries in the world. See also Rogers

(1976), Rees (1997), Wilson and Bell (2004), and Wilson (2016).

Because of the staggering data and computational requirements

of very large population projection models, there is a fundamental

need for (a) improved methods of shrinking such models and for

(b) indirectly estimating some of the necessary detailed data. The

former task leads one to focus on aggregation and partitioning, or

more appropriately, decomposition methods. The latter task may be

addressed by considering indirect estimation methods (see following

section).
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The notion that it might be useful to model different parts of a

large system at different levels of detail received its first mathematical

treatment more than a half century ago in a seminal paper by Simon

and Ando (1961) published in Econometrica. This article suggests the

following simple method for shrinking large‐scale population projec-

tion models. One begins by partitioning a multiregional system into

its constituent single regions and projecting their growth and change

as if they were independent, closed population subsystems undis-

turbed by migration. The first stage, therefore, corresponds to a

uniregional decomposition with zero net migration. The second stage

involves suppressing all age‐specific details and projecting the multire-

gional population by using an aggregate components‐of‐change

model. The results of the latter stage determine the total multiregional

population and its spatial distribution: the results of the first stage

define the individual regional age compositions. In this way, within‐

subsystem interactions (i.e., changes in age structure) are modelled

at a fine level of detail, whereas between‐subsystem interactions

(i.e., changes in spatial structure) are modelled at a coarse level of

detail. If the original multiregional system is sufficiently close to being

nearly decomposable, the approximate (two‐stage) projection should

produce a reasonably accurate multiregional population projection.

This was confirmed by Wilson and Bell (2004, p. 157) in examining dif-

ferent migration specifications for 10 projection models; they found

that “the processes of partitioning and aggregation, designed to

reduce the size of the multiregional matrix, result in very little differ-

ence from the standard multiregional model.”
5 | TOOLS FOR INDIRECT ESTIMATION IN
SPATIAL DEMOGRAPHY

Another aspect of demography that is needed for studying spatial

population dynamics is indirect estimation. As population models

become larger and more detailed, techniques for simplifying the esti-

mation process and dealing with poor data become more important

(Rees, 1997). Methods for indirect estimation are required when data

are incomplete, inadequate, or missing. They are particularly useful

when analysing population change for small areas or for subpopula-

tions (e.g., ethnic population change). In this section, we focus on

two general methods used widely in the social sciences: spatial inter-

action models and model age schedules of demographic events. The

former are used to describe the spatial structure of flows; the latter

to describe the age structure of events and flows.
5.1 | Spatial interaction models of migration

When populations interact across space, a truer sense of population

change and the processes underlying population redistribution is

obtained. In spatial demography, migration flows are the main mecha-

nism for interaction and therefore have been the subject of extensive

modelling research. The gravity model is the oldest spatial interaction

model (Fotheringham, Brunsdon, & Charton, 2000: Chapter 9). It is

based on the premise that the interaction between two places is

proportional to the sizes of the places (in terms of population and/or

economic activity) and inversely related to (some function of) the
distance between the places. Spatial interaction models may be

applied to any flow process that involves two or more locations, how-

ever, for the purposes of this paper, we focus on the migration

process. As part of one of the most ambitious studies of internal

migration ever taken, Stillwell et al. (2016) fitted spatial interaction

models to a series of migration flow tables representing 105 countries

to study the effect of distance while controlling for modifiable area

unit problem. In another ambitious study, Cohen, Roig, Reuman, and

GoGwilt (2008) fitted a gravity model, specified as a generalised linear

model, to estimate flows of international migration amongst all coun-

tries in the world.

In the early 1980s, Flowerdew and Aitkin (1982) argued for (a)

linking spatial interactions to exposure, (b) accounting for the uncer-

tainty in migration flows, and (c) calibrating the gravity model using

techniques of statistical inference. They argued that the number of

persons migrating between two places during a given period can be

approximated by a Poisson random variable, with the possible values

described by a Poisson distribution. Further, they showed that the

gravity model can be considered in the family of the generalised linear

models. A distinguishing feature of members of that family of models

is that a transformation of the dependent variable can be written as a

linear function of the independent variables. In the Poisson model, the

transformation is the logarithmic transformation. The Poisson regres-

sion model is a log‐linear model. If the variables are discrete, the log‐

linear model can be estimated using statistical techniques of discrete

multivariate analysis, better known as log‐linear analysis and categor-

ical data analysis (Bishop, Fienberg, & Holland, 1975). Willekens

(1983) showed the similarity between these techniques and calibra-

tion methods used traditionally for estimating gravity models.

Spatial demography involves the modelling of geo‐referenced

population dynamics. To overcome limitations in available origin–

destination migration flows or missing data, spatial interaction models

may be integrated in the multiregional life table and the multiregional

projection model, highlighted in the previous section. The natural

starting point for thinking about this is the migration rate by age,

origin, and destination. In a set of migration rates by age, origin, and

destination, two core structures can be identified: the spatial structure

and the age structure. Spatial interaction models focus on the spatial

structure; models of migration age schedules (described in the next

section) focus on the age structure.

Let Nij (x) denote the number of persons of age x that migrate

from area i to area j in a given time interval. Age x may be measured

at time of migration or at the beginning of the interval. The latter case

is when migration data are available by year of birth, for example, in

census data. Nij (x) is a random variable. The expected value of Nij (x),

E [Nij (x)], and its variance, Var [Nij (x)], is estimated from migration

counts. The data are count data and assumed to be outcomes of an

underlying counting process, which is a particular type of stochastic

process (Aalen, Borgan, & Gjessing, 2008). Contrary to more tradi-

tional approaches, observed migration counts are not modelled

directly. The underlying stochastic process is modelled instead, and

the observed event counts are used to estimate the parameters of

the process model. This approach bridges the divide between demo-

graphic modelling, probability theory, and statistical inference. The

Poisson process assumes that all migrations are independent and
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follow the same probability distribution. This process leads to the

Poisson regression model mentioned earlier. The random variable Nij(x)

follows a Poisson distribution. The probability of exactly nij(x) migra-

tions during an interval of length h is

Pr Nij xð Þ ¼ nij xð Þ� � ¼ hξ ij xð Þ
nij xð Þ! exp −hξ ij xð Þ� 	

; (9)

where ξij (x) is the parameter of the Poisson distribution. The expected

value and the variance of events in a unit interval are equal to ξij (x).

The parameter ξij (x) depends on the migration rate and total duration

of exposure during the time interval by the population at risk of

migrating:

λij xð Þ ¼ PYi xð Þμij xð Þ; (10)

with PYi (x) the exposure time during a unit interval and μij (x) the rate

at which a person of age x living in i migrates to j. Note that residents

of i only are at risk of migrating to j. In most applications, it is assumed

that the exposure time is fixed and does not depend on the random-

ness in migrations. In that case, PYi (x) is treated as an offset in the

Poisson regression model.

Poisson regression models can be formulated with ξij (x) or μij (x) as

the dependent variable. In spatial interaction models, ξij (x) is usually

used. For instance, the gravity model can be written as

ξ ij xð Þ ¼ k xð Þαi xð Þβj xð Þ exp −cij xð Þ� 	
; (11)

where γij(x) = exp [−cij(x)] is an age‐specific spatial friction or distance

deterrence factor related to the geographic and cultural distance

between i and j. The friction factor may be replaced by a preliminary

estimate of the migration flow, for example, a flow observed at some

prior date. The migration rate is μij(x) = ξij(x)/PYi(x), where exposure

time is determined separately (e.g., as the product of the midperiod

population and the length of the period).

The gravity model can be written as a log‐linear model:

ln ξ ij xð Þ� 	 ¼ uþ uOi þ uDj þ uODij ; (12)

where u is the overall effect, uOi is the effect associated with origin i,

uDj is the effect associated with destination j, and uODij is the interaction

effect between origin and destination. For a review of spatial interac-

tion models of migration, refer to Willekens (2008) and Rogers, Little,

and Raymer (2010). The gravity model can also be extended to include

other geographic factors besides distance that influence migration

flows, for example, area‐specific unit sizes, socio‐economic factors,

contiguity, and population density. For further details and applications

of spatial interaction models, refer to Stillwell and Congdon (1991) and

Stillwell, Duke‐Williams and Dennett (2010).

5.2 | Model schedules of demographic events and
flows

The age‐specific patterns of fertility, mortality, and migration exhibit

strong regularities that can be used to overcome data limitations in

a wide array of settings, including small populations where the

data may be sparse. Coale and Trussell (1974), Heligman and Pollard
(1980), and Rogers and Castro (1981) developed parameter‐based

model schedules for estimating age‐specific fertility, mortality, and

migration, respectively. The relatively stable shapes of age‐specific

demographic events provide demographers with the possibility to

simplify their underlying assumptions and methods for estimation or

projection. These age profiles are reflective of life course transitions

that populations experience and the patterns may vary depending on

spatial context (Bernard, Bell, & Charles‐Edwards, 2014).

For example, the research by Rogers and Castro (1981) demon-

strated the persistent and strong regularities in the age patterns of

internal migration over time and across space. The general shape of

the propensity to migrate begins with a downward slope from early

childhood to middle childhood, followed by a sharp “labour force”

increase in the young adult ages, and finally, a general downslope to

the oldest ages with some instances of a second “retirement” peak

centred around ages 60–65 years. These same regularities are also

found in patterns of international migration (see,e.g., Wiśniowski,

Forster, Smith, Bijak, & Raymer, 2016).

Not all age profiles of migration are the same, but most have a

downward sloping curve for young children and a single labour force

peak. The more complicated shapes that include, for example, a stu-

dent migration, a second retirement peak, or an upward slope in the

oldest age groups, may be explained by the attributes found at the

origin or destination (Warnes, 1992; Wilson, 2010). For example, the

emigration flows of nationals usually have younger labour force peaks

and fewer children than the corresponding flows of immigrant

nationals (i.e., return migrants). Locations dominated by universities

have very sharp young adult peaks, whereas those with a range of

employment and education activities attract a wider range of young

adults (Plane & Heins, 2003). If the location attributes are known, then

the age patterns of migration may be inferred. If the age patterns are

not known or if they are believed to differ from the parametric spec-

ification of the model migration schedule, then cubic splines or kernel

regressions may be used to smooth and identify age regularities

present in the data (Bernard & Bell, 2015).
6 | DISCUSSION AND FUTURE RESEARCH
AGENDA

In this paper, we argue that spatial demography currently lacks a uni-

fying core for research enquiry and propose that multiregional models

be included as a central part for such a core. The reason is threefold.

First, multiregional methods incorporate spatial interaction and thus

bring together population flows and stocks. They focus on the popula-

tions “at risk” of experiencing events and therefore avoid reference to

net flows. Second, multiregional models track individuals across

several changes of residence across space and allow the disaggrega-

tion of current or future stocks and flows of individuals by their previ-

ous places of residence. Third, multiregional demographic methods

enhance our understanding of regional mortality, fertility, and migra-

tion and how populations are interconnected across space.

When subpopulations and their demographic components of

change are interconnected by directional migration flows, important

demographic questions that are inherently spatial can be addressed.
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For example, do migrants from rural areas in cities have higher or

lower fertility? How many of the migrants who arrived in the past

10 years are still in the country? And how many can be expected to

remain for retirement? And if fertility levels remain low in cities and

high in rural areas, what might the future population distribution be

for different migration scenarios? These types of questions place

demography, or the study of population change, at the core of spatial

thinking and enquiry.

A framework for spatial demography, as proposed in this paper,

has been developed in multiregional mathematical demography. How-

ever, there are plenty of areas where research is needed to improve

the framework. In particular, there is a need to integrate recent

developments in stochastic processes and spatial dependency model-

ling. Although fixed‐rate multiregional models have been useful for

understanding the mechanisms of interacting subpopulations and

the implications of particular rates within a system, they are often con-

sidered unrealistic or practical for planning. Research is needed to gen-

eralise the model for dynamic rates and probabilistic perspectives

utilising time series models (e.g., Chatfield, 2004). Research is also

needed to integrate spatial analysis techniques (e.g., Fotheringham

et al., 2000; Oyana &Margai, 2016). As noted by Swanson and Tayman

(2012), this is a major issue especially when dealing with small

geographic areas. Finally, there is a real need for investing in models

to estimate and forecast age‐specific international migration flows for

inclusion in multiregional model projections (Abel, 2013; Raymer,

Wiśniowski, Forster, Smith, & Bijak, 2013; Wiśniowski et al., 2016).

Accounting for the large number of correlations present in spatial

demographic data can make spatial demographic models complex and

difficult to fit. The correlations include those across ages, cohorts, over

time, and space. Moreover, with migration, there are often correla-

tions in the counterflows, that is, migration from i to j is related to

migration from j to i. In the population forecasting literature, there has

been some progress to account for these correlations. For example,

Wiśniowski, Smith, Bijak, Raymer, and Forster (2015) used Bayesian

methods to estimate age‐specific demographic components of change

by extending the well‐known Lee and Carter (1992) model for mortality

in their population forecasting model for the United Kingdom. They

explored correlations across time, sex, and in the components of demo-

graphic change, but there were no subnational populations included in

the analysis. Raymer, Abel and Rogers (2012) utilised vector

autoregressive models to capture the serial autocorrelation and spatial

dependency in demographic components across regions in England, but

their models did not account for age or sex. Finally, the recent develop-

ments in Bayesian methods applied to demographic estimation and pro-

jection have much potential for both transparency and ability to both

borrow strength across patterns in the data (Bijak & Bryant, 2016;

Raftery, Li, Ševčíková, Gerland, & Heilig, 2012).

The multiregional framework also provides a foundation for

understanding individual behaviours using microsimulation or agent‐

based modelling. Here, population dynamics are the outcomes of

actions that individuals make. Agent‐based models may be used to

study population dynamics resulting from decisions individual actors

make and the subsequent social processes that form when actors

interact and influence each other (e.g., emergence of social networks).

In these models, decisions and rules governing social interaction and
the resultant diffusion of behaviour replace the empirical rates of

migration that are normally used as the main parameters in multire-

gional demographic models. See Klabunde and Willekens (2016) for

a review of agent‐based models of migration. A major challenge in

developing agent‐based models for spatial demography is the

operationalisation of decision theories and theories of social interac-

tion and influence. To predict international migration, for example,

Willekens (2017) and Klabunde, Zinn, Willekens, and Leuchter (2017)

operationalised the well‐known theory of planned behaviour (Fishbein

& Ajzen, 2010).

The main obstacles limiting a spatial demography perspective

include training and data availability. As De Castro (2007) notes,

there are very few places in the world that provide courses in both

demography and spatial analysis, which limits the “spatial thinking”

amongst demographers and the “demographic thinking” amongst

spatial analysts. The methodological skills required to do spatial

demography include mathematical demography and a range of statis-

tics including regression techniques that account for serial autocorre-

lation, spatial autocorrelation, and different measurements in the

dependent variables (generalised linear models). Moreover, it makes

sense to have some training in Bayesian methods or microsimulation

to deal with complex interactions or to imbed stochastic processes.

The lack of courses and textbooks that pulls these aspects together

is clearly something that needs to be addressed.

Data availability or data sparseness is an important issue, espe-

cially when the interest is understanding a large number of interacting

populations and how they change over time. When disaggregated by

age and sex, often the population counts and demographic events

become small, which increases the effects of both random behaviour

and the chances of disclosure (identification). Many statistical offices

are not allowed to release very detailed spatial data for reasons of

data confidentiality, and this limits the detail of the analyses. Further-

more, data on age‐specific rates of fertility, mortality, and migration

(interregional and international) for subnational populations may not

be available or measured appropriately for demographic accounting—

as the data come from different sources (censuses, vital registers,

and administrative sources). Indirect estimation may be used to over-

come some of these issues.

Finally, as the size of the spatial system increases so does the

complexity. This is most readily observed in the origin–destination

tables of interregional migration: a 10 region population system has

90 interactions, a 20 region system has 380 interactions, a 30 region

system has 870 interactions, and so on. The good news is that com-

puting power and software to deal with complex data have improved

immensely since the advent of multiregional demography and con-

tinues to do so.

In conclusion, we believe that the field of spatial demography

requires dynamic change amongst interacting populations to be at

the core of its thinking and analysis. This focus makes it distinguish-

able from other spatial social sciences and especially population geog-

raphy, where the interest is understanding differences in the spatial

patterns. The foundations for spatial demography were laid nearly

50 years ago, but they appear to have been forgotten in recent

research directed at understanding spatial patterns of population

change (Bell, 2015). We hope this article has demonstrated that
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multiregional dynamics are a central and unifying theme in spatial

demography.
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