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Spatial Dependence, Housing Submarkets, and House Price Prediction 

 

 

Abstract 

This paper compares alternative methods of controlling for the spatial dependence of 

house prices in a mass appraisal context.  Explicit modeling of the error structure is 

characterized as a relatively fluid approach to defining housing submarkets.  This 

approach allows the relevant submarket to vary from house to house and for transactions 

involving other dwellings in each submarket to have varying impacts depending on 

distance.  We conclude that – for our Auckland, New Zealand, data – the gains in 

accuracy from including submarket variables in an ordinary least squares specification 

are greater than any benefits from using geostatistical or lattice methods.  This conclusion 

is of practical importance, as a hedonic model with submarket dummy variables is 

substantially easier to implement than spatial statistical methods.   

 

Key Words: spatial dependence, hedonic price models, geostatistical models, lattice 

models, mass appraisal, housing submarkets 

 

1. Introduction 

House prices are customarily modeled using hedonic regression models whereby the 

price is explained by structural and locational attributes.  As with all regression models, 

errors should be independent from one another, else parameter estimates will be 

inefficient and confidence intervals will be incorrect.  The independence assumption is 

unlikely to be valid in a standard ordinary least squares (OLS) context, as house price 

residuals have been shown to exhibit spatial dependence in spite of efforts to model 

locational effects accurately (Pace, Barry and Sirmans, 1998).  This obviously creates 

problems as such models are used for house price index construction (Can and 

Megbolugbe, 1997) and also for mass appraisal (Basu and Thibodeau, 1998; Bourassa, 

Hoesli and Peng, 2003).  Basu and Thibodeau (1998), for instance, argue that spatial 
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dependence exists because nearby properties will often have similar structural features 

(they were often developed at the same time) and also share locational amenities.  More 

generally, LeSage and Pace (2004) discuss both theoretical and statistical reasons that 

would explain why data from several fields of study would be prone to spatial 

dependence. 

Such dependence can be treated in two ways.  We assume a general model,  

εµ += )(XY ,        (1) 

where Y is a vector of transaction prices, X is a matrix of values for residential property 

characteristics, and ε is an error term.  One approach is to model µ(X) so that residuals 

over space do not exhibit any pattern.  This usually implies incorporating geographical 

coordinates or other spatial indicators as regressors, parametrically or even 

nonparametrically (Colwell, 1998; Clapp, 2003; Fik, Ling and Mulligan, 2003).  One 

such approach includes as a regressor the weighted average of recent sale prices for 

nearby properties (Can and Megbolugbe, 1997).  An alternative approach is to model ε, 

that is, to assume not only that 0)( =εE , but also that Ω=′)( εεE , which is a matrix 

with at least some nonzero off-diagonal elements.  Ripley (1981) and Cressie (1993) 

provide a discussion of relevant spatial statistical methods for modeling ε.  These include 

geostatistical models such as those applied in real estate by Dubin (1998) or Basu and 

Thibodeau (1998) and the lattice models that have been refined and applied by Pace and 

his colleagues (e.g., Pace and Barry, 1997a). 

Theoretically speaking, the assumptions behind the two classes of spatial statistical 

models differ in terms of the definition of the domain over which spatial locations are 

permitted to vary (see Cressie, 1993, pp. 8-9, for details).  In the case of lattice models, 

which include simultaneous autoregressive (SAR) and conditional autoregressive (CAR) 

variants, locations are restricted to a discrete set of points.  In contrast, geostatistical 

models permit an infinite number of locations within a given geographical area.  This has 

implications for the way predictions based on each type of model take into account 

spatial information.  Given their constraints, the lattice models seem less suited than the 

geostatistical models for ex-sample prediction purposes.  Whether this is of practical 

relevance is an empirical question that we will address here. 
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Our focus is to compare the utility of spatial statistical methods relative to each other 

and to simpler OLS methods in a mass appraisal context.  Given our emphasis on 

practical applications of hedonic price models, we limit our analysis of spatial statistical 

models to those that can be implemented readily using existing software packages.  This 

means that the spatial methods used here are well developed and established in the 

statistical literature.  Our OLS models that are most directly comparable to the spatial 

statistical models rely on valuer-defined geographical submarkets (or neighborhoods) 

within which house values are considered to be interdependent. 

For testing purposes, we use a sample of 4,880 residential sales in Auckland, New 

Zealand.  For each method, 100 random samples that each contain 80% of the 

transactions are generated to estimate the predictive ability of each technique for the 20% 

ex-samples.  We estimate four geostatistical models, one each based on exponential and 

spherical variograms and then robust versions of the same models.  We then estimate two 

lattice models, SAR and CAR.  We compare predictions from these models with each 

other and with the predictions from two OLS models.  The predictions from one OLS 

model are adjusted by the unweighted average residuals for valuer-defined submarkets, 

while the predictions from the other OLS model are not.  Finally, we add a set of 

submarket dummy variables to each of the models (OLS, geostatistical, and lattice) in 

order to assess the impacts of simple controls for neighborhood effects on the accuracy of 

predictions.1  We are particularly interested in comparing the predictions based on the 

OLS model that incorporates submarket dummies with those based on the spatial 

statistical models without submarket dummies. 

Most previous research has either focused on a limited subset of the available spatial 

techniques or used a small sample of properties.  Using a small sample from Baltimore, 

Dubin (1988) compares ex-sample predictions using OLS and a geostatistical technique 

and concludes that the geostatistical approach is superior even when some neighborhood 

(census block group) characteristics are included as explanatory variables.  Basu and 

Thibodeau (1998) compare the predictive ability of OLS and one geostatistical technique, 

concluding that the latter is superior for six of eight regions in Dallas.  Dubin, Pace and 

Thibodeau (1999) compare regression coefficients across OLS and four different spatial 

methods (including both geostatistical and lattice models) using a small simulated 
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example for which the true parameters are known.  Most of the spatial models performed 

better than OLS with respect to parameter estimation.  Militino, Ugarte and García-

Reinaldos (2004) apply several models – including CAR, SAR, and geostatistical – to 

293 transactions from Pamplona, Spain, but do not attempt ex-sample predictions. 

A recent study by Case et al. (2004) is in some ways similar to the present one.  They 

apply OLS and several spatial statistical methods to a very large sample of about 50,000 

transactions from Fairfax County, Virginia, using out-of-sample prediction accuracy for 

comparison purposes.  In their final results, two of the three spatial methods produced 

more accurate ex-sample predictions than an OLS model that included median residuals 

for a small number of nearest neighbors.  Although these authors estimated an OLS 

model with neighborhood (census tract) dummy variables, they did not then use that 

model for prediction purposes.  Also, unlike the present paper, they performed their 

predictions using only one split of the data.  This means that their results may depend on 

the particular split. 

The present article is structured as follows.  We first discuss the relationship between 

the ideas of spatial dependence and housing submarkets.  These ideas are very closely 

related; thinking in terms of housing submarkets is helpful in conceptualizing the 

problem that spatial dependence models seek to rectify.  Section 3 contains a presentation 

of the spatial statistical methods that are used in the paper, while section 4 outlines our 

research design.  We discuss our empirical analysis in the following section.  Section 6 

concludes the paper. 

 

2. Spatial Dependence and Housing Submarkets 

The concepts of spatial dependence and housing submarkets are closely related.  The 

submarket concept relies on the idea of substitutability.  Substitutes are pairs of goods for 

which an increase in the price of one leads to an increase in the demand for the other.  

Pairs of goods with similar characteristics are likely to be substitutes.  In equilibrium, 

prices equalize across substitutes.  Within housing submarkets, prices of houses are 

similar because submarkets contain close substitutes.  Implicit prices of the 

characteristics of houses are similar for the same reason. 
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Spatial dependence or autocorrelation refers to the existence of covariance in the 

errors in the context of hedonic price estimation for residential property markets.  Given 

the similarities in the prices of housing characteristics within a submarket, errors are 

more likely to be correlated within submarkets than across submarkets.  Therefore, 

controlling for submarkets in hedonic equations can substantially reduce estimation 

errors.  This can be accomplished in a variety of ways.  Simple methods include 

incorporating a series of dummy variables for the submarkets, estimating a separate 

equation for each submarket, or adjusting predicted values using the errors within each 

submarket.2 

Controlling for submarkets in hedonic price equations assumes either that one has a 

predefined set of submarkets or that one is going to use some method to define them.  

Predefined submarkets are typically geographical areas, such as those defined by real 

estate agents (e.g., Palm, 1978) or by valuers (e.g., Bourassa, Hoesli and Peng, 2003).  

Alternatively, submarkets can be defined in terms of the characteristics of dwellings, 

neighborhoods, or census units.  Statistical techniques, such as principal components and 

cluster analysis, can be used to combine similar dwellings or neighborhoods into 

submarkets, which may or may not be geographical areas (e.g., Bourassa et al., 1999).  

Ugarte, Goicoa and Militino (2004) demonstrate the use of mixture models which both 

estimate hedonic equations and classify transactions into submarkets which are not 

geographical areas.  However, there is some evidence to suggest that geographical 

submarkets are more meaningful and therefore useful for improving prediction accuracy 

(Bourassa, Hoesli and Peng, 2003). 

Spatial statistical methods allow for a more fluid concept of submarkets than is 

permitted by the fixed definitions based on geographical areas or housing or 

neighborhood characteristics.  In effect, methods such as the lattice or geostatistical 

approaches applied here allow for the relevant submarket to vary from property to 

property.  The relationships between the focal property in a submarket and nearby 

properties are captured in a matrix of weights in the case of lattice models or by a 

distance function based on a fitted variogram (or semivariogram) in the case of 

geostatistical models.  This more fluid approach to modeling the relationships among 
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properties would seem a priori to allow for more effective reduction of prediction errors 

due to spatial dependence. 

It is useful in this context to consider Can’s (1992) distinction between adjacency and 

neighborhood effects.  The lattice and geostatistical methods focus on adjacency effects, 

or the external effects of nearby properties on the property in question.  The simpler 

methods mentioned above, such as controlling for location within a relatively 

homogeneous geographical area defined by valuers for appraisal purposes, imply a focus 

on neighborhood effects.  Thus our empirical question is whether adjacency or 

neighborhood effects predominate.  In other words, is it more important to account for 

each property’s situation within the boundaries of relatively homogeneous neighborhoods 

that are recognized as such in a particular market or to account for the relationships 

between each property and its neighbors?  The results will depend, of course, on how 

well the neighborhoods are defined.  Our sense is that the classification created by 

Auckland valuers is based on relatively careful consideration of property characteristics 

and prices. 

 

3. Alternative Methods for Modeling Spatial Dependence 

In this section, we present two modeling approaches for spatial data that we use in 

this paper: lattice and geostatistical models.  In a nutshell, the lattice approach models the 

covariance matrix of the errors parametrically, whereas the geostatistical approach builds 

the covariance matrix indirectly through a parametric variogram.  Moreover, the 

underlying assumptions of the two approaches differ (see the discussion in Section 1).  

We refer the reader to Ripley (1981) and Cressie (1993) for a more complete and detailed 

description of the statistical aspects of these models. 

 

3.1. Lattice Models 

We assume that the data are issued from equation (1), with 0)( =εE  and Ω=′)( εεE .  

Lattice models assume βµ XX =)(  and parameterize the covariance function of the error 

term of the model by assuming either that )(21 CI φσ −=Ω−  (CAR models) or that 
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)()(21 DIDI αασ −′−=Ω−  (SAR models), where C  and D  represent spatial weight 

matrices that specify the dependence among observations.  These matrices satisfy the 

conditions that their rows sum to 1, that their diagonal is 0 (an observation does not affect 

its own prediction), and that 1<C

iφτ  and 1<D

iατ , where C

iτ  and D

iτ  are the n 

eigenvalues of matrices C and D, respectively, with i = 1,…,n (see Haining, 1990, p. 82).  

Many choices for specifying the weight matrices are available in the literature (see Getis 

and Aldstadt, 2004, for a review), but some of them show only small practical 

differences, such as the results in Militino, Ugarte and García-Reinaldos (2004).  

The estimates of the parameters α (or φ ) and β  are then obtained by maximizing the 

log-likelihood 

( ))()(
2

1
ln

2

1
.ln 11 ββ XYXYconstL −Ω′−−Ω+= −− .    (2) 

The most important computational issue here is the evaluation of the log-determinant 

( 1ln −Ω ), which is infeasible by standard methods for large sample sizes, given that Ω  is 

of size n  by n .  Pace and Barry (1997a, 1997b) have derived approximations to these 

terms that are implemented in their Matlab code.3  In this paper, we use their code to fit 

CAR and SAR models, with the Delauney spatial weight matrix (Cressie, 1993, p. 374). 

Predictions are computed simply as β̂ˆ XY = .  Ripley (1981, p. 90) gives a formula to 

compute fitted values (that is predictions for in-sample observations) for SAR models 

(see also Pace and Gilley, 1997, 1998).  This formula borrows strength from the 

information provided by neighboring observations through the spatial weight matrix D .  

We are interested in ex-sample predictions, therefore ruling out the use of Ripley’s 

formula. 

Pace et al. (1998) use spatial and temporal weight matrices for nearby and recent 

transactions to improve ex-sample predictions.  Their approach, however, has not been 

developed to the point that it is included in available statistical software.  Moreover, our 

data would allow for only a very simplified approximation of their method given that we 

do not have a temporal dimension.  Consequently, we do not attempt to implement their 

method here. 
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3.2. Geostatistical Models 

The modeling approach developed in this section is based on the assumption that the 

observed data at a location s is a realization of a random process }:)({ FssY ∈ , which is 

supposed to satisfy a second-order stationarity assumption, that is, for which 

µ=))(( sYE  for all Fs ∈  (constant mean) and )())(),(( 2121 ssCsYsYCov −=  for all 

Fss ∈21 , .  In effect, the covariance between locations depends only on the distance 

between them.  )(⋅C  is called the covariogram. 

The geostatistical approach attempts to model the covariance matrix through a 

procedure based on three steps: (1) computation of an empirical variogram, (2) 

parametric modeling of this variogram, and (3) kriging (that is, prediction).  The only 

information needed to perform these three steps is the notion of variogram defined as a 

function of the distance h  between locations: 

2 ( ) ( ( ) ( ))h Var Y s h Y sγ = + − ,      (3) 

where )(hγ  is called the semivariogram. 

The classical and most popular estimator of the variogram is obtained by the method 

of moments and was first proposed by Matheron (1962): 

( )2

( )

1
ˆ2 ( ) ( ) ( )

( )
i j

N h

h Y s Y s
N h

γ = −∑ ,      (4) 

where }:),{()( hssjihN ji =−=  and )(hN  is the number of distinct elements of )(hN .  

For a given distance h , this variogram estimator is a variance estimator over all pairs of 

observations that are at a distance h  apart.  Note that when data are irregularly spaced, 

the variogram is usually smoothed by summing over pairs of points that lie in a tolerance 

region.  )(ˆ hγ is an unbiased estimator of )(hγ , but is badly affected in presence of 

outliers because of the 2)(⋅  term in the sum.  Therefore, Cressie and Hawkins (1980) have 

defined a more robust estimator: 

4

1/ 2

( )

1 0.494
2 ( ) ( ) ( ) 0.457

( ) ( )
i j

N h

h Y s Y s
N h N h

γ
    = − +∑   
    

� ,   (5) 

which achieves robustness through )()( ji sYsY − .  In the presence of outlying 

observations this estimator is more stable. 
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The second step of the procedure consists of fitting a parametric model to the 

empirical variogram (either classical or robust).  The most popular variogram models 

include the exponential variogram defined by 

( )



−−+
=

)/exp(1

0
);(

0 ee ahcc
h ϑγ





≠
=

0if

0if

h

h
,    (6) 

where ),,( 0
′=

ee accϑ  with 00 ≥c , 0≥ec and 0≥ea , and the spherical variogram 

defined by 

{ }








+
−+=

s

sss

cc

ahahcch

0

3

0 )/)(2/1()/)(2/3(

0

);( ϑγ    








>
≤<

=

s

s

ah

ah

h

if

0if

0if

,  (7) 

where ),,( 0
′= ss accϑ , with 00 ≥c , 0≥sc  and 0≥sa .  The parameter 0c  is the limit of 

)(hγ  when 0→h  and is called the “nugget effect”.  The other parameters in ϑ  control 

the functional form of );( ϑγ h  (see Cressie, 1993, pp. 61-63, for details).  The parametric 

variograms can be fitted to data by several procedures, which include – among others – 

(restricted) maximum likelihood and generalized least squares. 

Given a fitted variogram, the procedure goes on to compute the prediction at a point 

0s  as a linear combination of the responses, that is, 

∑
=

=′=
n

i

ii sYYsY
1

0 )()(ˆ λλ ,       (8) 

where ),,( 1
′= nλλλ � is obtained by minimizing the mean squared prediction error 

∑
=

−
n

i

ii sYsYE
1

2

0 ))()(( λ .       (9) 

The solution for λ  depends on )( 0 iss −γ  for all ni ,,1 �= , and on )( ji ss −γ  for all 

nji ≤≤  ,1 .  )(ˆ
0sY  is the best linear unbiased predictor.  The solution obtained is an exact 

interpolation at the sample points, that is, )()(ˆ
ii sYsY =  for all ni ,,1 �= .  Note also that 

the formula above allows the computation of predictions at both sampled and unsampled 

locations. 

When the process is not stationary, a preliminary step can be performed to capture the 

trend.  For instance, one can first fit a regression model and then compute the variogram 
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on the residuals of this regression.  The final predictions are then computed by adding the 

kriging predictions on residuals to the fitted values of the regression.  This can introduce 

some bias, and a GLS iterative procedure could be constructed based on the covariance 

matrix resulting from a variogram model (see Basu and Thibodeau, 1998).  The bias is of 

order n/1 , making this issue of little concern in our case given that our sample is fairly 

large. 

A local version of Dubin’s kriging model could in theory produce better results than 

the kriging methods described above (Case et al., 2004).  In contrast to the standard 

kriging approach, the local method involves estimating a separate variogram for each 

property, using a subsample of the data containing neighboring properties.  We have 

experimented with the local method and concluded that it is unstable with respect to our 

data; in many cases it works well, but in some cases it does not work at all.  This may 

have two causes.  First, the very flat empirical variograms indicate that we do not have 

much correlation.  This holds true whether we define the relevant neighborhoods in terms 

of radial distance from each property or in terms of the number of nearby properties 

included in the subsample.  Second, the properties are not spread uniformly around the 

city, leading the procedure to crash when the coverage in a given area is sparse. 

To implement the geostatistics approach, we used the S+Spatial Toolbox of the 

commercial software Splus.  Several other free or commercial software packages are 

available. 

 

4. Research Design 

The main objective of the paper is to contrast the out-of-sample accuracy in house 

price predictions of several alternative specifications.  We consider eight different 

techniques: two OLS approaches, four types of geostatistical models, and two types of 

lattice models.  One of the two OLS methods involves adjusting the predictions by the 

unweighted average residuals for each valuer-defined submarket; the other OLS method 

does not make this adjustment.  The four geostatistical models involve estimation of 

exponential and spherical variograms as well as robust versions of those.  The two types 

of lattice models are the conditional and simultaneous autoregressive estimators.  Each of 
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the eight models is estimated with and without a set of dummy variables for valuer-

defined submarkets. 

For each model, we estimate hedonic regressions using 100 randomly selected 

samples of our data each containing 80% of the observations.  Hence the methods are 

compared based on the same 100 samples of data.  For each of the 100 splits, out-of-

sample predictions are generated for the remaining 20% of data.  We then calculate error 

statistics and the proportion of predictions that are within 10% and 20% of the sale prices.  

This is done for each of the 100 samples and the medians of the error statistics and 

prediction accuracy proportions are calculated for each model.  These form the basis for 

our comparisons. 

The source of data for this study is the official database of all real estate transactions 

in New Zealand.  We use data pertaining to detached dwellings only.  We focus on sales 

in the City of Auckland in 1996.  A total of 4,880 transactions were retained for the 

analysis.4  The database contains the date of sale, the sale price, and such information as: 

exact location, floor area, age, wall material and condition, and quality of the principal 

structure.  The land area is provided for 76% of the units.  The units for which no land 

area is provided are generally “cross-leased”, which means that the land is owned 

collectively by the owners of the dwellings on that site.  The collective owners lease a 

fraction of the land to each individual owner for a “peppercorn”, or nominal, rent.  For all 

such cross-leased dwellings, we set land area equal to zero and set a dummy variable 

equal to one.  Supplementary information used for mass appraisal purposes is also 

available.  These data include important characteristics such as water views, and the 

quality of landscaping and of the neighborhood.  We use the sale price net of the value of 

any chattels as the dependent variable in our hedonic models. 

The data were supplemented with the distance between each property and the central 

business district (CBD).  In addition, we use geographical areas defined by official 

valuers as our spatial submarkets.  These areas, referred to as “sales groups”, were 

defined for mass appraisal purposes and are considered to be relatively homogeneous 

submarkets.  For estimation purposes, we combined three sales groups located in or near 
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the CBD because they had relatively few transactions; these form the default category.  

Finally, quarterly time dummy variables are included in each model. 

Some variables were transformed before entering into the estimations.  We use the 

natural logarithms of the dependent variable, house price, as well as both land and floor 

area and distance to the CBD.5  In addition, both age and age squared are included in the 

model as the relation between house value and age is expected to follow a U-shaped 

curve.  Table 1 contains the means of the raw independent and dependent variables used 

in the analyses. 

[Table 1 here] 

 

5. Empirical Analysis 

Table 2 contains examples of hedonic regression results using OLS with and without 

submarket dummy variables for a random sample of 80% of the data.  The adjusted R2 

statistic increases from 0.722 to 0.798 when the 33 submarket dummy variables are 

added to the model.  The results are consistent with expectations.  The logarithms of land 

and floor area are positively related to sale price, as is the square of the age of the 

property.  Age itself is negatively related to the sale price.  The quality and condition of 

the properties are also important.  The logarithm of distance to the CBD is negatively 

related to sale price and is highly significant.  The sale price is approximately 10% higher 

for properties with a water view.  Good landscaping, the number of attached garages, and 

to a lesser extent, a driveway, significantly affect dwelling prices.  The quality of the 

neighborhood is very important, and higher quality levels are associated with higher 

prices.  In the model with submarket dummy variables, the estimated coefficients and 

standard errors imply significant differences across valuer-defined areas.  When such 

variables are included in the model, there is a decline in the percentage price impact of 

being in better neighborhoods.  This would be expected as submarket variables will 

capture part of the variation in neighborhood quality. 

[Table 2 here] 

We perform two exploratory analyses to determine whether spatial dependence exists 

in our data.  First, we depict the error structure of the OLS regression that does not 
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include submarket variables by constructing a semivariogram (Figure 1).  We also 

investigate the median of the residuals for various x and y coordinates, respectively 

(Figure 2).  For this purpose, we divide the city into a grid of 19 cells from west to east 

by 13 cells from south to north (the west-east dimension is greater than the south-north 

dimension in Auckland).  The semivariogram shows that there is covariance in the error 

structure and that this declines with distance (the semivariogram increases with distance).  

Figure 2 shows that the median of residuals is not constant across geographical areas.  In 

particular, residuals tend to be negative to the west and south and positive to the east and 

north.  Hence, spatial dependence clearly exists in the error structure of the OLS model. 

[Figures 1 and 2 here] 

The next step is to determine how best to account for such dependence to obtain more 

accurate house price predictions.  Table 3 reports comparative statistics for the various 

models: medians of the average absolute errors, average absolute relative errors, average 

squared errors, and percentages of predictions within 10% and 20% of the actual price.  

Figure 3 displays the median and distribution of the proportion of predictions within 10% 

and 20% of sale price.  Results for six methods are shown: OLS with and without 

adjustment by the average residuals in submarkets, the exponential and robust 

exponential variogram models, and the CAR and SAR models.  Predictions with the 

spherical models are not reported as they are very similar to predictions with the 

exponential variogram model.  Both parts of Figure 3 depict boxplots of results with and 

without submarket dummy variables.6 

[Table 3 and Figure 3] 

Referring to Table 3, the OLS model without submarket dummy variables exhibits 

higher average absolute errors than the geostatistical models.  A simple adjustment to the 

OLS predictions using the unweighted average residuals for submarkets reduces the 

absolute errors, but these remain higher than with the geostatistical models.  The CAR 

and SAR methods yield larger errors than the unadjusted OLS predictions.  When 

submarket variables are added to the OLS model, the absolute errors are lower than those 

for the geostatistical models without the submarket dummies.  However, the average 

squared errors for the OLS models containing submarket dummy variables are 

comparable to those with the geostatistical models, indicating that there is a greater 
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occurrence of large errors with the OLS models.  The average absolute errors are very 

similar when submarket dummy variables are included in all of the models. 

The median of predictions within 10% of actual price across the 100 splits is 39.8% 

for the OLS model without submarket dummy variables.7  The geostatistical models yield 

significantly more accurate predictions (median of approximately 44%).  Consistent with 

the absolute error statistics, a simple adjustment to the OLS predictions using the average 

residuals in submarkets yields predictions that are only marginally less accurate than the 

predictions generated using the geostatistical models.  Also, the CAR and SAR methods 

produce predictions that are worse than the unadjusted OLS predictions.  This is because 

the predictions are computed as � ˆlnY X β= .  While β̂  is estimated more efficiently than 

with OLS, we are unable to take into account the spatial weight matrix when making ex-

sample predictions.  This implies that the lattice models as they are now implemented in 

existing software are not well suited for mass appraisal purposes.  Similar results are 

obtained for predictions within 20% of actual price.  Some 73.8% of adjusted OLS 

predictions are within 20%, which is only marginally less than with the geostatistical 

models (approximately 75.5%).  Again, CAR and SAR models yield the least accurate 

predictions. 

When submarket variables are added to the OLS model, the median of predictions 

within 10% of actual price rises from 39.8% to 46.8% and that of predictions within 20% 

from 68.7% to 77.9%.8  Comparing these results with those for the spatial statistical 

models that exclude submarket dummy variables leads to the conclusion that the 

geographical subdivisions used by appraisers improve the accuracy of house price 

predictions more than do the spatial models.  In other words, the use of geographical 

submarkets appears to be more important in predicting house prices than the more fluid 

approach which permits “submarkets” to vary from house to house.  This conclusion is of 

practical importance, as a hedonic model with submarket dummy variables is 

substantially easier to implement than spatial statistical methods.  Nevertheless, adding 

submarket variables to the geostatistical and lattice models results in considerable 

improvement in predictive accuracy relative to the same models estimated without those 

variables.  In comparison with the OLS model that includes submarket variables, the 

geostatistical models yield slightly higher percentages of predictions within the 10% and 
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20% limits.  It is likely that the geostatistical estimations that incorporate submarket 

variables are superior to the corresponding OLS model because, to use Can’s (1992) 

terminology, the former capture adjacency effects as well as neighborhood effects.  The 

CAR and SAR models, in contrast, offer little or no increase in prediction accuracy 

relative to the OLS model. 

The good performance of the OLS models could be a consequence of the quality of 

the data.  One possibility is that the predictions benefited from the extensive set of 

property characteristics available in the transactions data.  This does not appear to be the 

case, however, as our results were largely unchanged when we re-estimated the models 

after removing a number of property characteristics.9  Another possibility is that the 

characteristics are measured more accurately than typical.  Testing this conjecture would 

require data from another jurisdiction.  Another, more likely, possibility is that the good 

results obtained for the OLS predictions with submarket dummy variables are due to the 

fact that the submarkets have been carefully outlined and hence capture much of the 

spatial dependence in house prices in Auckland. 

 

6. Conclusions 

The price of a house is related to the prices of adjacent properties.  If a hedonic model 

cannot perfectly capture the effects of location, then the residuals of adjacent properties 

will be correlated.  The aim of this paper is to consider how best to take into account this 

spatial dependence in a mass appraisal context.  We investigate whether spatial statistical 

models that can be estimated using existing software perform better than an OLS model 

with neighborhood dummy variables.  The comparison is therefore about whether the 

structure of the errors has to be modeled or whether neighborhood variables can be used.  

This is also an issue of ease of use as the latter approach is simpler to implement. 

We use a rich database of over 4,800 residential sales in Auckland, New Zealand.  

Two variations each of two OLS, four geostatistical, and two lattice models are 

considered.  Our results suggest that the geostatistical methods perform better than the 

simple OLS model, but that a simple adjustment of predictions using the average 

residuals in neighborhoods (submarkets) is almost as good.  When submarket dummy 
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variables are added to the OLS model, the predictions are more accurate than the 

predictions generated with the geostatistical methods.  The lattice models perform poorly, 

in most cases worse than the unadjusted OLS predictions.  However, when submarket 

dummy variables are added to the geostatistical models, they perform better than the 

augmented OLS models.  When the lattice models include submarket dummies, they 

perform about the same as the corresponding OLS models. 

We conclude that, relative to a simple OLS model, the benefits from incorporating 

submarket dummy variables are greater than the benefits from using more complicated 

techniques that attempt to model the structure of errors.  For example, the percentage of 

ex-sample predictions within 10% of the actual sale price increases from 39.8% for the 

simple OLS model to 46.8% for the OLS model that includes submarket variables.  In 

contrast, the geostatistical models increase the accuracy to about 44%, while the lattice 

models have a lower accuracy rate than the simple OLS model.  This suggests that, for 

our data at least, the valuer-defined geographical submarkets are more useful in a mass 

appraisal context than the more fluid concept of submarkets implied by formal modeling 

of the spatial dependence of residuals.  This appears to differ from Case et al.’s (2004) 

conclusions, although our methods are not the same as theirs and, as noted above, they do 

not report predictions from their OLS estimation with census tract dummies. 

This work could be expanded in a number of ways.  First, we could compare our 

results with those obtained using various methods that focus on measuring the impact of 

location more effectively in �(X).  Our best OLS model yields a proportion of predictions 

within 10% of house values that is just shy of 47%.  Fik, Ling and Mulligan (2003) show 

that when x and y coordinates are interacted with a limited set of independent variables in 

a hedonic equation of residential units in Tucson, the proportion of predictions within 

10% of actual price is 65%.  It would be interesting to apply their method to the 

Auckland data used here.  Second, the models that we consider could be estimated for a 

city where property attributes are measured less accurately than is the case in Auckland.  

Finally, it might be useful to apply our models to another city where the submarkets used 

for mass appraisal purposes are defined less carefully.  It may be that spatial statistical 

methods yield better forecasts in such an environment. 

 



 19 

Acknowledgments 

 

We thank John Clapp, Xavier de Luna, and two anonymous referees for useful 

comments. 

 

 

                                                 

Notes 

 
1  An alternative approach would be to incorporate variables measuring neighborhood 

characteristics (as in Dubin, 1988, for example).  Such data would typically be 

available for small areas defined for census purposes.  However, census areas are less 

likely to correspond to housing submarkets than are the valuer-defined areas used here. 

2  Bourassa, Hoesli and Peng (2003) show that the latter method, although quite simple, 

results in significant improvements in the accuracy of predictions based on a market-

wide hedonic equation; thus we test for its impact here. 

3  This code is available at http://www.spatial-statistics.com.  Other general results on 

sparse matrices exist; see, for example, Bai and Golub (1997) and Reusken (2002). 

4  A sale was removed from the sample if it fell into one of the following categories: 

(a) the property had a land area larger than 0.25 hectares (this excluded properties that 

may have been sold primarily for redevelopment purposes); (b) the property had a floor 

area either less than 30 square meters (probably due to an error in data entry); (c) the 

transaction was flagged as not being “arm’s length”; or (d) the property was located on 

an island. 

5  The OLS predictions are calculated as �exp(ln )Y , although the correct transformation 

would be � 2ˆexp(ln 0.5 )Y σ+ .  Because we are unable to implement equivalent 

transformations for predictions based on the other methods, we do not add 2ˆ5.0 σ  

before taking the antilogs of the OLS predictions.  Given the large sample size, this has 

only a trivial impact on the results. 
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6  The body of each boxplot is constructed from the first to the third quartiles, while the 

whiskers are set at ±1.5 times the inter-quartile range from the median.  However, if no 

observation exists at that distance, the whisker is set at the closest observation towards 

the body of the boxplot.  If there are observations outside of the whiskers, each of these 

is depicted by a line.  Within the body of each boxplot, the median over the 100 splits 

appears as a bar, while the 95% confidence interval is depicted by the indented and 

unshaded area in the center of the plot. 

7  For comparison purposes, Fik, Ling and Mulligan (2003) note that Freddie Mac prefers 

to have at least 50% of predictions within 10% of the actual values. 

8  The adjustment using average residuals in submarkets is ineffective when submarket 

dummy variables are included in the model because the average of residuals for each 

submarket equals zero. 

9  In the list of variables in Table 2, we deleted variables from “Walls in good condition” 

to “Average quality of the principal structure” and from “Water view” to “Very good 

neighborhood.” 
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Table 1.  Sample statistics 

Variable  Mean 

Net sale price (NZ$)  328,398 
Age of dwelling  46.45 
Land area (10s of square meters)  55.42 
Cross-leased  0.24 
Floor area (square meters)  144.42 
Wall condition (proportion)   
     Good  0.39 
     Average  0.58 
     Bad   0.03 
Roof material (proportion)   
     Tile  0.41 
     Metal  0.55 
     Other  0.04 
Wall material (proportion)   
     Wood  0.63 
     Brick  0.13 
     Fibrolite  0.06 
     Other  0.18 
Quality of the principal structure (proportion)  
     Superior  0.19 
     Average  0.76 
     Poor  0.05 
Distance to CBD (km)  6.79 
Water view (proportion)  0.09 
Modernization (proportion)  0.26 
Landscaping (proportion)   
     Good  0.16 
     Average  0.79 
     Poor  0.05 
Driveway  0.85 
Quality of the neighborhood (proportion)   
     Very good  0.03 
     Good  0.20 
     Average  0.68 
     Poor  0.09 
Number of attached garages  0.75 

Sample size  4,880 
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Table 2.  Examples of results for OLS estimations without and with submarket dummy 

variables 

Variables  Estimates for 
equation without 
submarket 
dummies 

Estimates for equation with submarket 
dummies (estimates for submarket 
dummies are preceded by the sales 
group number) 

Intercept  12.816** 11.344** (4)   -0.206** 
Log of floor area   0.690**   0.457** (5)   -0.053 
Log of land area   1.898**   2.560** (6)   -0.009 
Cross-leased or strata-titled   0.099**   0.128** (7)    0.226** 
Age of dwelling   -0.003**  -0.004** (8)    0.031 
Age of dwelling squared    4.720x10-5**   5.096x10-5** (9)    0.176** 
Walls in good condition    0.088**   0.083** (10)  0.165** 
Walls in average condition    0.063**   0.052** (12) -0.062 
Dwelling with a tile roof   -0.030  -0.028 (13)  0.103** 
Dwelling with a metal roof   -0.068**  -0.041* (14)  0.214** 
Dwelling with wooden walls   -0.015  -0.006 (15) -0.059 
Dwelling with brick walls   -0.056**  -0.019 (16) -0.379** 
Dwelling with fibrolite walls   -0.102**  -0.049** (17) -0.237** 
Superior quality of the principal structure   0.231**   0.124** (18) -0.410** 
Average quality of the principal structure   0.094**   0.050** (19) -0.322** 
Log of distance to the CBD  -0.172**  -0.137** (22) -0.647** 
Quarter 2    0.008   0.014 (23) -0.117** 
Quarter 3   -0.020*  -0.019* (24) -0.006 
Quarter 4    0.015   0.017 (25)  0.177** 
Water view    0.103**   0.079** (26)  0.181** 
Modernization    0.034**   0.029** (27) -0.096* 
Average landscaping    0.026   0.013 (28) -0.315** 
Good landscaping    0.077**   0.060** (29) -0.220** 
Driveway    0.019   0.010 (30) -0.141** 
Average neighborhood    0.098**   0.021 (31) -0.119** 
Good neighborhood    0.231**   0.067** (32) -0.130** 
Very good neighborhood    0.323**   0.205** (33) -0.189** 
Number of attached garages    0.039**   0.036** (34) -0.010 
    (35) -0.074 
    (37) -0.233** 
    (38) -0.268** 
    (39) -0.225** 
    (53) -0.274** 

Adjusted R
2  

  0.722 0.798  

Note: The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
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Table 3.  Median error and prediction accuracy statistics 

Statistic OLS Adjusted 
OLS 

Expo-
nential 

Robust 
expo-
nential 

CAR SAR 

Average absolute error       
    Without submarkets 58,521 53,168 51,586 51,377 61,915 60,534 
    With submarkets 49,901 49,901 47,963 47,464 49,948 49,074 
Average absolute relative error       
    Without submarkets 17.8% 16.3% 15.9% 15.8% 18.4% 18.1% 
    With submarkets 15.0% 15.0% 14.5% 14.3% 15.0% 14.6% 
Average squared error (millions)       
    Without submarkets   9,214   7,696   7,496   7,472 10,718 10,197 
    With submarkets   7,514   7,514   7,056   6,942   7,628   7,373 
Predictions within 10%       
    Without submarkets 39.8% 43.3% 44.0% 44.2% 38.9% 39.2% 
    With submarkets 46.8% 46.8% 49.0% 49.3% 47.4% 48.0% 
Predictions within 20%       
    Without submarkets 68.7% 73.8% 75.5% 75.6% 66.8% 67.7% 
    With submarkets 77.9% 77.9% 79.3% 79.7% 77.7% 78.7% 
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Figure 1.  Empirical semivariogram 
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Figure 2.  Median values of residuals 
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Figure 3a.  Proportion of predictions within 10% of actual value 

 

Figure 3b.  Proportion of predictions within 20% of actual value 


