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Abstract

Tuberculosis (TB) disease can be caused by either recent transmission from infectious patients or reactivation of remote
latent infection. Spatial dependency (correlation between nearby geographic areas) in tuberculosis incidence is a signature
for chains of recent transmission with geographic diffusion. To understand the contribution of recent transmission in the TB
endemic in Taiwan, where reactivation has been assumed to be the predominant mode of pathogenesis, we used spatial
regression analysis to examine whether there was spatial dependency between the TB incidence in each township and in its
neighbors. A total of 90,661 TB cases from 349 townships in 2003–2008 were included in this analysis. After adjusting for the
effects of confounding socioeconomic variables, including the percentages of aboriginals and average household income,
the results show that the spatial lag parameter remains positively significant (0.43, p,0.001), which indicates that the TB
incidences of neighboring townships had an effect on the TB incidence in each township. Townships with substantial spatial
spillover effects were mainly located in the northern, western and eastern parts of Taiwan. Spatial dependency implies that
recent transmission plays a significant role in the pathogenesis of TB in Taiwan. Therefore, in addition to the current focus
on improving the cure rate under directly observed therapy programs, more resource need to be allocated to active case
finding in order to break the chain of transmission.
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Introduction

Human tuberculosis (TB) is an airborne infectious disease

caused by Mycobacterium tuberculosis. The risk of progressing to

active disease is highest in the first 2 years after infection, during

which half of the symptomatic TB cases occur [1]. Active TB

disease can be the result of either recent transmission from

infectious patients or reactivation of remote latent infection [1,2].

Genotyping and geospatial scanning investigations by the Centers

for Disease Control and Prevention (Atlanta, Georgia) have shown

that approximately 1 in 4 active TB cases reported in the United

States may be attributed to recent transmission [2]. Limited data

are available for the role of recent transmission in nationwide TB

incidence in other countries.

Taiwan is a middle-burden country with an annual TB

incidence remaining around 70 per 100,000 people from 1997

through 2005 [3], despite BCG vaccination and anti-TB drug

therapy. National Directly Observed Treatment (DOT) programs

were started in 2006, and the annual TB incidence gradually

decreased to 57 per 100,000 people in 2010 [3]. Reactivation has

been assumed to be the predominant mode of pathogenesis

because of age transition in tuberculosis patients – from a disease

of young adults during 1957–1961 to a disease of elderly ($65

years) people during 1997–2001 [4]. Although several outbreaks of

active TB cases, which occurred in a family or within a hospital,

were identified using genotyping techniques [5–9], there remains a

lack of nationwide genotyping or geospatial investigations on the

role of recent transmission in the TB endemic in Taiwan.

Because the cumulative effect of local TB transmission among

communities will cause geographic diffusion, we hypothesize that,

if recent transmission plays a significant role in the TB endemic in

Taiwan, we should be able to observe the presence of spatial

dependency (the correlation between nearby geographical areas)

in TB incidence between neighboring townships after adjusting for

the spatial autocorrelation of the underlying sociodemographic

and ethnic factors that influence the incidence of TB and TB

reactivation (i.e. age, economic status, human immunodeficiency

virus (HIV) infection, and aborigines) [10,11].

To understand the role of recent transmission in TB endemic in

Taiwan, we applied spatial regression analyses to examine whether

spatial dependency exists for the TB incidence at the township-

level, after adjusting for the effects of socioeconomic geography.

Methods

Data Sources
Pulmonary TB is a notifiable disease that must be reported in

Taiwan. Anonymized data on TB cases were obtained from the

Notifiable Infectious Disease Statistics System [3] of Taiwan

Centers for Disease Control (Taipei, Taiwan). Cases occurring

from 2003–2008 were included in this study. The townships where

TB cases occurred were mapped according to the patients’

residential addresses. Cases from the outlying islands (including

Penghu County, Kinmen County, Lienchiang County, Green

Island, Orchid Island, and Liu Chiu Island) were excluded. A total

of 90,661 TB cases from 349 townships were included. The TB

incidence of each township was estimated using the number of TB
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cases during a period divided by total population of the township.

Demographic and socioeconomic data were obtained from the

2000 Taiwan Census. Anonymized data on HIV infection cases

were also obtained from the Notifiable Infectious Disease Statistics

System [12].

Ethics Statement
Taiwan Centers for Disease Control (Taipei, Taiwan) approved

the use of data for the present study. The study procedure was

reviewed and approved by the Institutional Review Board (IRB) of

National Taiwan University Hospital (Taipei, Taiwan). The IRB

approved the exemption of informed consent because the data on

TB and HIV cases had been anonymized by the Notifiable

Infectious Disease Statistics System.

Socioeconomic Variables
Taiwan Census data included the population density, average

household income, average number of persons per household,

average years of education, and percentages of the population that

were elderly (.60 years), aboriginal, Southeast Asian brides, and

Southeast Asian laborers for each township. The average

household income and average years of education were analyzed

by quartiles using dummy variables (see Table 1 for details).

Spatial Autocorrelation and the Spatial Weight Matrix
Spatial autocorrelation identifies the patterns of spatial depen-

dency by calculating the correlation of a variable with itself within

a geographic space, meaning that the value of a variable is

associated with those of the same variable in nearby areas. If

spatial autocorrelation exists, general statistical methods that

assume values of observations are independent may be invalid for

further analysis. Spatial autocorrelation can occur in two

directions: positive and negative. Positive spatial autocorrelation

implies that the values of neighboring areas are similar to one

another, while negative autocorrelation implies they are opposed

to each other. The statistic used in this study to measure spatial

autocorrelation is Moran’s I. This measure is used for variables at

interval or ratio scales. The value of Moran’s I is calculated based

on the deviation from the mean of two neighboring values [13].

The mathematical formula is as follows:

I~
N
P

i

P
j Wi,j Xi{X

� �
Xj{X
� �

P
i

P
j Wi,j

� �P
i Xi{X
� �2

ð1Þ

where N is the sample size, X is the mean of the variable, Xi is

the value of the variable at a particular location i, Xj is the variable

value at location j, and Wij is a spatial weight indexing the location

of i relative to j. The value of this statistic is scored between 21

and 1. A score close to 1 represents positive autocorrelation and

townships that may be hot spots. A score near 21 shows negative

autocorrelation, indicating that the values of neighboring areas are

opposite that of the township being examined. The significance of

Moran’s I is evaluated by using a Z score and p-value generated by

random permutation. The null hypothesis states that there is no

spatial autocorrelation for the variable within the geographic area.

Spatial neighbors can be defined by a spatial weight matrix that

is created in accordance with the neighbor definition chosen. We

Table 1. Descriptive statistics and univariate regression analyses.

Variable
Abbreviation Definition Mean (SD)

Regression
coefficient{ Regression coefficient{{

TB_INCI 2003–2008 TB cumulative incidence 0.0052 (0.0035) – –

TB_INCI_6 2006–2008 TB cumulative incidence 0.0024 (0.0016) – –

ABOR_P Aborigines % 0.0775 (0.1966) 1.60*** 1.46***

BRIDE_P % of population of brides from Southeast Asia 0.0001 (0.0002) 2391.57*** 2368.01***

DENSITY Township population/area (m2) 0.0029 (0.0061) 216.08** 213.11**

EDU1 8.2,Education years, = 8.7 (lower middle) – 20.06 20.05

EDU2 8.7,Education years, = 9.5 (middle) – 20.12* 20.09

EDU3 Education years.9.5 (high) – 20.23*** 20.19**

ELDER_P % of Population .60 years old 0.1413 (0.0398) 20.20 20.83

HIV_INCI 1984–2002 HIV cumulative incidence 0.0001 (0.0001) 410.19* 391.30*

HOU_PERS Average number of persons per household 3.5027 (0.4262) 0.15** 0.16**

INCOME1 320,Average household income, = 440 (lower middle) – 0.08 0.06

INCOME2 440,Average household income, = 560 (middle) – 20.17** 20.13*

INCOME3 Average household income.560 (high) – 20.42*** 20.36***

LABOR_P % of population of laborers from Southeast Asia 0.0109 (0.0152) 26.93*** 25.09**

*p,0.05 **p,0.01
***p,0.001
{Dependent variable: ln (TB_INCI)
{{Dependent variable: ln (TB_INCI_6).
ABOR_P, BRIDE_P, DENSITY, HIV_INCI, and LABORER_P were log transformed in regression analysis.
Average household income (in thousands Taiwan Dollars) was calculated using total income divided by number of households. The percentage of the population who
received primary, junior high, senior high, bachelor’s, master’s and doctoral education were given. We used this information to calculate an average years of education
for each township by giving a weight of 6, 9, 12, 16, 18 and 22 years to each education level. Because we were interested in how education level would affect the
incidence of TB, we classified the average years of education into four groups using the quartiles as cutoff points. In this way, there were three dummy variables with
the lowest serving as the reference group. The same procedure was performed for the average household income.
doi:10.1371/journal.pone.0050740.t001
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first calculated the mean distances between population centers of

townships. Townships with shorter distances between their

population centers were defined as neighbors. The geospatial

relationships between pairs of the 349 townships were stored in a

3496349 matrix. The weight of each cell was the inverse of the

distance between the two neighbors.

Spatial Lag Model
We inspected the residuals from the ordinary least squares

(OLS) regression model to identify the spatial dependency of the

residuals. If spatial dependency exists, it violates the assumption

that the error terms of individual observations are independent of

each other in the OLS regression; therefore a model that considers

spatial autocorrelation is necessary [14].

We used a spatially lagged y model [15] that incorporated a

spatially lagged dependent variable (y) on the right side of the

regression equation. This regression model in matrix notation is

represented as follows:

y~rWyzXbze ð2Þ

where r is the spatial lag parameter, W is the spatial weight

matrix, X is a matrix of explanatory variables with an associated

vector of regression coefficients b, and e is a vector of normally

distributed, random error terms. When the parameter associated

with spatial lag (r) was positive, it indicated that, for townships

where TB incidence was high, their neighbors also had a high TB

incidence.

Because y is recruited in both sides of the regression equation,

spatial dynamics creates a feedback effect between townships, in

which a township’s level of TB incidence has an effect on its

neighbors’, and the neighbors’ neighbors are also affected,

throughout all connected townships [14]. This phenomenon leads

to a chain reaction that finally returns to influence the initial TB

incidence via the spatially lagged y term. In equilibrium, the

expected value for y is calculated as follows:

E(y)~(I{rW ){1Xb ð3Þ

The spatial multiplier, (I-rW)21, shows how much the change

in independent variable x in one township ‘‘spills over’’ onto other

surrounding townships. This ‘‘spillover’’ then affects y through the

effect of its spatial lag [16].

We used maps and a histogram to illustrate the variability in the

spatial spillover (diffusion) of each township. These figures present

the spillover (diffusion) at equilibrium of TB incidence into the

surrounding townships with one-unit changes in the explanatory

variables.

We were also interested in determining whether a neighbors’

previous TB incidence could be associated with that township’s

future TB incidence. The space-time model appears as yt = r-
Wyt21+Xb+e, where we set yt as the TB incidence from 2006–

2008 and yt21 as the TB incidence from 2003–2005.

Statistical Analysis
The associations between socioeconomic variables and TB

incidences were analyzed using a linear regression model. Natural

logarithmic transformations were used for TB incidence to

accommodate the assumption of normal distribution. Stepwise

regression modeling was conducted using SAS version 9.2 (SAS

Institute, Cary, North Carolina). Moran’s I statistic calculation,

the permutation process, and the spatial regression analysis were

performed using GeodaH version 0.9.5-I [17]. The spatial

multiplier was calculated using R version 2.9.0.

Results

Spatial Distribution of TB Incidence
Figure 1 shows the TB incidences of the 349 townships from

2003–2008. The Moran’s I statistic for the TB incidences of the

349 townships was positive (0.37) and statistically significant,

indicating the presence of spatial clustering of TB incidences.

Univariate Analysis and OLS Model
We performed linear regression to identify the socioeconomic

variables associated with higher TB incidence. Univariate analyses

were performed for each independent variable, and they showed

that most socioeconomic variables were significant, except for

lower middle education (EDU1), the percentage of elderly

(ELDER_P), and lower middle income (INCOME1) (Table 1).

There was also a correlation between the socioeconomic variables

(Table 2). We subsequently conducted stepwise multiple regression

analysis, which showed that only the percentages of aborigines

(ABOR_P), middle income (INCOME2), and high income

(INCOME3) were independent factors (Table 3). The variance

inflation factor of these variables remained below 2, excluding

multicollinearity.

We again used Moran’s I statistic to test if there was still spatial

autocorrelation for the residuals of OLS regression. The Moran’s I

statistic was 0.18, indicating that the independent variables in the

OLS model did not account for all spatial dependence in the

outcome variable. These results confirmed the need to conduct

spatial regression.

Spatial Lag Model
Spatial lag regression was conducted using the distance between

population centers of polygons as the spatial weight. These results

are shown in Table 3. Both the percentage of aborigines and high

household income remain significant in the spatial lag model. A

high percentage of aborigines was associated with higher TB

incidence, while a high average household income was associated

with lower TB incidence. These associations became smaller in the

spatial lag model. Middle income (INCOME2) was significant in

the OLS model but not in the spatial lag model. The r coefficient

for the spatial parameter was significant and positive (0.43,

p,0.001), which implies a positive correlation between the TB

incidences of neighboring townships.

The log likelihood and Akaike’s information criterion (AIC)

showed that the spatial lag model had a better fit than the OLS

model. The Moran’s I statistic for the residuals of the spatial lag

model was 0.05, which was very close to 0. This demonstrated that

the spatial parameter could eliminate the effect of spatial

autocorrelation in the regression model.

Spatial Multiplier
The spatial multiplier for the spatial lag model was calculated

for each township and presented in Figure 2. This multiplier

represented the interdependence of TB incidence for adjacent

townships and had a minimum value of 1.06, which indicated that

the independent variables for every township had a certain degree

of spillover. The average value was 1.74 and the standard

deviation was 0.15. Townships with high spatial multiplier values

were mainly located in the northern, western and eastern parts of

Taiwan.

Spatial Dependency of TB Incidence
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Spatial-Time Lag Model
We further consider a spatial-time lag model. The model

appeared as yt = Xb+rWyt21+e, where we set yt as the log-

transformed TB incidence from 2006–2008 (under national DOT

programs) and yt21 as the log-transformed TB incidence from

2003–2005 (before national DOT programs). Using yt as the

dependent variable, univariate analyses were performed; these

analyses are presented in Table 1. The result was similar to using

the log transformed TB incidence from 2003–2008 as the

dependent variable. The term Wyt21 was then calculated along

with the percentages of aborigines, middle income, and high

income and put into the model as independent variables. The

spatial-time lag parameter, percentage of aborigines, and high

average household income remained significant (Table 3). There-

fore, the neighboring townships’ TB incidences from 2003–2005

were associated with a township’s TB incidence from 2006–2008.

Moran’s I for the residuals of the spatial-time lag model (0.13)

were much smaller than that of the log transformed TB incidence

from 2006–2008 (0.29). Thus, the spatial-time lag parameter could

partially eliminate the effect of spatial autocorrelation.

Figure 1. Spatial distribution of the cumulative incidence of TB over different time periods: (a) 2003–2005, (b) 2006–2008, and (c)
2003–2008.
doi:10.1371/journal.pone.0050740.g001

Table 2. Correlation matrix showing Pearson’s correlation coefficient between socioeconomic variables.

Variables ABOR_P BRIDE_P DENSITY EDU1 EDU2 EDU3 ELDER_P HIV_INCI HOU_PERS INCOME1 INCOME2 INCOME3 LABOR_P

TB_INCI +0.67* 20.21* 20.21* 20.05 20.11* 20.22* 20.02 +0.13* +0.14* +0.07 20.16* 20.38* 20.23*

ABOR_P 1 20.09 20.17* 20.16* 20.18* 20.18* 20.17* +0.28* +0.19* 20.10 20.20* 20.20* 20.23*

BRIDE_P 1 +0.28* 20.16* 20.10 +0.46* 20.16* +0.27* 20.27* 20.21* 20.09 +0.43* +0.05

DENSITY 1 20.19* 20.07 +0.53* 20.28* +0.44* 20.39* 20.21* +0.02 +0.44* +0.00

EDU1 1 20.31* 20.31* +0.18* 20.22* +0.27* +0.21* +0.02 20.15* 20.02

EDU2 1 20.32* 20.20* 20.09 +0.05 +0.08 +0.25* 20.04* +0.11

EDU3 1 20.32* +0.34* 20.47* 20.23* +0.01 +0.53* +0.05

ELDER_P 1 20.33* 20.02 +0.30* 20.21* 20.32* 20.23*

HIV_INCI 1 20.31* 20.12* 20.10 +0.25* 20.00

HOU_PERS 1 +0.09 +0.08 20.17* 20.01

INCOME1 1 20.34* 20.33* 20.13*

INCOME2 1 20.33* +0.13*

INCOME3 1 +0.24*

LABOR_P 1

*p,0.05 coefficient .0.3 or,220.3.
See Table 1 for variables abbreviation.
doi:10.1371/journal.pone.0050740.t002
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Discussion

Our geospatial analysis of the countrywide TB data for Taiwan

indicated that the TB incidence in a township was significantly

affected by the TB incidence in neighboring townships, which

implies that recent transmission plays a significant role in TB

endemic in Taiwan. Therefore, in addition to the current focus on

improving the cure rate under DOT programs, more resource

need to be allocated to active case finding in order to break the

chain of transmission.

Using spatial regression modeling, we demonstrated that there

exists a spatial dependency of township-level TB incidences in

Taiwan, after adjusting for the effects of confounding socioeco-

nomic variables, including the percentages of aboriginals and

average household income. Furthermore, when we considered the

temporality of the infectious processes, the spatial-time lag model

indicated that a town’s TB incidences from 2006–2008 were

Table 3. Multiple regression analyses: ordinary least square (OLS) model, spatial lag model, and spatial time lag model.

Variable OLS model‘ Spatial Lag model{ Spatial-Time Lag model{{

ABOR_P 1.38*** 1.19*** 1.15***

INCOME2 20.15*** 20.08 20.07

INCOME3 20.34*** 20.21*** 20.22***

Spatial Lag (Wy) – 0.43*** –

Spatial Time Lag (Wyt21) – – 64.63**

Adjusted R2 0.53 – 0.42

Log likelihood 297.04 278.52 2137.21

AIC 202.08 167.05 284.42

*p,0.05
**p,0.01
***p,0.001
‘{Dependent variable: ln (TB_INCI)
{{Dependent variable: ln (TB_INCI_6).
See Table 1 for variables abbreviation AIC: Akaike’s information criterion.
doi:10.1371/journal.pone.0050740.t003

Figure 2. Spatial variations and the histogram of spatial multipliers.
doi:10.1371/journal.pone.0050740.g002
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affected by their neighbors’ TB incidences from 2003–2005, as

would be expected from the cumulative effects of local TB

transmission with contagious diffusion among the community.

The geospatial findings in the present study are consistent with

molecular epidemiologic findings [5–9]. A large nosocomial TB

outbreak in 2003 involving 66 health care workers at a district

hospital in Taipei was traced to an index case who was

hospitalized in February 2002 by matched DNA fingerprints [5].

Mycobacterial interspersed repetitive-unit-variable-number tan-

dem-repeat (MIRU-VNTR) typing and spoligotyping was per-

formed on TB isolates from 365 patients treated at a hospital in

Taipei from 2002–2004; these results showed that 236 (65%) were

clustered by genotype [7]. Another study in Hualien County in

eastern Taiwan showed that 45 (62%) of 73 multidrug-resistant

TB isolates were clustered [9]. These clustering rates were

significantly higher than those reported in San Francisco (40%)

[18], New York (37.5%) [19], the Netherlands (46%) [20], and

Denmark (57%) [21], but lower than those reported from Malawi

(72%) [22] and South Africa (67% [23], 72% [24]). Molecular

genotyping further revealed that at least 51% of recurrent TB

cases in Taiwan were caused by re-infection by a different strain,

rather than by relapse or re-activation [25]. In keeping with

previous molecular epidemiologic findings, our geospatial analyses

provide necessary, complementary evidence on the significant role

of recent TB transmission in Taiwan.

Our analysis showed that the percentage of aborigines is an

independent risk factor for higher TB incidence after adjusting for

the effects of spatial dependency and household income. This

finding was in agreement with previous studies of TB incidence in

Taiwan [26–29]. It has been shown that aboriginal areas have a

TB incidence that is 3–5 times higher than non-aboriginal areas

[26] and that the socioeconomic and health statuses of people

living in aboriginal areas were generally lower than the national

average [27,28]. Poor compliance with anti-TB treatment might

lengthen infectious period, thus increasing transmission [29].

Consistent with previous observations that TB is a disease of the

deprived and the poor [30–32], our analysis found that a high

average household income (the highest quartile) is an independent

factor for lower TB incidence. TB is related to poverty in a

number of ways, including higher contact rates due to crowded

and poorly ventilated environments, reduced immunity status, and

decreased odds of receiving proper treatment [30]. From Table 2,

we can see that high average household income (INCOME3) was

significantly correlated with all other variables, which may be the

reason that most other socioeconomic variables were insignificant

in the stepwise multiple regression analysis.

HIV infection weakens the immunity of patients and increases

the risk of rapid progression to active TB disease after infection

[33]. High HIV prevalence in the population may increase TB

incidence [33–35]. In univariate analysis, we found that the

cumulative HIV incidence from 1984–2002 was a significant risk

factor for higher TB incidences in 2003–2005, as well as 2003–

2008 (Table 1). Nevertheless, HIV infection status did not remain

an independent factor in the multiple regression model. One

probable reason for this change is the low HIV prevalence in

Taiwan: there were only 4,145 adult HIV cases at the end of 2002

out of a population of 23 million. In addition, the positive

correlation between HIV and high average income (Table 2) could

mask the potential effect of HIV infection on TB incidence.

The resolution of the geospatial analysis in the present study was

limited to the township level because further details on the

residential addresses of TB patients were kept confidential by the

Notifiable Infectious Disease Statistics System. Therefore, we were

unable to use spatial point analysis methods to identify localized

spatial clustering of TB cases. Another limitation of this study is

the lack of data on the molecular genotype of clinical isolates and

the host factors of individual persons, as well as the social network

data, which restricts our inferences to the ecological level. The last

limitation is that, if a spatially autocorrelated determinant of

reactivated latent TB cases has been overlooked, our conclusions

could be incorrect. We do take into consideration a range of

important socioeconomic factors, but it is still possible that an

important variable is missing. Our findings justify further large-

scale genotyping-geospatial correlation studies to provide more

insight on TB epidemiology in Taiwan.

In conclusion, our results add to the evidence that recent

transmission plays a significant role in TB incidence in Taiwan, as

well as highlighting the importance of taking a geospatial

perspective in TB epidemiology.
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