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Summary  20 

Leptospirosis is a bacterial disease that represents a major problem in animal and public health 21 

due to its high prevalence and widespread distribution. This zoonotic disease is most prevalent in 22 
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tropical environments where conditions favor pathogen survival. The ecological preferences of 23 

Leptospira serovars are poorly understood, limiting our knowledge of where and when outbreaks 24 

can occur, which may result in misinformed prevention and control plans. While the disease can 25 

occur consistently in time and space in tropical regions, research on the ecology of Leptospirosis 26 

remains limited in subtropical regions. This research gap regarding Leptospira ecology brings 27 

public and veterinary health problems, impacting local economies. To fill this gap of knowledge, 28 

we propose to assess geographic and ecological features among Leptospira serovars in a 29 

subtropical area of Brazil where Leptospirosis is endemic to (i) highlight environmental 30 

conditions that facilitate or limit Leptospira spread and survival and (ii) reconstruct its 31 

geographical distribution. An ecological niche modeling framework was used to characterize and 32 

compare Leptospira serovars in both geographical and environmental space. Our results show 33 

that, despite the geographic overlap exhibited by the different serovars assessed, we found 34 

ecological divergence among their occupied ecological niches. Ecological divergences were 35 

expressed as ranges of potential distributions and environmental conditions found suitably by 36 

serovar, being Sejroe the most asymmetric. Most important predictors for the potential 37 

distribution of most serovars were soil pH (31.7%) and landscape temperature (24.2%). 38 

Identification of environmental preferences will allow epidemiologists to better infer the 39 

presence of a serovar based on the environmental characteristics of regions rather than inferences 40 

based solely on historical epidemiological records. Including geographic and ecological ranges 41 

of serovars also may help to forecast transmission potential of Leptospira in public health and 42 

the food animal practice. 43 

 44 
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INTRODUCTION 47 

Leptospirosis is a major public health issue due to its high incidence and worldwide distribution 48 

(Bharti et al., 2003; Abela-Ridder et al., 2010; Adler and Moctezuma, 2010). Leptospirosis is a 49 

zoonotic disease endemic in tropical regions where environmental conditions favor the survival 50 

of the bacteria along the year and outside the host (Bharti et al., 2003). Tropical regions often 51 

concentrate the highest density of domestic, wild animals and humans (Stevens, 1989; Morand 52 

and Poulin, 1998; Gaston, 2000), facilitating interspecies transmission of Leptospira, the 53 

causative agent of leptospirosis (Adler and Moctezuma, 2010). Leptospira serovars have showed 54 

to be highly influenced by environmental conditions (Lau et al., 2010; Ivanova et al., 2012). For 55 

example, temperature and precipitation (Desvars et al., 2011; Chadsuthi et al., 2012), high 56 

humidity and heavy rainfall (Barcellos and Sabroza, 2001; Goarant et al., 2009), runoffs, soil pH, 57 

and primary productivity, all have been associated with Leptospira occurrence (Smith et al., 58 

1961; Fajriyah et al., 2017; Rahayu et al., 2018). 59 

Approximately 1.03 million cases of leptospirosis are reported globally each year, from 60 

which 58,900 are deaths (Costa et al., 2015). Likewise, the global burden estimated in Disability 61 

Adjusted Life Years (DALY) per annum for this disease was 2.9 million, showing the great 62 

economic impact of leptospirosis worldwide (Torgerson et al., 2015). Leptospirosis is no longer 63 

listed among the neglected tropical diseases prioritized by the world health organization 64 

(Molyneux et al., 2017). Instead, it is now considered a re-emerging infectious disease linked to 65 

a combination of factors, including intensification of livestock production, and limited access to 66 

health provision for animals and humans, and environmental change (Mwachui et al., 2015; 67 

Hotez, 2016; Goarant et al., 2019). For example, leptospirosis risk is amplified by the frequency 68 
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of extreme climatic events and major changes in land use (Pappas et al., 2008; Picardeau, 2015). 69 

Within these environmental parameters, Brazil is among the top 17 countries in the world with 70 

the highest incidence of human leptospirosis (Pappas et al., 2008). 71 

In subtropical regions, the ecology of leptospirosis is generally assumed to be consistent 72 

with tropical regions. However, subtropical regions may have considerable environmental 73 

differences that may limit effectiveness of control strategies developed for tropical conditions. 74 

The Brazilian state of Rio Grande do Sul is located in a subtropical region of southern Brazil. 75 

This state has a dense livestock production and one of the highest horse populations in South 76 

America (SEAPI-RS., 2018). Additionally, Rio Grande do Sul has the 5/26 highest incidence of 77 

human leptospirosis in Brazil (4.7 cases per 10,000 habitants; Ministério da Saúde do Brasil, 78 

2018), representing ~15% of the total cases (Pacheco and Caldas, 2012). Rio Grande do Sul was 79 

also identified among the top five states where improvement on leptospirosis surveillance, 80 

control, and elimination must be prioritized in Brazil (Baquero and Machado, 2018). Thus, there 81 

is a critical need to identify and anticipate areas and conditions more likely suitable for 82 

leptospirosis in this subtropical region. 83 

A comprehensive understanding of the geographic distribution and environmental factors 84 

that facilitate Leptospira infections will help to inform intervention and prevention strategies for 85 

humans and animals (Grooms, 2006; Lilenbaum and Martins, 2014; Sánchez-Montes et al., 86 

2015; Zhao et al., 2016). Such assessments have been widely applied in epidemiology through 87 

ecological niche modeling (ENM) in disease ecology. ENM explores geographic and ecological 88 

patterns of vectors, hosts or pathogens distribution, and transmission (Peterson, 2006). This 89 

approach has shown effectiveness under diverse applications to fundamental ecological questions 90 
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such as areas at risk of disease infection (Machado et al., 2018), likely pathogen spillover to 91 

humans (Peterson, Martínez-Campos, Nakazawa, & Martínez-Meyer, 2005; Samy, Thomas, 92 

Wahed, Cohoon, & Peterson, 2016) and environmental factors linked to infectious diseases (Jia 93 

and Joyner, 2015; Sallam et al., 2017). Thus, ENM has proven to be a powerful approach to 94 

reconstruct the likely factors shaping infectious diseases distributions.  95 

This study aims to identify the geographic and ecological conditions where Leptospira 96 

serovars occur under subtropical conditions. Using an ENM framework, we characterized and 97 

compared the environmental features of Leptospira serovars to determine their potential 98 

geographic distribution, environmental preferences, and likely hotspots of serovars diversity in 99 

the study area. Our approach has the potential to facilitate the development of intelligence-based 100 

based leptospirosis surveillance for public health and veterinary epidemiology in this and other 101 

subtropical regions. 102 

 103 

MATERIAL AND METHODS 104 

The study design included a modeling framework based on the chosen study area for model 105 

calibration, selection, and evaluation, followed by data collection, curation, and standardization 106 

(i.e., field work to collect samples, laboratory work for serovar identification, and environmental 107 

variables collection and management) (Fig. 1).  108 

 109 

Figure 1. Workflow of the modeling process. A) Data collection in the modeling area defined 110 

based on biogeographic barriers (M region sensu (Soberon and Peterson, 2005)), where black 111 

dots represent the Leptospira occurrence, while the red color shows the study area ; B) 112 
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environmental variables relevant for Leptospira survival and transmission; C) Reduction of 113 

number and correlation among environmental variables, model selection, final model calibration; 114 

D) Assessments of ecological similarity among Leptospira serovars, where and the two maps 115 

exemplify the potential distribution of two serovars in the geographic space, while 3D plot in the 116 

environmental space. Histogram shows ENM comparison between the two serovars based on 117 

their environmental space; E) Identification of most important environmental for each serovar. 118 

NDVI= Normalized Difference Vegetation Index. Red lines represent the response curves that 119 

show how each environmental variable affects the ENM prediction for each Leptospira serovars, 120 

where environmental variables (x axis) and suitability values (y axis) are described for each 121 

serovar (left column).  122 

 123 

Data collection 124 

Rio Grande do Sul has ~103,000 registered horse farms, with a population of more than 550,000 125 

horses (SEAPI-RS., 2018). Our primary dataset comes from a cross-sectional study where 1,010 126 

animals were sampled from 341 farms randomly selected across the state. In each farm, horses 127 

were blood sampled to detect previous Leptospira exposure. Details of the sampling and 128 

laboratory analyses conducted are available elsewhere (Weiblen et al., 2016). Briefly, farms were 129 

randomly selected from the total number of farms that had at least one equid older than six 130 

months of age (n = 103,170),  the number of farms to sample was stratified  according to the 131 

horse population present in each of the administrative regions of the state (Weiblen et al., 2016). 132 

Samples were tested for Leptospira antibodies using the microscopic agglutination test (MAT) 133 

based on live antigens (Faine et al., 1999; Adler, 2014). Briefly, five 2-fold dilutions of serum 134 
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samples from 1:25 to 1:4000 were used. Samples were tested for 16 serovars: Leptospira 135 

interrogans serovar Australis (Australis), Leptospira interrogans serovar Autumnalis 136 

(Autumnalis), Leptospira interrogans serovar Sejroe (Sejroe), Leptospira interrogans serovar 137 

Canicola (Canicola), Leptospira interrogans serovar Ballum (Ballum), Leptospira interrogans 138 

serovar Celledoni (Celledoni), Leptospira interrogans serovar Copenhageni (Copenhageni), 139 

Leptospira borgpetersenii Javanica (Javanica), Leptospira interrogans serovar Grippotyphosa 140 

(Grippotyphosa), Leptospira interrogans serovar Hardjo (Hardjo), Leptospira interrogans 141 

serovar Hebdomadis (Hebdomadis), Leptospira interrogans serovar Icterohaemorrhagiae 142 

(Icterohaemorrhagiae), Leptospira interrogans serovar Pomona (Pomona), Leptospira 143 

interrogans serovar Pyrogenes (Pyrogenes), Leptospira interrogans serovar Tarassovi 144 

(Tarassovi) and Leptospira interrogans serovar Wolffi (Wolffi) (Adler, 2014; Filho et al., 2014; 145 

Alves et al., 2016; Dreyfus et al., 2018). The antigens were stored at 28°C from 5 to 10 days in 146 

EMJH (Ellinghausen and MCcullough, 1965) culture (Difco®-USA) that was enriched with 147 

bovine albumin fraction V (Inlab®- Brasil) (Ellinghausen and McCullough, 1965). Serum 148 

samples were considered positive when MAT titers were ≥ 100. The ultimate reactive serovar 149 

was determined by the election of the highest titer that was presented. In the presence of 150 

coagglutinations, all serovars that were involved were considered positive (see Fig. S1 to see the 151 

spatial information related to positive farms per serovar).  152 

 153 

Selection of the model calibration region 154 

To define the study area extent for model calibration for each Leptospira serovar, we followed 155 

the framework proposed by (Soberon and Peterson, 2005), which restricts the ENM to ecological 156 
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features of plausible biological relevance for the organism in question, the resolution of the 157 

environmental variables based on the geographic error, and the extent of the region where the 158 

organisms are able to disperse based on biogeographic barriers (see M in the BAM framework in 159 

(Soberon and Peterson, 2005). We assumed a geographic error < 30 m considering that we used 160 

GPS devices to estimate the coordinates of each sample and biome regions as biogeographic 161 

barriers since they represent homogeneous climatic and landscape composition (Lomolino et al., 162 

2010; Soberón, 2010). This resulted in an M in the ecoregion of the Uruguayan savanna (Olson 163 

et al., 2001) (see Fig. 1A). This geographic delimitation, M, allows to determine the spread 164 

potential of the Leptospira populations in the study area. Thus, our models are representative of 165 

this study area extent. 166 

 167 

Ecological Niche Models (ENMs) 168 

The environmental variables used to estimate the distribution of Leptospira were selected based 169 

on the described requirements of the bacterium, including survival in specific landscapes with 170 

suitable temperature and humidity and presence of livestock (Wint and Robinson, 2007). To 171 

reconstruct the landscape structure we used Normalized Difference Vegetation Index (NDVI), a 172 

satellite-derived variable resembling vegetation phenology and primary productivity commonly 173 

used in ENM (Cook et al., 2008; Fajriyah et al., 2017). We also used annual mean temperature, 174 

precipitation, runoff (index that quantity of water discharged in surface streams), and wetness 175 

index (defined as a steady-state wetness index), since higher incidences of leptospirosis are 176 

related to warmer temperatures (Lau et al., 2010; Desvars et al., 2011; Chadsuthi et al., 2012) 177 

and humid environments (Barcellos and Sabroza, 2001; Pappachan et al., 2004; Desvars et al., 178 
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2011; Ivanova et al., 2012). In addition, we also included soil pH, since previous studies have 179 

explored the importance of this variable in the survival of the bacteria outside the host (Smith et 180 

al., 1961; Saito et al., 2013; Schneider et al., 2018). Environmental variables were used at ~5 km 181 

of spatial resolution at the equator (see Table S1 for details). Livestock presence was represented 182 

by density of horses, cattle, and pigs (Gilbert et al., 2018), which are known reservoirs and 183 

amplifiers of leptospirosis (Lo et al., 2006). To mitigate multicollinearity between environmental 184 

variables, we used VIF (Variance Inflation Factors) implemented in the “usdm” R-package 185 

(Naimi and Araújo, 2016); excluding highly correlated variables from the model (VIF > 7), since 186 

this a signal of strong collinearity (Chatterjee and Hadi, 2015). A detailed description of each 187 

environmental variables, such as, description, source, reference and VIF value are presented in 188 

(Table S1). 189 

 ENMs were developed using a presence-background method that estimates 190 

environmental suitability via an index of similarity that resembles a heterogeneous occurrence 191 

process or logistic regression function (Phillips et al., 2006; Phillips and Dudík, 2008). 192 

Specifically, we used Maxent algorithm with clamping and extrapolation turned off (i.e., no 193 

prediction outside the range of environmental conditions used during calibration) (Elith et al., 194 

2010; Anderson, 2013; Owens et al., 2013). To determine the model parametrization with the 195 

best fit to the data available, we assessed Maxent models for each serovar under different 196 

regularization multiplier values (0.1, 0.3, 0.5, 0.7, 0.9, 1.3, 1.5, 1.7, 1.9 and 2) (Warren and 197 

Seifert, 2011). At the same time, we explored all feature combinations ranging from a single 198 

feature, linear (L), quadratic (Q), product (P), threshold (T) and hinge (H) (Muscarella et al., 199 
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2014), to all feature combinations possible (i.e., 5!). Models were selected based on Akaike 200 

Information Criterion (AIC) values, specifically ΔAICc=0.  201 

To facilitate interpretations of final models, we used the logistic output as a proxy of 202 

environmental suitability (Phillips and Dudík, 2008), which we normalized in the final models to 203 

suitability ranging from 0 to 100 for easier visualization of values. Additionally, suitable areas 204 

for each serovar were estimated as a Boolean (presence/absence) map that was thresholded based 205 

on the minimum training presence method to generate binary maps without omission error 206 

(Pearson et al., 2006). Serological results of serovars were pooled to general genus-level models 207 

(see Table S2 for the best for each set of occurrence data). These models were generated 208 

following the protocols described above but focused on the percentage of the variable 209 

importance estimated by Maxent. To determine the hotspots of Leptospira serovars richness, we 210 

ensembled all binary models by using Spatial Analysis in Macroecology (SAM) software 211 

(Rangel et al., 2010), (available at https://ecoevol.ufg.br/sam). 212 

In addition, we showed how each environmental variable affects the Maxent ENM 213 

prediction for each serovar, representing how the predicted probability of presence changes as 214 

each environmental variable is varied. 215 

 216 

Ecological niche similarity among serovars 217 

We assessed ecological similarities among models of Leptospira serovars by using four methods 218 

based on geographic and environmental dimensions. First, similarity was measured using the 219 

Schoener’s D index (Schoener, 1968) that measures similarity between two ENMs in geographic 220 

space based on probabilities outputs being similar in terms of the environmental conditions 221 
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available to them (Rödder and Engler, 2011). Schoener’s D was estimated by comparing 222 

Maxent-generated ENMs against a null distribution of default Maxent models, resulting in 223 

similarity values ranging from 0, non-similar, to 1, highly similar. We followed the protocols 224 

described by (Warren et al., 2008) and (Warren et al., 2010). Second, we used the Jaccard 225 

similarity index (Jaccard, 1912) that assesses similarity between two ENMs in environmental 226 

space by measuring the volume and overlap of two ENMs (Escobar et al., 2015). Volume of 227 

environmental space occupied by each serovar was estimated in three forms to capture variability 228 

among estimates. First, volume of ENMs was estimated in NicheA software (Qiao et al., 2016), 229 

available at http://nichea.sourceforge.net/function_niche_overlap.html. Briefly, original 230 

environmental variables were collapsed into three environmental dimensions to reduce 231 

redundancy and dimensionality. Then, volume was measured based on the environments 232 

occupied by each Leptospira serovar in terms of a minimum-volume ellipsoid and a convex-233 

polyhedron. Finally, volume was estimated for all serovars combinations using “hypervolume” 234 

package in the R software (Blonder et al., 2014). This method relies on a Gaussian kernel density 235 

estimation procedure based on the Silverman method (Silverman, 1986), measuring the geometry 236 

of the multidimensional hypervolume from the original variables standardized (Blonder et al., 237 

2014). The Jaccard similarity index based on NicheA and hypervolume values provides an 238 

accurate measure of the geometrical relationships between serovars distribution in a 239 

multidimensional space (Goodall, 1966; Real and Vargas, 1996). In summary, we generated one 240 

similarity estimation in geographic space (Schoener’s D) and three estimations in environmental 241 

space (Jaccard indices from the minimum-volume ellipsoid, convex-polyhedron, and Gaussian 242 

kernel density).  243 
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 244 

RESULTS  245 

Spatial patterns of Leptospira serovars distribution 246 

Approximately 45% of the total Leptospira serovars circulating in the study area were 247 

Hebdomadis, Tarassovi, Pyrogenes. (Fig. S1). Occurrence of the 16 Leptospira serovars showed 248 

considerable asymmetries among their geographic distribution (Fig. S1). 249 

 250 

Ecological niche models (ENMs) 251 

ENM results showed that central-northern areas in this study had suitable conditions for 252 

Autumnalis, Canicola, Copenhageni, Hardjo, Icterohaemorrhagiae, and Wolfii. Contrarily, 253 

central-western areas were suitable for Calledoni, Grippotyphosa, Javanica, Hebdomadis, and 254 

Pyrogenes were most common. Australis, Pomona and Tarassovi were found to prefer the 255 

northern area, while Serjroe, and Castellonis concentrated its potential distribution in the western 256 

and eastern regions, respectively (Fig 2). 257 

 258 

Figure 2. Ecological niche model (ENM) predictions of Leptospira serovars in Southern 259 

Brazil. Warmer colors show areas with higher probability of presence. Background layer 260 

represents the earth in true color based on NASA's Terra satellite image for better visualization. 261 

Source https://neo.sci.gsfc.nasa.gov/. 262 

 263 

These distributional differences among serovars were also reflected in the geographic patterns 264 

observed in the hotspot areas per serovar. Similarly, the model ensemble comprised specific 265 
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areas of agreement of Leptospira suitability. For example, the region bordering northern 266 

Argentina and areas between Caxias do Sul and Taquari River, were hotspot for Leptospira 267 

likely exposure. Additional areas of Leptospira exposure-risk were found in Taquarombo, 268 

Uruguay, and Lagoa Mirim, between Brazil and northeastern Uruguay (Fig. 3A). The 269 

visualization of the ensembled model also in a multidimensional environmental space, revealed 270 

that Leptospira occurred under consistent and trackable environmental conditions, however, 271 

available conditions were more diverse and broader than those occupied by the pathogen (Fig. 272 

3B). 273 

 274 

Figure 3. Model ensembled of Leptospira serovars in a subtropical region. A) Model 275 

ensemble in geographic space based on binary models summed to identify areas of highly (dark 276 

blue) and low (light blue) agreement among models. Dark areas denote areas found consistently 277 

suitable for Leptospira and therefore, for plausible exposure infection. B) Model ensemble in 278 

environmental space based on binary models summed to identify the environmental conditions 279 

occupied by the sero-positive cases (yellow convex polyhedron). Grey dots represent the 280 

environmental available conditions in M, axes are the first principal components from the 281 

original environmental variables (see Table S1).  282 

 283 

Environmental drivers of serovars potential distribution 284 

The final Leptospira ENM showed that soil pH (31.7%) and mean annual temperature (24.2%) 285 

were the most influential predictors associated with Leptospira sero-positivity (Table 1). 286 

Response curves also suggested that as pH and temperature increased linearly the suitability 287 
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index for Leptospira presence (Fig. 4). We identified the importance of variables related with 288 

humidity wetness; index; runoff and precipitation in the distribution of Australis, Autumnalis, 289 

Canicola, Celledoni, Pomona, Wolffi, Sejroe, and Tarassovi. Likewise, NDVI was the main 290 

predictor for Grippotyphosa sero-positivity, while livestock production was observed to be the 291 

most important predictor for serovar Sejroe sero-positivity (Table 1). 292 

 293 

Table 1. Variable importance for all Leptospira and for each serovar. Warmer colors 294 

represent higher levels of importance (%).  295 

Serovar Temperature 
Wetness 

index 

Soil 

pH 
NDVI Runoff Precipitation Livestock 

Leptospira (all) 24.2 9.2 31.7 4.4 6.2 12.0 12.3 

Australis 22.1 2.8 19.9 8.2 42.4 0.5 4.1 

Autumnalis 3.6 20.8 35.9 7.4 10.7 11.5 10.1 

Canicola 0.0 27.7 55.4 2.5 0.0 0.3 14.1 

Castellonis 7.8 12.0 56.7 4.7 6.3 9.2 3.3 

Celledoni 0.0 0.0 54.7 0.0 20.2 25.1 0.0 

Copenhageni 5.7 0.0 66.5 0.0 0.0 6.7 21.1 

Grippotyphosa 14.7 0.0 25.9 59.4 0.0 0.0 0.0 

Hardjo 32.8 13.7 39.8 0.0 0.0 0.0 13.7 

Hebdomadis 10.4 13.9 63.1 0.7 11.2 0.0 0.7 

Icterohaemorrhagiae 0.0 2.6 72.2 4.4 0.0 0.9 19.9 

Javanica 12.3 18.1 51.2 5.1 0.0 10.6 2.7 

Pomona 0.0 24.3 44.1 0.7 0.0 30.9 0.0 

Pyrogenes 34.7 14.5 42.6 0.0 1.6 3.1 3.5 

Sejroe 0.1 0.1 0.2 0.1 8.9 44.8 45.9 

Tarassovi 10.3 0.1 20.0 5.5 59.9 2.2 2.1 

Wolffi 21.4 26.9 40.9 2.3 0.0 6.6 1.9 

 296 

Figure 4. Response curves of the different environmental variables by Leptospira serovars. 297 

Response curves (red line) estimated based on Maxent ENM predictions. Environmental 298 

variables (x axis) and suitability values (y axis) are described for each serovar (left column). 299 

Units, source, and details of each variable are found in Table 1. 300 
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 301 

Ecological similarities among Leptospira serovars 302 

The observed values of Schoener’s (D) similarity tests showed niche similarity of all serovars, 303 

which tend to overlap on average 0.68 ± 0.2, ranging from 0.09 (Sejroe and Castellonis) to 0.97 304 

(Icterohaemorrhagiae and Javanica). In all cases, the serovar that showed the most asymmetric 305 

results was Sejroe, where the highest observed similarity values were under 0.15 (Fig. 5A and 306 

Table S3). These considerable variations in the ecological niches between serovars were also 307 

observed in the NicheA results, showing that the ecological niche of Leptospira is characterized 308 

by asymmetries in the distribution of the different serovars in the environmental space. The niche 309 

overlap was on average 0.16 ± 0.08 “Convex polyhedron” (CP) (Fig. 5B, Table S4) and 0.16 ± 310 

0.09 “Minimum Volume Ellipsoid” (MVE) (Fig. 5C, Table S5). These values ranged from 0.01 311 

(CP= Sejroe and Pomona, MVE= Sejroe and Grippotyphosa) to 0.3 (CP= Copenhageni and 312 

Tarassovi) and 0.38 (MVE= Tarassovi and Wolffi). Similarly to what was previously observed, 313 

large asymmetries were observed by the “hypervolume” approach. Serovars tend to be similar on 314 

average 0.11 ± 0.09, with values ranging from 0 (Grippotyphosa with Copenhageni, Hardjo,  315 

Icterohaemorrhagiae, Javanica, Pomona and Sejroe) to 0.26 (Copenhageni and Pomona) (Fig. 5D 316 

and Table S6). 317 

Overall, higher asymmetries in the ecological niche were evidenced between the majority 318 

of Leptospira serovars, these results were highly contrasted with the results based on the 319 

geographical space (Schoener’s (D) index) (Fig. 5A and Table S3), while, the lowest similarity 320 

values were observed in the comparison based on convex polyhedron (Fig. 4B). 321 

 322 
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Figure 5. Ecological niche similarity between Leptospira serovars based on four model 323 

similarity metrics. A) Schoener’s D index, B) convex polyhedron, C) Minimum Volume 324 

Ellipsoid and D) hypervolume. 325 

 326 

DISCUSSION 327 

This study combines geographic and ecological approaches to characterize eco-epidemiology 328 

patterns of Leptospira sero-positivity in horses at serovar level. This cross-sectional study 329 

allowed for the identification of geographic and ecological preferences of Leptospira serovars. 330 

Despite the geographic similarities exhibited by each serovar, they showed different 331 

environmental preferences, evidencing the diversity of environmental conditions where 332 

Leptospira exposure can occur. Recent efforts have been made to understand the environmental 333 

tolerances of Leptospira at serovar level (Fouts et al., 2016; Guernier et al., 2017; Jaeger et al., 334 

2018; Zarantonelli et al., 2018), as well as to identify potential risk areas for future leptospirosis 335 

outbreaks (Sánchez-Montes et al., 2015; Zhao et al., 2016). However, there have been no studies 336 

able to forecast regions where high-transmission risk exists and where disease surveillance and 337 

control strategies (e.g., vaccination) would have better impact. Our multidimensional approach 338 

(i.e., geographic and environmental dimensions) represents an important stepping-stone in the 339 

study and understanding of Leptospira ecology not only for identifying risk areas for different 340 

serovars but also for the development of new strategies to understand the ecological drivers of 341 

Leptospira presence. 342 

Our results showed considerable differences in the ecological landscape features of the 343 

distribution of each Leptospira serovar. This could be explained by the fact that different 344 
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Leptospira lineages can survive and adapt to different environmental conditions. Historically, 345 

leptospirosis has been widely associated to warm and humid conditions (Barcellos and Sabroza, 346 

2001; Trueba et al., 2004; Ivanova et al., 2012; Saito et al., 2013; Schneider et al., 2018). Our 347 

results support these previous findings since the variables related to temperature and 348 

precipitation were considered highly important predictors for the potential distribution of most of 349 

the serovars, especially for Australis, Hardjo, Pyrogenes and Tarassovi. Looking into detail, our 350 

results showed a positive relationship between precipitation and a higher probability of presence 351 

of Leptospira. However, we also found negative relationship of Leptospira presence with soil 352 

humidity and runoff, which could be explained by the type of soil in the area: bentonite clay, 353 

which is an amplifier of this pathogen since it absorbs half of Leptospira in suspension (Smith et 354 

al., 1961). On the other hand, responses curves of each serovar associated to temperature did not 355 

show a clear, consistent pattern.  356 

Recently, Schneider et al., (2018), highlighted the importance of pH in the survival of this 357 

bacteria in soil, which was strongly supported by our findings. We found that soil pH was the 358 

main predictor for 12 of the 16 serovars examined. Response curves evidenced a positive 359 

relationship between soil pH and the probability of presence of most of Leptospira serovars, 360 

except for Autumnalis, Canicola, Hebdomadis and Javanica. 361 

Niche similarity tests based on environmental space (convex polyhedron, MVE, and 362 

hypervolume) revealed high asymmetries between the majorities of Leptospira serovars. These 363 

results were highly contrasted with what we observed in the geographical space (Schoener’s D 364 

index), where most of the serovars tends to overlap their distributions. The niche similarity tests 365 

offer biological realism to the different models by giving access to a broader perspective that 366 
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support the idea of phylogenetic niche conservatism among the Leptospira lineages studied 367 

(Escobar, Qiao, Phelps, Wagner, & Larkin, 2016; Martinez-Meyer, Diaz-Porras, Peterson, & 368 

Yanez-Arenas, 2012; Yañez-Arenas, Peterson, Mokondoko, Rojas-Soto, & Martínez-Meyer, 369 

2014). The importance and significance of the use of these similarity tests at serovar level relies 370 

in the fact that disease transmission is the product of complex interactions that involves 371 

ecological, evolutionary, and epidemiological processes (Fountain-Jones et al., 2018; Galvani, 372 

2003; Peterson, 2006).  373 

Risk of horizontal gene transmission can occur between serovars (Ren et al., 2003; Haake 374 

et al., 2004), which can facilitate shifts in virulence (Dzidic and Bedekovic’, 2003; Khairani-375 

Bejo et al., 2004; Salyers et al., 2004; Adler, 2014). Thus, the possibility of multiple serovars 376 

cohabiting in the same location increases the possibility of gene transfer making our serovar 377 

richness maps informative to design Leptospira monitoring plans if areas of higher disease-378 

emergence risk (Fig. 3).  379 

ENM is used to characterize environmental requirements of species and their potential 380 

distribution s (Peterson, 2014; Peterson & Vieglais, 2001; Qiao et al., 2018). These analyses 381 

have been applied for a wide variety of epidemiological purposes such as the prediction of 382 

species invasions into novel areas (Benedict et al., 2007; Machado et al., 2018), anticipation of 383 

disease emergence (Peterson, Bauer, & Mills, 2004; Williams & Peterson, 2009), and forecast of 384 

the impact of climate change on future emerging disease distributions (González et al., 2010; 385 

Gálvez et al., 2011; Daszak et al., 2013; De Oliveira et al., 2017; Baquero and Machado, 2018). 386 

Our approach represents a novel application of ENM aimed to generate new knowledge about 387 

the ecology of Leptospira at serovar level. However, more efforts are necessary to determine if 388 
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our findings are consistent in different biogeographic regions (e.g., tropical, temperate). Finally, 389 

we faced limitations through the development of this study, mainly related to the species 390 

sampled. More specifically, to obtain the most accurate representation of Leptospira circulation 391 

in the landscape there would be necessary to assess the presence of Leptospira serovars in 392 

wildlife and the environment to provide and integrative estimation of the geographic and 393 

environmental risk (Albert et al., 2009).  394 

 395 

CONCLUSION 396 

In this study, we identified the geographic and environmental signatures of Leptospira serovars 397 

in a subtropical region in southern Brazil. We determined the geographic and ecological 398 

characteristics influencing the current and potential distributions of all Leptospira serovars tested 399 

providing new ecological and epidemiological knowledge about Leptospira lineages circulation 400 

in animal populations. We found specific environmental preferences of serovars, most serovars 401 

were limited by soil pH and mean annual temperature. The maps generated in this study also 402 

denote the local and regional hotspots of disease transmission risk, useful to design evidence-403 

based disease prevention strategies for effective surveillance and vaccination. 404 
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Table S3. Ecological niche similarity between Leptospira serovars (based on Schoener’s D 733 

index) for Leptospira serovars, where Aus = australis, Aut = autumnalis, Can = canicola, Cas = 734 

castellonis, Cel = celledoni, Cop = copenhageni, Grip = grippotyphosa, Har = hardjo, Heb = 735 

hebdomadis, Ict =  icterohaemorrhagiae, Jav = javanica, Pom = pomona, Pyr = pyrogenes, Ser = 736 

sejroe, Tar = tarassovi and Wol = wolffi. Warmer colors represent higher similarity values. 737 
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Table S4. Ecological niche similarity between Leptospira serovars (based on Hypervolume 739 

approach) for Leptospira serovars, where Aus = australis, Aut = autumnalis, Can = canicola, Cas 740 
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Table S5. Environmental niche comparison matrix (Jaccard index) based on minimum volume 745 
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Table S6. Environmental niche comparison matrix (Jaccard index) based on convex polyhedron 751 

for Leptospira serovars, where Aus = australis, Aut = autumnalis, Can = canicola, Cas = 752 
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Supplementary figures 757 

Figure S1. Geographic occurrences of Leptospira serovars in Southern Brazil. 758 

 759 

Figure S2. Binary ENM predictions of Leptospira serovars in Southern Brazil. 760 
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