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Abstract: (1) Background. Conifers are the main plantation species in southern China, including
Masson Pine (MP), Chinese fir (CF) and Chinese thuja (CT). Clarifying the suitable site conditions
for these conifers is helpful for large-area afforestation, so as to manage forests to provide a higher
level of ecosystem services. To achieve the research goals, we take the conifers in Hubei Province of
southern China as a case study. (2) Methods. The situations of conifers, as well as environmental
conditions of 448 sampling plots, were then investigated. The suitable growth environment of conifers
in the studied area was determined by the maximum entropy algorithm, and the suitability spatial
distribution of coniferous forests at the provincial level was also analyzed. (3) Results. The effect
of the conifers suitability prediction model reached an accurate level, where AUC values of MP,
CF and CT training set were 0.828, 0.856 and 0.970, respectively. Among multiple environmental
factors, such as geography and climate, altitude is the most important factor affecting conifer growth.
The contribution of altitude to the growth suitability of MP, CF and CT was 38.1%, 36.2% and
36.1%, respectively. Suitable areas of MP, CF and CT were 97,400 ha, 74,300 ha and 39,900 ha,
accounting for 52.45%, 39.97% and 21.46% of the studied area, respectively. We concluded that the
suitable site conditions of conifer plantations were 2800–5600 ◦C annual accumulated temperature,
40–1680 m a.s.l., and <40◦ slopes. (4) Conclusions. The study suggests that accurate spatial suitability
evaluation should be carried out to provide sufficient support for the large-area afforestation in
southern China. However, due to our data and study area limitations, further studies are needed to
explore the above findings for a full set of plantation species in an extensive area of southern China.

Keywords: plantations; coniferous forests; suitability; MaxEnt model; Hubei province

1. Introduction

Plantations play an important role in global forest resources. They can not only
provide wood supply resources, but also promote ecological restoration, landscape recon-
struction and environmental improvement [1,2]. However, the sustainable management
of plantations is facing difficulties [3]. In the middle reaches of the Yangtze River, due to
inappropriate site conditions and poor species spatial structure, the vegetation growth
trend and the ecological function of plantations are poor, resulting in a series of problems
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such as soil erosion and biodiversity decline [4–6]. There are many factors that affect the
growth quality of plantations [7]. Whether the environmental conditions are suitable for
plants is not considered, and large areas of plantation forests will lead to factors such as
light, temperature, water and fertility that do not meet the needs of plant species [8].

Since the 1980s, countries around the world have developed plantations for different
purposes, such as industrial timber forests and ecological public welfare forests, through
artificial afforestation or reforestation, so that the area and volume of plantations in the
world show a growing trend [6,9]. In 2020, the world’s plantation area was 293.9 million ha,
and the growth rate was 1.10% (2010–2020) [10]. China’s plantation area ranks first in
the world. In 2020, the plantation area was 84.70 million ha, accounting for more than
one-third of the national forest area, with an annual growth rate of 1.45% (2010–2020) [10].
The development process of plantations in China is typical and representative, which has
important reference and enlightenment significance for the construction and maintenance
of plantations in the world [11,12].

Since the 19th century, many scholars have found that species diversity, vegetation
growth, and productivity of plantation forests have decreased significantly due to envi-
ronmental degradation, especially soil degradation [6,13]. The suitability of species site
conditions for species refers to whether the climatic conditions, geographical conditions,
and other conditions of a certain region are suitable for its growth [14,15]. The analysis
of the suitability of species site conditions is not comprehensive enough to achieve the
suitability of land and species, which is one of the main reasons for the degradation of
the ecological function of plantations [16,17]. Therefore, the suitability of plant species,
the relationship between geographical distribution and climate, and the simulation and
prediction of geographical spatial distribution are carried out [18,19]. Plant suitability
analysis is one of the key research hotspots in global ecology and global change biology,
which has important theoretical and practical significance [20]. Based on this requirement,
many different statistical methods came into being, and species distribution models (SDMs)
have been produced one after another [21,22]. Species distribution models mainly use the
distribution data of species and environmental data to correlate, predict the niche of species
according to the algorithm, reflect the preference of species for habitat with entropy, and
explain the habitat suitability of species [23]. There are many studies on species suitabil-
ity. At present, it is widely used in habitat prediction of rare, endangered, and economic
species [24], the distribution of invasive species and propagation prediction of diseases and
insect pests [25–28], screening of priority reserves [29,30], the impact of climate change on
species distribution, etc. [31–33].

The species distribution models were developed in the 1980s. It was initially a concep-
tual analysis model based on the existing data on species distribution. Common models
were models based on environmental thresholds and distance thresholds to predict species
distribution, such as the Bioclim classic framework model established in 1986 [34]. The
habitat model was based on biological characteristics [35], and the classification confidence
Domain model was based on Diva-GIS software [36]. The Garp model was implemented
by a genetic algorithm [37], the artificial neural network (ANN) model was established by
a distributed mathematical–statistical model [38,39], and the maximum entropy algorithm
(MaxEnt), which calculates entropy, was based on an unbiased estimation [40–42]. In the
later stages, with the progress of technology and the increase in available data types, the
species distribution model gradually developed into a statistical model based on applied
classification and discriminant analysis. The use of data types was also more abundant,
mainly including the Biomod model [43], the generalized linear model (GLM) based on
normal linear generalization [44], and a more flexible nonparametric extended generalized
additive model (GAM) [45,46].

With the continuous development of the species distribution model, the research on
plantation species suitability was also deepening, and the model and technical methods
gradually matured [47]; Kabir et al. (2005) took Eucalyptus camaldulensis, Acacia mangium
and other species in the Dhaka forests of Bangladesh as a research object, and found the
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optimal analysis model suitable for each species by comparing seven regression analysis
models [48]. Kimsey et al. (2008) took Abies in the northern Edwards region of the United
States as a research object, and calculated its site index by using a geographically weighted
regression model, analyzing and evaluating the site index of Abies. When evaluating the
suitability of Acacia species [49], Wang et al. (2002) combined the GIS analysis method
with the economic management decision support (EMDS) model to divide the suitability of
Acacia in the study area into three levels [50]. Among the different models, MaxEnt belongs
to its learning model, which finds the geographical location of suitable target species by
finding the geographical distribution with the maximum entropy [51]. The MaxEnt still
has good prediction accuracy under less data demand, and the model is suitable for global
regions. In addition, it has a higher tolerance to data deviation problems because of small
samples and irregular sampling, and it has excellent prediction performance.

Hubei Province is located in the middle of the Yangtze River Basin in China. The
area of coniferous forest accounts for 55% of the total forest land [52]. Its reasonable forest
management plays an important role in improving the ecological function of coniferous
forests. In past afforestation, the analysis of species suitability was not accurate enough to
achieve the right place and species, which degraded the ecological function of coniferous
forests [53]. The objectives are as follows, to: (1) explore the method of accurate suitabil-
ity evaluation of plantation growth; (2) identify the site factors affecting the growth of
coniferous forest in the study area; and (3) obtain the area and spatial distribution position
of the suitable growth area of coniferous forests. Based on a large amount of sample
data, the interpolation model and species distribution model were used to improve the
prediction accuracy. The results can provide important theoretical support and technical
reference for the improvement and transformation of the construction of plantations and
ecological function.

2. Materials and Methods
2.1. Study Area

Hubei province (latitude of 29◦01′53′′–33◦6′47′′ N and longitude of 108◦21′42′′–
116◦07′50′′ E) is located in the middle reaches of the Yangtze River, covering an area
of 185,900 km2 (Figure 1). The study area is located in the subtropical monsoon climate
area, which makes this area hot and rainy in summer and cold and dry in winter [54].
The forestland area in the province is 7.9389 million ha, accounting for 42.71% of the
total land area. It is mainly distributed in mountainous and hilly areas, and less in
plain areas. The forest species are also dominated by artificial forest species such as
Masson pine (Pinus massoniana), Chinese fir (Cunninghamia lanceolata) and Chinese thuja
(Platycladus orientalis).

According to the topographic characteristics, such as altitude, slope and aspect, the
data of plantation sample points are evenly selected for investigation and mining in Hubei
Province. The plantation height, diameter at breast height (DBH), canopy density, total
vegetation coverage, litter thickness, community structure, plantation species structure,
volume, longitude and latitude and other information were recorded. The data of 467 plan-
tation plots (20× 20 m2) were obtained, including 294 Masson Pine (MP) plots, 105 Chinese
fir (CF) plots and 68 Chinese thuja (CT) plots.
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study are.

2.2. Data and Method
2.2.1. Data Acquisition

The meteorological data come from the cumulative monthly and monthly data of
China’s surface from 1981 to 2010 on the Chinese Meteorological Science Data Center
(http://data.cma.cn/, accessed on 1 May 2022). It contains the data of 103 meteorological
stations (67 in Hubei Province and 36 outside neighboring provinces). The data include
temperature, precipitation and three other types (Table 1). The air temperature data
include nine air temperature elements: mean temperature, average annual temperature
difference between day and night, the highest temperature in the hottest month, the lowest
temperature in the coldest month, annual temperature daily range, minimum temperature
daily range, standard deviation of air temperature, annual temperature range and isotherm;
the precipitation data include annual rainfall, rainfall in the wettest season, rainfall in the
driest month and relative standard deviation of rainfall; other data include air pressure and
humidity Shape data coming from digital elevation data (DEM) of geospatial data cloud
(https://www.gscloud.cn/, accessed on 1 May 2022). The slope, aspect and altitude data
are calculated from DEM data. The soil data are from the big data center of sciences in cold
and arid regions (http://bdc.casnw.net/yyzc/sj/250299.shtml, accessed on 1 May 2022).

http://data.cma.cn/
https://www.gscloud.cn/
http://bdc.casnw.net/yyzc/sj/250299.shtml
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Table 1. Geographical environment data.

Factors Abbreviation Content

Moisture factors

Pre1 Annual precipitation
Pre2 Precipitation of wettest quarter
Pre3 Precipitation of driest month
Pre4 Relative standard deviation of precipitation

Heat factors

Acc Accumulated temperature
Tem1 Annual mean temperature
Tem2 Mean diurnal range
Tem3 Max temperature of warmest month
Tem4 Min temperature of coldest month
Tem5 Poor annual temperature
Tem6 Minimum daily temperature
Tem7 Temperature standard deviation
Tem8 Temperature annual range
Tem9 Isothermality

Terrain factors
Dem Digital elevation model

Aspect Aspect
Slope Slope

Other factors

Frost Frost-free period
Pre Air pressure

Hum Humidity
ST Soil type

2.2.2. Data Processing

Multiple Linear Regression Kriging (MLRK) was used to interpolate and calculate
meteorological station data in different climate zones (Figure A1) to obtain continuous
meteorological spatial distribution data. This method is more accurate than the data
measured by meteorological stations. In the process of meteorological data interpolation,
the normalized data such as altitude, slope and aspect are used as auxiliary variables;
stepwise regression method is used to screen and regression fitting is carried out to calculate
the residual of multiple linear regression at a meteorological station location, and the
ordinary Kriging method is used to interpolate the residual of regression. The predicted
value of each point was obtained by adding the determined part and residual interpolation
result of each predicted point [55]. The formula is as follows:

Ẑ(s0) =
ρ

∑
k=0

β̂kqk(s0) +
n

∑
i=1

λie(si) (1)

where Ẑ(s0) is the interpolation result of predicted position points, and
ρ

∑
k=0

β̂kqk(s0) is the

deterministic part of regression fitting. Ei-A,e (s) is the interpolation result part of ordinary
Kriging on regression residual; K represents the position serial number during regression
fitting; β represents the total number of spatial positions; β̂k is the coefficient of regression
model; β̂0 is the intercept when k = 0; i represents the position sequence of regression
residual interpolation, n represents the total number of spatial positions; qk(s0) is the value
of an auxiliary variable of predicted position points; λi is the weight of ordinary Kriging
interpolation determined by the spatial correlation structure of regression residual, and
e(si) is the residual at position si.

2.3. Ecological Function Evaluation of the Sample Land

There are good and bad ecological quality samples in the survey sample plot, so good
samples need to be screened as data for suitability evaluation. The ecological function of
the sample plot refers to the method proposed in the technical regulations on continuous
inventory of national forest resources formulated by the China Forestry Administration
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in 2004 [56]. The index mainly includes eight indexes: forest volume, naturalness, aver-
age stand height, canopy density, total vegetation coverage, litter thickness, community
structure and species structure, which can comprehensively evaluate the growth of species.
Tables A1 and A2 are the classification criteria and basis of the ecological index. The
calculation method of the ecological function index is as follows:

K =
1

∑ WiXi
(2)

where K is the ecological index, Xi represents the result of the ith evaluation factor (grade
I, grade II and grade III), and Wi represents the weight of each evaluation factor. The
sample plots with ecological function grades I and II are determined to be suitable for
the growth of coniferous trees. A total of 448 sample plots suitable for coniferous growth
(including 291 MPdata, 95 CFdata and 62 CT data were used as supporting data for scientific
evaluation of coniferous forest suitability.

2.4. Space Suitability Division

According to the ecological suitability of the species, the geographical factors were
treated in a unified coordinate system. Firstly, the restricted geographical elements are used
for spatial superposition to eliminate unsuitable areas (divided according to experience).
Then the suitability index of each grid is calculated by using the MaxEnt in the possible
suitable area. Finally, the suitability is classified according to the suitability index and its
accuracy is evaluated.

2.4.1. Space Suitable for Unit Screening

According to the relevant literature, the suitable spatial units are roughly divided
according to the suitable growth environment of species [57], and the formula is as follows:

SRi = Temi × Prei × Soii × DEMi (3)

where i stands for the ith pixel. SRi refers to the appropriate spatial unit of the coniferous
trees. When SRi = 1, it means that the grid position is suitable for conifer growth in theory,
and when SRi = 0, it means that the grid position is not suitable. Temi represents annual
average temperature; Prei represents annual precipitation; DEMi represents altitude; and
Soii represents soil types.

2.4.2. Filtering of Potential Distribution Key Environment Variables

There are many environmental factors affecting species distribution, including climate
factors, soil factors, vegetation distribution and so on [58]. We selected 24 environmental
variables to build the initial model. The jackknife test in MaxEnt software was selected
to determine the contribution of environmental variables to the model prediction, and
eliminate the environmental variables with a small contribution based on the test results.

2.4.3. MaxEnt Model

MaxEnt model does not make any biased assumptions about the unknown when
the known conditions are met, so the prediction risk of the model is the smallest (http:
//www.cs.princeton.edu/, accessed on 1 May 2022, Version 3.4.1). The formula is:

maxH(Y/X) = −∑
i

∑
j

p
(
xIi, yj

)
logp

(
yj/xi

)
(4)

where X ∈ {x1, x2, · · · , xn} , Y ∈ {y1, y2, · · · , yn} are discrete variables. In the calculation,
the model calculates the constraint conditions of target species distribution according to
the environmental characteristic variables of species quadrat data, explores the possible
distribution of maximum entropy under this constraint, and predicts the habitat distribution
and suitability of target species in the study area [59]. The output result of the MaxEnt

http://www.cs.princeton.edu/
http://www.cs.princeton.edu/
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model is 0–1. The larger the value, the greater the distribution probability of species. In
this study, 25% of the distribution data is randomly selected as the testing date, and the
remaining 75% is used as the training data. The contribution of each environment variable
to coniferous forest data distribution is determined by a jackknife test. According to the
distribution probability (P) and the fitness grade of coniferous trees in the study area,
P < 0.05 is the non-fitness area, 0.05 ≤ P < 0.2 is the low fitness area, 0.2 ≤ P < 0.5 is the
medium fitness area, and 0.5 ≤ P ≤ 1 is the high fitness area.

2.5. Validation of Model Accuracy

In this study, the area under the curve (AUC) under the receiver operating charac-
teristic curve (ROC curve) was used as the criterion to evaluate the model simulation
results (He et al., 2021). ROC curve, also known as sensitivity curve, is drawn with the
false-positive rate (1-specific rate) and true-positive rate (1-missing rate) as abscissa and
ordinate, respectively, according to a series of different two classification methods. The area
value under the curve is the AUC value, with a value range of 0 to 1. The closer the AUC
value is to 1, the greater the correlation between environmental variables and distribution
models, and the higher the accuracy of prediction results (Table 2).

Table 2. The evaluation criterion of AUC.

Range of AUC Values Evaluation Criterion Range of AUC Values Evaluation Criterion

0.5 ≤ AUC < 0.6 Failed 0.8 ≤ AUC < 0.9 Good
0.6 ≤ AUC < 0.7 Poor 0.9 ≤ AUC < 1.0 Excellent
0.7 ≤ AUC < 0.8 Mediocre

3. Results
3.1. Spatial Distribution of Main Coniferous Forests

The division of possible suitable units was based on the mastery of the basic habits of
the target species, and the spatial areas in the area that were not suitable for plant growth
were preliminarily excluded through environmental factors. The target species of this
study were MP, CF and CT. MP was a positive species, suitable for the annual average
temperature of 13–22 ◦C, the annual precipitation of 800–1800 mm, the altitude of less
than 1500 m, the soil requirements were not strict, suitable for slightly acidic soil, and not
suitable for swamp soil, meadow soil or wetland. CF was suitable for an annual average
temperature of 15–23 ◦C, annual precipitation of 800–2000 mm and altitude of less than
1200 m. It was not suitable for swamp soil, meadow soil or alkaline soil. CT was suitable
for the annual average temperature of 13–19 ◦C, the annual precipitation was higher than
1000 mm and the altitude was lower than 2000 m. It was not suitable for swamp soil,
meadow soil or alkaline soil (Figure 2).

Land 2022, 11, × FOR PEER REVIEW 8 of 20 
 

 
Figure 2. Preliminary screening of spatial suitability units of (a) Masson pine, (b) Chinese fir and (c) 
Chinese thuja. 

3.2. Evolution Characteristics of Landscape Patterns of LUCC 
For MP, the top five factors in order of importance were altitude, accumulated tem-

perature, air pressure, mean diurnal range and poor annual temperature, among which 
altitude contributes the most to its distribution, and the score of individual training score 
was more than 0.3 (Figure 3). For CF, the top five factors were annual rainfall, rainfall 
deviation, altitude, humidity and annual average temperature, in which the contribution 
of annual rainfall was the largest, and the individual training score was more than 0.2. 
The main factors affecting CT were altitude, humidity, accumulated temperature, air pres-
sure and air temperature deviation, among which altitude contributed the most, and the 
individual training score was more than 0.7. 

 
Figure 3. Jackknife environmental variable contribution. The vertical axis represents each geograph-
ical factor, and the horizontal axis represents the training score value of each factor. Green, blue and 
red columns respectively represent the sum of fitting scores of all variables without fitting the vari-
able and only fitting the factor. The high score of the blue column indicates that the variable has 
high prediction ability, and the low score of the green column indicates that the variable contains 
more special information. 

Overall, the main influencing factors of the suitability distribution of the three species 
in Hubei Province were different (Table 3). The suitable distribution of MP was mainly 
affected by altitude (38.1%), precipitation deviation (17.7%), slope (10.1%) and other fac-
tors (34.1%), indicating that terrain and water conditions were the main factors affecting 
the distribution of MP. The suitable distribution of CF was mainly affected by precipita-
tion (36.2%), slope (13.8%), altitude (10.7%) and other factors (39.3%). Overall, the water 

Figure 2. Preliminary screening of spatial suitability units of (a) Masson pine, (b) Chinese fir and
(c) Chinese thuja.



Land 2022, 11, 690 8 of 19

3.2. Evolution Characteristics of Landscape Patterns of LUCC

For MP, the top five factors in order of importance were altitude, accumulated tempera-
ture, air pressure, mean diurnal range and poor annual temperature, among which altitude
contributes the most to its distribution, and the score of individual training score was more
than 0.3 (Figure 3). For CF, the top five factors were annual rainfall, rainfall deviation,
altitude, humidity and annual average temperature, in which the contribution of annual
rainfall was the largest, and the individual training score was more than 0.2. The main
factors affecting CT were altitude, humidity, accumulated temperature, air pressure and
air temperature deviation, among which altitude contributed the most, and the individual
training score was more than 0.7.
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more special information.

Overall, the main influencing factors of the suitability distribution of the three species
in Hubei Province were different (Table 3). The suitable distribution of MP was mainly
affected by altitude (38.1%), precipitation deviation (17.7%), slope (10.1%) and other factors
(34.1%), indicating that terrain and water conditions were the main factors affecting the
distribution of MP. The suitable distribution of CF was mainly affected by precipitation
(36.2%), slope (13.8%), altitude (10.7%) and other factors (39.3%). Overall, the water factor
and the terrain factor had great influence, accounting for 43% and 24.5%; respectively; the
suitable distribution of CT was mainly affected by topographic factors. The contribution
rate of altitude was 36.1%, and the contribution rate of slope and aspect was only 1.8%,
indicating that CT was greatly affected by altitude. The contribution rates of heat and water
factors were 26.9% and 17.5%, so the hydrothermal conditions also had a great impact on
the suitability distribution of CT.
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Table 3. Spatial factor contribution rate analysis table.

Environmental Factors
Main Coniferous Species

Masson Pine Chinese Fir Chinese Thuja

Moisture
factors

Pre1 2.6 36.2 0.0
Pre2 8.0 0.3 3.6
Pre3 3.8 3.0 0.1
Pre4 17.7 3.5 13.8

Total contribution 32.1 43.0 17.5

Heat factors

Acc 3.2 4.8 0.2
Tem1 2.5 5.1 5.8
Tem2 1.0 0.0 0.0
Tem3 1.6 0.7 0.1
Tem4 2.1 1.5 14.5
Tem5 1.1 0.1 0.0
Tem6 0.5 0.0 0.0
Tem7 0.6 0.0 5.8
Tem8 0.2 0.0 0.5
Tem9 0.0 4.3 0.0

Total contribution 12.8 16.5 26.9

Terrain factors

Dem 38.1 10.7 36.1
Aspect 4.2 0.2 1.7
Slope 10.1 13.8 0.1

Total contribution 52.4 24.7 37.9

Other factors

Frost 1.2 2.3 0.2
Pressure 1.3 5.0 0.0

Humidity 0.1 8.6 17.6
Total contribution 2.6 15.9 17.8

3.3. Accuracy Verification of Species Distribution Model Simulation Results

The AUC values of training sets of MP and CF were greater than 0.80, which was higher
than the random prediction value, which showed that the model accuracy was very accurate
(Figure 4 and Table 4). The AUC value of the CT training set reached 0.97, indicating that
the accuracy of the Maxent constructed by CT sample plot and environmental data was
very accurate, indicating that the MaxEnt could be used to predict the potential distribution
of three species. At the same time, the closer the two lines of the training set (red line) and
the test set (blue line), the more stable the fitting accuracy of the MaxEnt. It can be seen
that the order of fitting effect was: MP > CF > CT, in which CT even had obvious saw teeth
because of the small sample size.
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Table 4. Evaluation table of simulation accuracy of main coniferous species in Hubei Province.

Types Training Data AUC Test Data AUC Accuracy Evaluation

Masson pine 0.828 0.767 Good
Chinese fir 0.856 0.745 Good

Chinese thuja 0.970 0.841 Excellent

3.4. Spatial Distribution and Quantitative Structure of Eco-Environment

The strong suitable area of Pinus massoniana in Hubei Province was 4.23 × 106 ka,
the medium suitable area was 5.52 × 106 ha, the weak suitable area was 3.38 × 106 ha
and the unsuitable area was 5.46 × 106 ha (Figure 5). The suitable area of medium and
above was 9.75 × 106 ha, accounting for 52.45% of the total area. The strongly suitable
areas were mainly distributed in the northeast of Hubei Province and some low mountains
and hilly areas. The strong suitable area of CF was 2.82 × 106 ha, the medium suitable
area was 4.61 × 106 ha, the weak suitable area was 4.67 × 106 ha, the unsuitable area was
6.49 × 106 ha and the medium and above suitable area was 7.43 × 106 ha, accounting for
39.97% of the total area. Strong suitability areas were widely distributed in the southwest
and east of Hubei Province. The area of the CT strong suitable area was 1.59 × 106 ha,
medium suitable area was 2.40 × 106 ha, weak suitable area was 4.28 × 106 ha, unsuitable
area was 10.32 × 106 ha, and the area of medium and above suitable area was 3.99 × 106

ha, accounting for 21.46% of the total area. In terms of distribution, the strong suitable
areas are mainly distributed in the northwest, central and western and southeast of Hubei
Province (Figures 5 and A2–A4).
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thuja. I, II, III and IV represent strong suitable, medium suitable, weak suitable and not suitable
for species.

The MaxEnt gave the response curves of each factor to show the relationship between
the environmental variables and the probability of species when creating the model, which
was bounded by the distribution probability of 0.5: MP was suitable to grow at altitude
(100–1500 m), accumulated temperature (2800–5600 ◦C), air pressure (955–1008 hpa), an-
nual temperature difference between day and night (8.2–9.9 ◦C), precipitation deviation
condition (53–73), slope (<40◦) and precipitation in the wettest season (370–400 mm and
575–680 mm). CF was suitable to grow at annual precipitation (600–640 m and >1350 m)
(<64 mm), altitude (40–1680 m), humidity (<72% and >76%), slope (5–35◦) and annual
average temperature (14.1–16.1 ◦C and > 17.2 ◦C). CT was suitable to grow at altitude
(100–700 m), humidity (<74%), air pressure (955–1015 hpa), accumulated temperature (3750–
5250 ◦C), lowest temperature in the coldest month (−14.5–4.5 ◦C), precipitation deviation
(56–62% and >67%) and annual average temperature (14.3–17.6 ◦C) (Figures A2–A4).
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4. Discussion
4.1. Spatial Distribution of Suitable Growing Area of Coniferous Forests

Our research showed that the suitable growth areas of MP, CF and CT accounted for
about 52.45%, 39.97% and 21.46% of the whole area of Hubei Province, respectively. The
suitable growth areas were high, so these areas should be reasonably screened for plantation
management. This suitable area of conifers in Hubei Province was mainly distributed in the
low mountain and hilly areas in the east and west, which was semi-surrounded; this was
consistent with other research results [60]. Pinus massoniana was suitable for distribution
in northeast, central and western Hubei and north-central Hubei. CF was suitable for
distribution in southeast, northeast and western parts of Hubei Province. CT was suitable
for northwest, central and western and southeast Hubei Province.

The results showed that altitude was an important factor affecting the suitable growth
of conifers in China, which was similar to research results in North China [61]. Altitude, as
the leading factor of suitability, might be related to global climate change. Jayasinghe and
Kumar (2019) predicted that the potential distribution of Camellia sinensis in low-altitude
areas would be lost to a greater extent compared with high-altitude areas in the future [62].
The high suitable habitats of conifers in China were mainly concentrated in the middle and
southeast of the middle subtropical region, where the temperature was moderate and the
rainfall was abundant.

4.2. Other Factors That Influence Model Simulation

We conducted overlay analysis on the land use/land cover data of the study area in
2015 (the data came from the results of another study [63]) (Figure A5). The land use/land
cover was classified into built-up land, water bodies, shrubland, cropland and other areas.
Other areas were classified into “Suitable areas for Coniferous forests” for I and II, and
“Unsuitable areas for Coniferous forests” for III and IV based on the appropriate results
of Figure 5. Hubei Province planned to complete 93,000 ha of new plantations by 2025,
increasing the forest volume from 420 million to 490 million m3 [64]. In order to improve
the regional forests coverage and health, our research results suggest that excluded existing
urban areas and infrastructure, and coniferous forests, such as MP, CF and CT, should be
planted in the southwest, south and central areas of the study area on the basis of protecting
basic farmland.

We considered the topographic, meteorological and soil factors affecting the growth of
plantations. We also considered the difference in climate zones, where the improved inter-
polation model was used to obtain more accurate spatial distribution site factors [65–67].
However, there were many other factors not considered in this study, such as social, eco-
nomic and demographic factors, which would also affect the growth of plantations [68–70]
In addition, Hubei Province has built large-scale water conservancy projects such as the
Three Gorges Dam, Gezhouba Dam, Danjiangkou reservoir and the south-to-north wa-
ter transfer canal system. The increases in water surface have changed the surrounding
microenvironment. These factors should be comprehensively considered in a future adapt-
ability evaluation to improve the evaluation accuracy.

4.3. Afforestation and Other Measures for Sustainable Management

In the process of plantation management and protection, for the inefficient forests
caused by unsuitable conditions, thinning and interspecific planting of other suitable plants
could be carried out, and new plant species could replace existing species to become
dominant species through gradual succession [60]. Due to the large scope of the study area,
this study only considers the impact of soil types on the growth of plantations, and did
not consider the soil’s physical and chemical properties, soil thickness, etc., which should
be comprehensively considered in the construction [71]. In addition, when studying the
suitability of plantations from the perspective of the geographical environment, forestry
management, economic factors and other human factors were not considered [72,73]. In
the construction of plantations, land preparation methods, seed quality, seedling quality,
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afforestation density, thinning light transmission and other management technologies had a
great impact on Pinus tabulaeformis [74]. From an economic point of view, traffic conditions,
afforestation difficulty, management and protection investment and other factors would
directly affect the cost of afforestation and management, and indirectly affect the suitability
of plantations on specific plots [75]. In afforestation or degraded forestland transformation,
it should be comprehensively considered in combination with the actual situation. More
importantly, afforestation sometimes has negative effects on the ecological environment,
such as the disturbance of soil and groundwater brought by afforestation [76,77], and
the destruction of biodiversity caused by artificial activities [78], which should be paid
attention to in the process of forestry ecological protection after this year.

5. Conclusions

In the past, due to the limitation of technical conditions, people’s analysis of environ-
mental factors was not accurate enough to achieve real suitable land and species, which
degraded the ecological function of artificial forests. We combined the principle of plant
ecology with spatial information technology, and took the geospatial data with 30 m spatial
resolution as the data source. A multiple linear regression Kriging model (MLRK) and
maximum entropy algorithm (MaxEnt) were used to comprehensively analyze the precise
suitability of the main coniferous species in Hubei Province. The main conclusions were:

The spatial suitability of plantations based on 21 geographical environment variables
(altitude, slope, aspect, meteorology, soil type, etc.) had good accuracy. The AUC values of
the MP, CF and CT training set were 0.828, 0.856 and 0.970, and the AUC values of the test
set were 0.767, 0.745 and 0.841, respectively. The main influencing factors of the suitability
distribution of the plantation species in Hubei Province and the importance ranking of
each factor were different. The spatial distribution of MP and CT suitability had strict
requirements on topographic conditions, while CF had higher requirements on water status.
However, for the plantation species, the altitude factor showed a large contribution rate,
and the most suitable thresholds were 100–1500 m, 40–1680 m and 100–700 m, respectively.
The suitable area of MP, CF and CT was as follows: MP > CF > CT, accounting for 52.45%,
39.97% and 21.46% of the total area, respectively. In terms of distribution characteristics,
affected by the terrain, the low mountains and hills in the East and West were the main
suitable distribution areas of the plantations. The results of this study had important
reference values for selecting suitable plantation species for planting according to local
conditions (combined with regional meteorological and topographic conditions).

Our research area is only a limited area in the middle reaches of the Yangtze River in
China. Future studies should include larger samples. The method in this paper provides
technical support for the suitability screening of plantations, and the research results can
provide important theoretical support and data basis for the planning and construction of
artificial forests in the future.
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Appendix A

Table A1. Ecological index division standard table.

Evaluation Factors
Classification Criteria

Weight
I II III

Forest Stock ≥150 (m3/ha) 50~150(m3/ha) <50(m3/ha) 0.20

Forest Naturalness I, II III, IV V 0.15

Community structure Complete structure More complete structure Simple structure, 0.15

Stand structure

Thermal coniferous
forest; Thermal

coniferous broad-leaved
mixed forest

Warm coniferous
broad-leaved mixed forest;

Warm coniferous forest;
Warm mixed broad-leaved

conifer forest

Cold and temperate
coniferous forests; Temperate

coniferous forests
0.15

Stand average height ≥15.0 m 5.0~14.9 m <5.0 m 0.10
Crown density ≥0.7 0.40~0.69 0.20~0.39 0.10

Vegetation coverage ≥70% 50~69% <50% 0.10
Thickness of dead leaves ≥10 cm 5~9 cm <5 cm 0.05

Table A2. Evaluation table of ecological function grade.

Functional Level Forest Ecological Function Index

I ≥0.67
II 0.67~0.42
III <0.42
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Figure A1. Spatial distribution map of site factors. (a) DEM represents digital elevation model;
(b) spatio-temporal of aspect; (c) spatio-temporal of slope; (d) Pressure represents air pressure;
(e) spatio-temporal of frost; (f) spatio-temporal of humidity (g) Pre4 represents relative standard
deviation of precipitation; (h) Pre3 represents precipitation of the driest month; (i) Pre2 represents
rainfall of the wettest season; (j) Pre1 represents annual precipitation; (k) Acc represents accumulated
temperature; (l) Tem9 represents isothermality; (m) Tem8 represents temperature annual range;
(n) Tem7 represents temperature standard deviation; (o) Tem6 represents minimum daily temperature;
(p) Tem5 represents poor annual temperature; (q) Tem4 represents the min temperature of the coldest
month; (r) Tem3 represents the max temperature of the hottest month; (s) Tem2 represents annual
diurnal range and (t) Tem1 represents annual mean temperature.



Land 2022, 11, 690 15 of 19

Land 2022, 11, × FOR PEER REVIEW 15 of 20 
 

Figure A1. Spatial distribution map of site factors. (a) DEM represents digital elevation model; (b) 
spatio-temporal of aspect; (c) spatio-temporal of slope; (d) Pressure represents air pressure; (e) spa-
tio-temporal of frost; (f) spatio-temporal of humidity (g) Pre4 represents relative standard deviation 
of precipitation; (h) Pre3 represents precipitation of the driest month; (i) Pre2 represents rainfall of 
the wettest season; (j) Pre1 represents annual precipitation; (k) Acc represents accumulated temper-
ature; (l) Tem9 represents isothermality; (m) Tem8 represents temperature annual range; (n) Tem7 
represents temperature standard deviation; (o) Tem6 represents minimum daily temperature; (p) 
Tem5 represents poor annual temperature; (q) Tem4 represents the min temperature of the coldest 
month; (r) Tem3 represents the max temperature of the hottest month; (s) Tem2 represents annual 
diurnal range and (t) Tem1 represents annual mean temperature. 

 
Figure A2. Feedback curves of dominant geographic environment variables for Masson Pine. DEM 
represents digital elevation model; Acc represents accumulated temperature; Pressure represents 
air pressure; Tem2 represents annual average diurnal temperature difference; Pre4 represents pre-
cipitation deviation; Pre2 represents rainfall in the wettest season. 

Figure A2. Feedback curves of dominant geographic environment variables for Masson Pine. DEM
represents digital elevation model; Acc represents accumulated temperature; Pressure represents air
pressure; Tem2 represents annual average diurnal temperature difference; Pre4 represents precipita-
tion deviation; Pre2 represents rainfall in the wettest season.

Land 2022, 11, × FOR PEER REVIEW 16 of 20 
 

 
Figure A3. Feedback curves of dominant geographic environment variables for Chinese fir. DEM 
represents digital elevation model; Acc represents accumulated temperature; Pressure represents 
air pressure; Pre4 represents precipitation deviation; Tem2 represents annual average diurnal tem-
perature difference. 

 
Figure A4. Feedback curves of dominant geographic environment variables for Chinese thuja. DEM 
represents digital elevation model; Acc represents accumulated temperature; Pressure represents 
air pressure; Tem2 represents annual average diurnal temperature difference; Pre4 represents pre-
cipitation deviation; Pre2 represents rainfall in the wettest season. 

Figure A3. Feedback curves of dominant geographic environment variables for Chinese fir. DEM
represents digital elevation model; Acc represents accumulated temperature; Pressure represents air
pressure; Pre4 represents precipitation deviation; Tem2 represents annual average diurnal tempera-
ture difference.



Land 2022, 11, 690 16 of 19

Land 2022, 11, × FOR PEER REVIEW 16 of 20 
 

 
Figure A3. Feedback curves of dominant geographic environment variables for Chinese fir. DEM 
represents digital elevation model; Acc represents accumulated temperature; Pressure represents 
air pressure; Pre4 represents precipitation deviation; Tem2 represents annual average diurnal tem-
perature difference. 

 
Figure A4. Feedback curves of dominant geographic environment variables for Chinese thuja. DEM 
represents digital elevation model; Acc represents accumulated temperature; Pressure represents 
air pressure; Tem2 represents annual average diurnal temperature difference; Pre4 represents pre-
cipitation deviation; Pre2 represents rainfall in the wettest season. 

Figure A4. Feedback curves of dominant geographic environment variables for Chinese thuja. DEM
represents digital elevation model; Acc represents accumulated temperature; Pressure represents air
pressure; Tem2 represents annual average diurnal temperature difference; Pre4 represents precipita-
tion deviation; Pre2 represents rainfall in the wettest season.

Land 2022, 11, × FOR PEER REVIEW 17 of 20 
 

 
Figure A5. The distribution map of land use/land cover and suitable area of main coniferous forests 
in the study area in 2015. 

References 
1. Malkamäki, A.; D’Amato, D.; Hogarth, N.J.; Kanninen, M.; Pirard, R.; Toppinen, A.; Zhou, W. A systematic review of the socio-

economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Chang. 2018, 53, 90–103. 
https://doi.org/10.1016/j.gloenvcha.2018.09.001. 

2. Afonso, R.; Miller, D.C. Forest plantations and local economic development: Evidence from Minas Gerais, Brazil. For. Policy 
Econ. 2021, 133, 102618. https://doi.org/10.1016/j.forpol.2021.102618. 

3. Zeng, Y.L.; Wu, H.S.; Ouyang, S.; Liang, C.; Fang, X.; Peng, C.H.; Liu, S.R.; Xiao, W.F.; Xiang, W.H. Ecosystem service multi-
functionality of Chinese fir plantations differing in stand age and implications for sustainable management. Sci. Total Environ. 
2021, 788, 14779. https://doi.org/10.1016/j.scitotenv.2021.147791. 

4. Bayat, F.; Monfared, A.B.; Jahansooz, M.R.; Esparza, E.T.; Keshavarzi, A.; Morera, A.G.; Fernández, M.P.; Cerdà, A. Analyzing 
long-term soil erosion in a ridge-shaped persimmon plantation in eastern Spain by means of ISUM measurements. Catena 2019, 
183, 104176. https://doi.org/10.1016/j.catena.2019.104176. 

5. Yamagishi, K.; Kizaki, K.; Shinohara, Y.; Hirata, R.; Ito, S. Effects of weeding the shrub layer during thinning on suface soil 
erosion in a hinoki plantation. Catena 2022, 209, 105799. https://doi.org/10.1016/j.catena.2021.105799. 

6. Cai, W.; Yang, C.; Wang, X.; Wu, C.; Larrieu, L.; Lopez-Vaamonde, C.; Wen, Q.; Yu, D.W. The ecological impact of pest-induced 
tree dieback on insect biodiversity in Yunnan pine plantations, China. For. Ecol. Manag. 2021, 491, 119173. 
https://doi.org/10.1016/j.foreco.2021.119173. 

7. Xi, B.; Clothier, B.; Coleman, M.; Duan, J.; Hu, W.; Li, D.; Di, N.; Liu, Y.; Fu, J.; Li, J.; et al. Irrigation management in poplar 
(Populus spp.) plantations: A review. For. Ecol. Manag. 2021, 494, 119330. https://doi.org/10.1016/j.foreco.2021.119330. 

8. Monsef, A.H.; Hassan, M.A.A.; Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suita-
ble locations for mangroves plantation. Comput. Electron. Agric. 2017, 141, 310–326. https://doi.org/10.1016/j.compag.2017.08.002. 

9. Wang, Q. Experience of foreign plantation construction. Agric. World 1992, 8, 42–44. (In Chinese) 
10. Food and Agriculture Organization of the United Nations, FAO. Available online: https://fra-

data.fao.org/WO/fra2020/home/.(accessed on 5 April 2022). 
11. Yi, Y.; Wang, B.; Shi, M.C.; Meng, Z.K.; Zhang, C. Variation in Vegetation and Its Driving Force in the Middle Reaches of the 

Yangtze River in China. Water 2021, 13, 2036. https://doi.org/10.3390/w13152036. 
12. Souliyavongsa, X.; Pierret, A.; Trelo-ges, V.; Ayutthaya, S.I.N.; Sayavong, S.; Hartmann, C. Does forest conversion to tree plan-

tations affect properties of subsoil horizons? Findings from mainland Southeast Asia (Lao PDR, Yunnan-China). Geoderma Reg. 
2022, 28, e00457. https://doi.org/10.1016/j.geodrs.2021.e00457. 

13. Ma, Q.Q.; Huang, B.L. Advance in research on site productivity decline of timber plantations. J. Nanjing For. Univ. 1997, 2, 79–
84. (In Chinese). 

14. Zhao, G.; Dong, J.; Cui, Y.; Liu, J.; Zhai, J.; He, T.; Zhou, Y.; Xiao, X. Evapotranspiration-dominated biogeophysical warming 
effect of urbanization in the Beijing-Tianjin-Hebei region, China. Clim. Dyn. 2019, 52, 1231–1245. https://doi.org/10.1007/s00382-
018-4189-0. 

15. Tian, Y.; Zeng, C.H.; Li, Z.Q.; Zhang, H.L. Evaluation of Marine Ecological Suitability for Development and Utilization of Off-
shore Areas in Qingdao. J. Guangdong Ocean Univ. 2021, 41, 17–22. 

Figure A5. The distribution map of land use/land cover and suitable area of main coniferous forests
in the study area in 2015.



Land 2022, 11, 690 17 of 19

References
1. Malkamäki, A.; D’Amato, D.; Hogarth, N.J.; Kanninen, M.; Pirard, R.; Toppinen, A.; Zhou, W. A systematic review of the

socio-economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Chang. 2018, 53, 90–103. [CrossRef]
2. Afonso, R.; Miller, D.C. Forest plantations and local economic development: Evidence from Minas Gerais, Brazil. For. Policy Econ.

2021, 133, 102618. [CrossRef]
3. Zeng, Y.L.; Wu, H.S.; Ouyang, S.; Liang, C.; Fang, X.; Peng, C.H.; Liu, S.R.; Xiao, W.F.; Xiang, W.H. Ecosystem service

multifunctionality of Chinese fir plantations differing in stand age and implications for sustainable management. Sci. Total
Environ. 2021, 788, 14779. [CrossRef] [PubMed]

4. Bayat, F.; Monfared, A.B.; Jahansooz, M.R.; Esparza, E.T.; Keshavarzi, A.; Morera, A.G.; Fernández, M.P.; Cerdà, A. Analyzing
long-term soil erosion in a ridge-shaped persimmon plantation in eastern Spain by means of ISUM measurements. Catena 2019,
183, 104176. [CrossRef]

5. Yamagishi, K.; Kizaki, K.; Shinohara, Y.; Hirata, R.; Ito, S. Effects of weeding the shrub layer during thinning on suface soil erosion
in a hinoki plantation. Catena 2022, 209, 105799. [CrossRef]

6. Cai, W.; Yang, C.; Wang, X.; Wu, C.; Larrieu, L.; Lopez-Vaamonde, C.; Wen, Q.; Yu, D.W. The ecological impact of pest-induced
tree dieback on insect biodiversity in Yunnan pine plantations, China. For. Ecol. Manag. 2021, 491, 119173. [CrossRef]

7. Xi, B.; Clothier, B.; Coleman, M.; Duan, J.; Hu, W.; Li, D.; Di, N.; Liu, Y.; Fu, J.; Li, J.; et al. Irrigation management in poplar
(Populus spp.) plantations: A review. For. Ecol. Manag. 2021, 494, 119330. [CrossRef]

8. Monsef, A.H.; Hassan, M.A.A.; Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable
locations for mangroves plantation. Comput. Electron. Agric. 2017, 141, 310–326. [CrossRef]

9. Wang, Q. Experience of foreign plantation construction. Agric. World 1992, 8, 42–44. (In Chinese)
10. Food and Agriculture Organization of the United Nations, FAO. Available online: https://fra-data.fao.org/WO/fra2020/home/

(accessed on 5 April 2022).
11. Yi, Y.; Wang, B.; Shi, M.C.; Meng, Z.K.; Zhang, C. Variation in Vegetation and Its Driving Force in the Middle Reaches of the

Yangtze River in China. Water 2021, 13, 2036. [CrossRef]
12. Souliyavongsa, X.; Pierret, A.; Trelo-ges, V.; Ayutthaya, S.I.N.; Sayavong, S.; Hartmann, C. Does forest conversion to tree

plantations affect properties of subsoil horizons? Findings from mainland Southeast Asia (Lao PDR, Yunnan-China). Geoderma
Reg. 2022, 28, e00457. [CrossRef]

13. Ma, Q.Q.; Huang, B.L. Advance in research on site productivity decline of timber plantations. J. Nanjing For. Univ. 1997, 2, 79–84.
(In Chinese)

14. Zhao, G.; Dong, J.; Cui, Y.; Liu, J.; Zhai, J.; He, T.; Zhou, Y.; Xiao, X. Evapotranspiration-dominated biogeophysical warming effect
of urbanization in the Beijing-Tianjin-Hebei region, China. Clim. Dyn. 2019, 52, 1231–1245. [CrossRef]

15. Tian, Y.; Zeng, C.H.; Li, Z.Q.; Zhang, H.L. Evaluation of Marine Ecological Suitability for Development and Utilization of Offshore
Areas in Qingdao. J. Guangdong Ocean Univ. 2021, 41, 17–22.

16. Luo, Z.; Asproudi, C. Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate
change. Appl. Therm. Eng. 2015, 90, 530–537. [CrossRef]

17. Zhao, Y.; Deng, X.; Xiang, W.; Chen, L.; Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future
climatic scenarios based on Maxent model. Ecol. Inform. 2021, 64, 101393. [CrossRef]

18. Qin, A.; Liu, B.; Guo, Q.; Bussmann, R.W.; Ma, F.; Jian, Z.; Xu, G.; Pei, S. Maxent modeling for predicting impacts of climate
change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China.
Glob. Ecol. Conserv. 2017, 10, 139–146. [CrossRef]

19. Liu, Y.; Huang, P.; Lin, F.; Yang, W.; Gaisberger, H.; Christopher, K.; Zheng, Y. MaxEnt modelling for predicting the potential
distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol. Eng. 2019, 141, 105612. [CrossRef]

20. Sheng, W.; Zhen, L.; Xie, G.; Xiao, Y. Determining eco-compensation standards based on the ecosystem services value of the
mountain ecological forests in Beijing, China. Ecosyst. Serv. 2017, 26, 422–430. [CrossRef]

21. Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Morondo, M.; Bernetti, L.; Bindi, M.; Chirici, G. Species distribution modelling to
support forest management. A literature review. Ecol. Model. 2019, 411, 108817. [CrossRef]

22. Silva, L.D.; Elias, R.B.; Silva, L. Modelling invasive alien plant distribution: A literature review of concepts and bibliometric
analysis. Environ. Model. Softw. 2021, 145, 105203. [CrossRef]

23. Wong, M.H.G.; Li, R.Q.; Xu, M.; Long, Y.C. An integrative approach to assessing the potential impacts of climate change on the
Yunnan snub-nosed monkey. Biol. Conserv. 2013, 158, 401–409. [CrossRef]

24. Zhang, M.-G.; Slik, J.W.F.; Ma, K.-P. Using species distribution modeling to delineate the botanical richness patterns and
phytogeographical regions of China. Sci. Rep. 2016, 6, 22400. [CrossRef] [PubMed]

25. Peterson, A.T.; Vieglais, D.A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics
attack a pressing problem. Bioscience 2001, 51, 363–371. [CrossRef]

26. Ganeshaiah, K.N.; Barve, N.; Nath, N.; Chandrashekara, K.; Swamy, M.; Uma Shaanker, R. Predicting the potential geographical
distribution of the sugarcane woolly aphid using GARP and DIVA-GIS. Curr. Sci. 2003, 85, 1526–1528.

27. Cabeza, M.; Araujo, M.B.; Wilson, R.J.; Thomas, C.D.; Cowley, M.J.R.; Moilanen, A. Combining probabilities of occurrence with
spatial reserve design. J. Appl. Ecol. 2004, 41, 252–262. [CrossRef]

http://doi.org/10.1016/j.gloenvcha.2018.09.001
http://doi.org/10.1016/j.forpol.2021.102618
http://doi.org/10.1016/j.scitotenv.2021.147791
http://www.ncbi.nlm.nih.gov/pubmed/34029826
http://doi.org/10.1016/j.catena.2019.104176
http://doi.org/10.1016/j.catena.2021.105799
http://doi.org/10.1016/j.foreco.2021.119173
http://doi.org/10.1016/j.foreco.2021.119330
http://doi.org/10.1016/j.compag.2017.08.002
https://fra-data.fao.org/WO/fra2020/home/
http://doi.org/10.3390/w13152036
http://doi.org/10.1016/j.geodrs.2021.e00457
http://doi.org/10.1007/s00382-018-4189-0
http://doi.org/10.1016/j.applthermaleng.2015.07.025
http://doi.org/10.1016/j.ecoinf.2021.101393
http://doi.org/10.1016/j.gecco.2017.02.004
http://doi.org/10.1016/j.ecoleng.2019.105612
http://doi.org/10.1016/j.ecoser.2017.04.016
http://doi.org/10.1016/j.ecolmodel.2019.108817
http://doi.org/10.1016/j.envsoft.2021.105203
http://doi.org/10.1016/j.biocon.2012.08.030
http://doi.org/10.1038/srep22400
http://www.ncbi.nlm.nih.gov/pubmed/26928763
http://doi.org/10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2
http://doi.org/10.1111/j.0021-8901.2004.00905.x


Land 2022, 11, 690 18 of 19

28. Sarma, R.; Munsi, M.; Neelavara Ananthram, A. Effect of Climate Change on Invasion Risk of Giant African Snail (Achatina
fulica Férussac, 1821: Achatinidae) in India. PLoS ONE 2015, 10, e0143724. [CrossRef]

29. Adams-Hosking, C.; McAlpine, C.A.; Rhodes, J.R.; Moss, P.T.; Grantham, H.S. Prioritizing Regions to Conserve a Specialist
Folivore: Considering Probability of Occurrence, Food Resources, and Climate Change. Conserv. Lett. 2015, 8, 162–170. [CrossRef]

30. Li, G.; Xu, G.; Guo, K.; Du, S. Geographical boundary and climatic analysis of Pinus tabulaeformis in China: Insights on its
afforestation. Ecol. Eng. 2016, 86, 75–84. [CrossRef]

31. Remya, K.; Ramachandran, A.; Jayakumar, S. Predicting the current and future suitable habitat distribution of Myristica
dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol. Eng. 2015, 82, 184–188. [CrossRef]

32. Kozhoridze, G.; Orlovsky, N.; Orlovsky, L.; Blumberg, D.G.; Golan-Goldhirsh, A. Geographic distribution and migration pathways
of Pistacia—Present, past and future. Ecography 2015, 38, 1141–1154. [CrossRef]

33. Schroth, G.; Läderach, P.; Martinez-Valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa:
Patterns, opportunities and limits to adaptation. Sci. Total Environ. 2016, 556, 231–241. [CrossRef] [PubMed]

34. Nix, H.; MacMahon, J.; Mackenzie, D. Potential areas of production and the future pigeon pea and other grain legumes in
Australia. In The Potential for Pigeon Pea in Australia, Proceedings of Pigeon Pea (Cajanus cajan (L.) Millsp.) Field Day, Queensland,
Australia, 29 April 1977; Wallis, E.S., Whiteman, P.C., Eds.; University of Queensland: Brisbane, QLD, Australia, 1977; pp. 1–12.

35. Walker, P.A.; Cocks, K.D. HABITAT: A Procedure for Modelling a Disjoint Environmental Envelope for a Plant or Animal Species.
Glob. Ecol. Biogeogr. Lett. 1991, 1, 108. [CrossRef]

36. Kells, N.J. Review: The Five Domains model and promoting positive welfare in pigs. Animal 2021, 100378. [CrossRef]
37. Darabi, H.; Choubin, B.; Rahmati, O.; Torabi Haghighi, A.; Pradhan, B.; Kløve, B. Urban flood risk mapping using the GARP and

QUEST models: A comparative study of machine learning techniques. J. Hydrol. 2019, 569, 142–154. [CrossRef]
38. Ray, A.; Halder, T.; Jena, S.; Sahoo, A.; Ghosh, B.; Mohanty, S.; Mahapatra, N.; Nayak, S. Application of artificial neural network

(ANN) model for prediction and optimization of coronarin D content in Hedychium coronarium. Ind. Crops Prod. 2020, 146,
112186. [CrossRef]

39. Xu, A.; Li, R.; Chang, H.; Xu, Y.; Li, X.; Lin, G.; Zhao, Y. Artificial neural network (ANN) modeling for the prediction of odor
emission rates from landfill working surface. Waste Manag. 2022, 138, 158–171. [CrossRef]

40. Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling
approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [CrossRef]

41. West, A.; Kumar, S.; Brown, C.; Stohlgren, T.; Bromberg, J. Field validation of an invasive species Maxent model. Ecol. Indic. 2016,
36, 126–134. [CrossRef]

42. He, P.; Li, J.; Li, Y.; Xu, N.; Gao, Y.; Guo, L.; Huo, T.; Peng, C.; Meng, F. Habitat protection and planning for three Ephedra using
the MaxEnt and Marxan models. Ecol. Indic. 2021, 133, 108399. [CrossRef]

43. Bi, Y.Q.; Zhang, M.X.; Chen, Y.; Wang, A.X.; Li, H.H. Suitable habitat distribution of Paeonia lactiflora in China based on Biomod2
combination model. China J. Chin. Mater. Med. 2022, 47, 376–384. (In Chinese) [CrossRef]

44. Osawa, T.; Mitsuhashi, H.; Uematsu, Y.; Ushimaru, A. Bagging GLM: Improved generalized linear model for the analysis of
zero-inflated data. Ecol. Inform. 2011, 6, 270–275. [CrossRef]

45. da Silva Marques, D.; Costa, P.G.; Souza, G.M.; Cardozo, J.G.; Barcarolli, I.F.; Bianchini, A. Selection of biochemical and
physiological parameters in the croaker Micropogonias furnieri as biomarkers of chemical contamination in estuaries using a
generalized additive model (GAM). Sci. Total Environ. 2019, 647, 1456–1467. [CrossRef] [PubMed]

46. Liu, J.; Zhang, L.; Zhang, Q.; Zhang, G.; Teng, J. Predicting the surface urban heat island intensity of future urban green space
development using a multi-scenario simulation. Sustain. Cities Soc. 2021, 66, 102698. [CrossRef]

47. Jaroenkietkajorn, U.; Gheewala, S.H. Land suitability assessment for oil palm plantations in Thailand. Sustain. Prod. Consum.
2021, 28, 1104–1113. [CrossRef]

48. Kabir, M.; Webb, E. Productivity and suitability analysis of social forestry woodlot species in Dhaka Forest Division, Bangladesh.
For. Ecol. Manag. 2005, 212, 243–252. [CrossRef]

49. Kimsey, M.J., Jr.; Moore, J.; Mcdaniel, P. A Geographically Weighted Regression Analysis of Douglas-Fir Site Index in North
Central Idaho. For. Sci. 2008, 54, 356–366.

50. Wang, S.F.; Chen, Y.K.; Cheng, C.C. Application of Ecosystem Management Decision Support System in selecting suitable site for
Taiwan. Suitabil. Assess. Land Resour. 2002, 66, 1670–1678.

51. Yi, Y.; Cheng, X.; Yang, Z.; Zhang, S. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H.
riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [CrossRef]

52. Li, L.; Zha, Y.; Zhang, J. Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major
cities. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102131. [CrossRef]

53. Li, B.; Wang, W.; Bai, L.; Wang, W.; Chen, N. Effects of spatio-temporal landscape patterns on land surface temperature: A case
study of Xi’an city, China. Environ. Monit. Assess. 2018, 190, 419. [CrossRef] [PubMed]

54. He, Q.; Zeng, C.; Xie, P.; Liu, Y.; Zhang, M. An assessment of forest biomass carbon storage and ecological compensation based on
surface area: A case study of Hubei Province, China. Ecol. Indic. 2018, 90, 392–400. [CrossRef]

55. Jin, J.; Wang, R.S.; Li, F.; Huang, J.L.; Zhou, C.B.; Zhang, H.T.; Yang, W.R. Conjugate ecological restoration approach with a case
study in Mentougou district, Beijing. Ecol. Complex. 2011, 8, 161–170. [CrossRef]

http://doi.org/10.1371/journal.pone.0143724
http://doi.org/10.1111/conl.12125
http://doi.org/10.1016/j.ecoleng.2015.10.032
http://doi.org/10.1016/j.ecoleng.2015.04.053
http://doi.org/10.1111/ecog.01496
http://doi.org/10.1016/j.scitotenv.2016.03.024
http://www.ncbi.nlm.nih.gov/pubmed/26974571
http://doi.org/10.2307/2997706
http://doi.org/10.1016/j.animal.2021.100378
http://doi.org/10.1016/j.jhydrol.2018.12.002
http://doi.org/10.1016/j.indcrop.2020.112186
http://doi.org/10.1016/j.wasman.2021.11.045
http://doi.org/10.1016/j.ecoinf.2020.101150
http://doi.org/10.1016/j.ecoinf.2016.11.001
http://doi.org/10.1016/j.ecolind.2021.108399
http://doi.org/10.19540/j.cnki.cjcmm.20211023.101
http://doi.org/10.1016/j.ecoinf.2011.05.003
http://doi.org/10.1016/j.scitotenv.2018.08.049
http://www.ncbi.nlm.nih.gov/pubmed/30180351
http://doi.org/10.1016/j.scs.2020.102698
http://doi.org/10.1016/j.spc.2021.07.031
http://doi.org/10.1016/j.foreco.2005.03.034
http://doi.org/10.1016/j.ecoleng.2016.04.010
http://doi.org/10.1016/j.jag.2020.102131
http://doi.org/10.1007/s10661-018-6787-z
http://www.ncbi.nlm.nih.gov/pubmed/29934727
http://doi.org/10.1016/j.ecolind.2018.03.030
http://doi.org/10.1016/j.ecocom.2011.01.005


Land 2022, 11, 690 19 of 19

56. State Forestry Administration of China. Technical Provisions for Continuous Inventory of State Forest Resources. 2014. Available
online: https://www.doc88.com/p-6071845802352.html (accessed on 5 April 2022).

57. Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Zhang, Y. Quantifying and simulating landscape composition and pattern impacts
on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Sci. Total Environ. 2019, 654,
430–440. [CrossRef] [PubMed]

58. Zhang, S.; Liu, X.; Li, R.; Wang, X.; Cheng, J.; Yang, Q.; Kong, H. AHP-GIS and MaxEnt for delineation of potential distribution of
Arabica coffee plantation under future climate in Yunnan, China. Ecol. Indic. 2021, 132, 108339. [CrossRef]

59. Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st
International Conference on Machine Learning—ICML ’04, New York, NY, USA, 4 July 2004; p. 83.

60. Yuan, H.; Liu, B.; Chen, S.G.; Zhu, J.; Liu, Y.; Xu, Y.Z. Study on the growth regularity of high density Chinese fir plantation in
Hubei province. Hubei For. Sci. Technol. 2021, 50, 17. (In Chinese)

61. Mu, X.Y.; Wu, Z.Y.; Li, X.Y.; Wang, F.; Bai, X.X.; Guo, S.W.; Cheng, R.C.; Yu, S.L. Estimation of the potential distribution areas of
Larix principis—Rupprechtii plantation in Chifeng based on MaxEnt model. J. Arid. Land Resour. Environ. 2021, 35, 144–152. (In
Chinese) [CrossRef]

62. Jayasinghe, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to
current and future climate change scenarios. Agric. For. Meteorol. 2019, 272–273, 102–117. [CrossRef]

63. Yi, Y.; Zhang, C.; Zhang, G.L.; Xing, L.Q.; Zhong, Q.C.; Liu, J.L.; Lin, Y.C.; Zheng, X.W.; Yang, N.; Sun, H.; et al. Effects of
Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region. Land 2021, 10, 1025. [CrossRef]

64. State Forestry Administration of Hubei Province, China. Policy interpretation of Hubei Province Forestry Development “Four-
teenth Five-Year Plan”. 2021. Available online: https://lyj.hubei.gov.cn/zfxxgk/zc_GK2020/zcjd_GK2020/202201/t20220107_39
56172.shtml (accessed on 5 April 2022).

65. Wang, R.; Cai, M.; Ren, C.; Bechtel, B.; Xu, Y.; Ng, E. Detecting multi-temporal land cover change and land surface temperature in
Pearl River Delta by adopting local climate zone. Urban Clim. 2019, 28, 100455. [CrossRef]

66. Ke, Q.; Zhang, K. Patterns of runoff and erosion on bare slopes in different climate zones. Catena 2021, 198, 105069. [CrossRef]
67. Wu, J.; Liu, C.; Wang, H. Analysis of Spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities

based on local climate zones. Build. Environ. 2022, 207, 108568. [CrossRef]
68. Chakraborty, A.; Joshi, P.K.; Sachdeva, K. Predicting distribution of major forest tree species to potential impacts of climate change

in the central Himalayan region. Ecol. Eng. 2016, 97, 593–609. [CrossRef]
69. Sánchez, A.; Bandopadhyay, S.; Rojas Briceño, N.B.; Banerjee, P.; Torres Guzmán, C.; Oliva, M. Peruvian Amazon disappearing:

Transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modelling using
cloud computing and MaxEnt approach. J. Nat. Conserv. 2021, 64, 126081. [CrossRef]

70. Shi, X.; Wang, C.; Zhao, J.; Wang, K.; Chen, F.; Chu, Q. Increasing inconsistency between climate suitability and production of
cotton (Gossypium hirsutum L.) in China. Ind. Crops Prod. 2021, 171, 113959. [CrossRef]

71. Portz, L.; Manzolli, R.P.; Alcántara-Carrió, J.; Rockett, G.C.; Barboza, E.G. Degradation of a transgressive coastal Dunefield by
pines plantation and strategies for recuperation (Lagoa Do Peixe National Park, Southern Brazil). Estuar. Coast. Shelf Sci. 2021,
259, 107483. [CrossRef]

72. Pra, A.; Masiero, M.; Barreiro, S.; Tomé, M.; Martinez De Arano, I.; Orradre, G.; Onaindia, A.; Brotto, L.; Pettenella, D. Forest
plantations in Southwestern Europe: A comparative trend analysis on investment returns, markets and policies. For. Policy Econ.
2019, 109, 102000. [CrossRef]

73. Stewart, H.T.L.; Race, D.H.; Rohadi, D.; Schmidt, D.M. Growth and profitability of smallholder sengon and teak plantations in the
Pati district, Indonesia. For. Policy Econ. 2021, 130, 102539. [CrossRef]

74. Brown, H.C.A.; Berninger, F.A.; Larjavaara, M.; Appiah, M. Above-ground carbon stocks and timber value of old timber
plantations, secondary and primary forests in southern Ghana. For. Ecol. Manag. 2020, 472, 118236. [CrossRef]

75. Permadi, D.B.; Burton, M.; Pandit, R.; Race, D.; Ma, C.; Mendham, D.; Hardiyanto, E.B. Socio-economic factors affecting the rate
of adoption of acacia plantations by smallholders in Indonesia. Land Use Policy 2018, 76, 215–223. [CrossRef]

76. Ritter, E. Landscapes as Commons: Afforestation and the aesthetics of landscapes. In Proceedings of the 12th Biennial Conference
of the International Association for the Study of Commons. University of Gloucestershire, Cheltenham, UK, 14–18 July 2008;
pp. 1–16.

77. Bounce, R.G.H.; Wood, C.M.; Smart, S.M.; Oakley, R.; Browning, G.; Daniels, M.J.; Ashmole, P.; Cresswell, J.; Holl, K. The
Landscape Ecological Impact of Afforestation on the British Uplands and Some Initiatives to Restore Native Woodland Cover. J.
Landsc. Ecol. 2014, 7, 5–24. [CrossRef]

78. Halldórsson, G.; Benedikz, T.; Eggertsson, Ó.; Oddsdóttir, E.S.; Óskarsson, H. The impact of the green spruce aphid Elatobium
abietinum (Walker) on long-term growth of Sitka spruce in Iceland. For. Ecol. Manag. 2003, 181, 281–287. [CrossRef]

https://www.doc88.com/p-6071845802352.html
http://doi.org/10.1016/j.scitotenv.2018.11.108
http://www.ncbi.nlm.nih.gov/pubmed/30447581
http://doi.org/10.1016/j.ecolind.2021.108339
http://doi.org/10.13448/j.cnki.jalre.2021.170
http://doi.org/10.1016/j.agrformet.2019.03.025
http://doi.org/10.3390/land10101025
https://lyj.hubei.gov.cn/zfxxgk/zc_GK2020/zcjd_GK2020/202201/t20220107_3956172.shtml
https://lyj.hubei.gov.cn/zfxxgk/zc_GK2020/zcjd_GK2020/202201/t20220107_3956172.shtml
http://doi.org/10.1016/j.uclim.2019.100455
http://doi.org/10.1016/j.catena.2020.105069
http://doi.org/10.1016/j.buildenv.2021.108568
http://doi.org/10.1016/j.ecoleng.2016.10.006
http://doi.org/10.1016/j.jnc.2021.126081
http://doi.org/10.1016/j.indcrop.2021.113959
http://doi.org/10.1016/j.ecss.2021.107483
http://doi.org/10.1016/j.forpol.2019.102000
http://doi.org/10.1016/j.forpol.2021.102539
http://doi.org/10.1016/j.foreco.2020.118236
http://doi.org/10.1016/j.landusepol.2018.04.054
http://doi.org/10.2478/jlecol-2014-0013
http://doi.org/10.1016/S0378-1127(02)00658-8

	Introduction 
	Materials and Methods 
	Study Area 
	Data and Method 
	Data Acquisition 
	Data Processing 

	Ecological Function Evaluation of the Sample Land 
	Space Suitability Division 
	Space Suitable for Unit Screening 
	Filtering of Potential Distribution Key Environment Variables 
	MaxEnt Model 

	Validation of Model Accuracy 

	Results 
	Spatial Distribution of Main Coniferous Forests 
	Evolution Characteristics of Landscape Patterns of LUCC 
	Accuracy Verification of Species Distribution Model Simulation Results 
	Spatial Distribution and Quantitative Structure of Eco-Environment 

	Discussion 
	Spatial Distribution of Suitable Growing Area of Coniferous Forests 
	Other Factors That Influence Model Simulation 
	Afforestation and Other Measures for Sustainable Management 

	Conclusions 
	Appendix A
	References

