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Abstract. River monitoring is of particular interest for our society that is facing increasing complexity in water management. 

Emerging technologies have contributed to opening new avenues for improving our monitoring capabilities, but also generating 

new challenges for the harmonised use of devices and algorithms. In this context, optical sensing techniques for stream surface 10 

flow velocities are strongly influenced by tracer characteristics such as seeding density and level of aggregation. Therefore, a 

requirement is the identification of how these properties affect the accuracy of such methods. To this aim, numerical 

simulations were performed to consider different levels of particle aggregation, particle colour (in terms of greyscale intensity), 

seeding density, and background noise. Two widely used image-velocimetry algorithms were adopted: i) Particle Tracking 

Velocimetry (PTV), and ii) Large-Scale Particle Image Velocimetry (LSPIV). A descriptor of the seeding characteristics 15 

(based on density and aggregation) was introduced based on a newly developed metric π. This value can be approximated and 

used in practice as π = 𝜈0.1/ ( 𝜌𝜌𝑐𝜈1) where 𝜈, 𝜌, and 𝜌𝑐𝜈1 are the aggregation level, the seeding density, and the converging 

seeding density at 𝜈 = 1, respectively. A reduction of image-velocimetry errors was systematically observed by decreasing 

the values of π; and therefore, the optimal frame window was defined as the one that minimises π. In addition to numerical 

analyses, the Basento field case study (located in southern Italy) was considered as a proof-of-concept of the proposed 20 

framework. Field results corroborated numerical findings, and an error reduction of about 15.9 and 16.1% was calculated - 

using PTV and PIV, respectively - by employing the optimal frame window. 

1 Introduction 

River streamflow observations are of enormous importance for environmental protection and engineering practice in general 

(Anderson et al., 2006; Manfreda, 2018; Manfreda et al., 2020; Owe, 1985). Such observations are critical for any hydrological 25 

and hydraulic applications. In turn, it enables the understanding of more complex processes such as flash flood dynamics 

(Perks et al., 2016), the interaction of fish upstream and downstream of dams (Strelnikova et al., 2020), sediment transport 

dynamics (Batalla and Vericat, 2009), and bridge scour (Manfreda et al., 2018a; Pizarro et al., 2017). 
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Streamflow measurement campaigns are generally expensive and time-consuming, requiring the presence of high-qualified 

personnel and forward planning (Tauro et al., 2018). Such approaches are typically based on pointwise measurements 30 

performed with flowmeters or acoustic doppler current profilers (ADCPs) that require the direct access of the operators or 

devices into the water. On the one hand, this is necessary to provide a full description of the flow velocity profile, but on the 

other hand, it may alter the measurements given the potential interaction of these elements with the flux. This issue has been 

partially dealt with by the use of non-contact approaches, as a timely alternative for river flow monitoring. Progress in the 

development of non-contact approaches (such as image velocimetry, radars, and microwave systems) has been promising in 35 

recent years, opening the possibility for real-time, non-contact, flow monitoring. In particular, the advancements of image 

processing techniques have led to improvements of image-based approaches for surface flow velocity (SFV) estimation and 

this has enhanced the range of potential applications. Several techniques, such as Particle Tracking Velocimetry (PTV) and 

Large-Scale Image Velocimetry (LSPIV), have been proposed and applied in field campaigns to accurately estimate SFV from 

video acquisitions (Bechle et al., 2012; Huang et al., 2018; Tauro and Salvatori, 2017). In turn, videos can be recorded from 40 

different devices (fixed-station located close to the river-section of interest, using cell phones or onboard Unmanned Aerial 

Systems (UASs)), allowing an easy and portable way to estimate SFVs and, consequently, river discharge (Leitão et al., 2018; 

Manfreda et al., 2018b; Pearce et al., 2020; Perks et al., 2016; Tauro et al., 2015). 

The PTV technique revolves around particle identification and tracking (Lloyd et al., 1995) that can be implemented through 

cross-correlation (Brevis et al., 2011; Lloyd et al., 1995), relaxation (Wu and Pairman, 1995), among other methods. 45 

Additionally, particle trajectories can be reconstructed, adding valuable information to the analysis and making it possible to 

apply trajectory-based filters to ensure realistic trajectories (Eltner et al., 2020; Tauro et al., 2019). On the other side, LSPIV 

techniques apply Particle Image Velocimetry (PIV) principles (Adrian, 1991, 2005; Peterson et al., 2008; Raffel et al., 2018) 

to large scales and natural environments (Fujita et al., 1998). Interesting to mention, LSPIV recognises and tracks patterns 

instead of single tracers, while PTV single tracers. 50 

These techniques are widely used, but it is hard to quantify their accuracy at field scales. This can be influenced by: i) 

environmental conditions, which can both deteriorate and enhance the image quality during the acquisition period (Le Coz et 

al., 2010; Muste et al., 2008); and ii) the characteristics of the tracers/features, such as colour, dimension, shape, seeding 

density, and aggregation level (Dal Sasso et al., 2018, 2020; Raffel et al., 2018). PTV and LSPIV need features to identify, 

match and track to compute surface flow velocities. High seeding densities are, however, rare in natural environments and as 55 

a consequence, a general practice is the use of artificial tracers to increase the surface seeding in the field of view (Dal Sasso 

et al., 2018; Tauro et al., 2014, 2017). In this context, Figure 1 shows three different real case-study examples of natural and 

artificial seedings that tend to cluster. Remarkably, Figure 1.A reports high seeding aggregation levels and complex cluster 

structures during a flood event at the Tiber river in Italy (Tauro et al., 2017), whereas Figure 1.B and 1.C present the case when 

artificial seeding is introduced in the river system for image-velocimetry analysis (Detert et al., 2017; Tauro et al., 2017). More 60 

information about the mentioned case studies can be found elsewhere (Perks et al., 2019). 
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Figure. 1. Examples of moving and aggregated structures on the water surface: A) Natural seeding during a flood event at the Tiber 

river, Italy (Tauro et al., 2017); B) and C) Artificial seeding at low/intermediate flow conditions at Brenta river in Italy (Tauro et 

al., 2017) and Murg river in Switzerland (Detert et al., 2017), respectively. 65 

The spatial distribution of artificial tracers is, however, operator-dependent and influenced by their experience, the type of 

material deployed, and amount. External environmental and river conditions such as wind and turbulence are also important 

factors. This issue is extremely relevant for discharge estimates recovered through image-based approaches since velocity 

errors are transmitted to streamflow estimations. In consequence, and even by using up-to-date approaches, monitoring 

complex flows, and extreme flood events, is still a challenge. 70 

This paper aims to quantify the accuracy of SFV estimates under different seeding densities and aggregation levels. To achieve 

this, the following objectives were proposed: i) generation of numerical simulations of synthetically aggregated tracers to 

produce 33,600 synthetic images of known seeding characteristics; ii) using these synthetic images, a functional relationship 

between seeding densities, aggregations levels, and image velocimetry errors was derived under controlled conditions; iii) 

analysis was undertaken on footage acquired of the Basento River to determine how variations in seeding characteristics such 75 

as seeding density and aggregation level influence the image velocimetry errors in an uncontrolled field environment. Finally, 

iv) the function developed in ii) was applied to the Basento River to enable the selection of the optimal image frame sequence 

to minimise relative errors. 

The rest of the paper is organised as follows: Section 2 presents the numerical framework for synthetic image generation; a 

description of the hydrological characteristics of the Basento case study, which is used as a proof-of-concept and; an outline 80 

of the PTV and PIV techniques adopted in analysis. Section 3 analyses the effects of seeding density and aggregation level on 

image-velocimetry results, using the synthetically generated images, and those of the Basento field case study. Conclusions at 

the end. 

2 Methods 

2.1 Numerical Simulations 85 

Numerical simulations were performed to test two different image-velocimetry algorithms under controlled conditions, 

minimising the effects of external disturbances. In particular, the influence of tracer/feature properties on the final errors were 

A) B) C)
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quantified. Synthetic tracers were randomly distributed in space with a unidirectional and constant velocity. They consist of 

uniform circular shapes with diameter Dxp ≈ 10 pixels (px) and uniform white colour. Both diameters and colours were altered 

with white noise in order to consider more realistic configurations. Their spatial distribution was controlled by a Generalised 90 

Poisson Distribution (GPD) with a theoretical seeding density 𝜆 and level of aggregation 𝜐. 

The GPD was first introduced by Efron (1986), allowing the possibility to obtain point events randomly distributed in space 

with a given variance. The GPD has been used to model randomly distributed events in different studies (for instance, Good, 

Rodriguez-Iturbe, and Caylor (2013) and Manfreda, Caylor, and Good (2017) used the GPD to describe the spatial 

characteristics of the landscape and vegetation organisation across climatological gradients). In this manuscript, the synthetic 95 

tracers are assumed to be randomly distributed in space with a mean number 𝜆𝑆 where 𝑆 is the considered area. In consequence, 

the probability mass function that the random number of synthetic tracers, 𝑁, will be equal to a number 𝑛𝑖 is given by Eq. (1), 

 

𝑓𝐺𝑃𝐷(𝜆𝑆)(𝑛𝑖) = 1𝐶𝐺𝑃𝐷 exp (− 𝜆𝑆𝜐 )√𝜐 (exp(−𝑛𝑖) 𝑛𝑖𝑛𝑖𝑛𝑖! ) (exp(1) 𝜆𝑛𝑖 )𝑛𝑖/𝜐,  
 

(1) 

 

where 𝜆𝑆 and 𝜐 determine the location and the shape of 𝑓𝐺𝑃𝐷(𝜆𝑆)(𝑛𝑖), and 𝐶𝐺𝑃𝐷 is an integration constant. 

Tracers moved with a constant velocity of 15 (px/frame) along the y-axis and within a grid of 500x500 pixels on a clear 

background as representative of actual environmental conditions. Tracer diameter was set larger than 2.5 pixels in order to 100 

avoid peak locking effects (Cardwell et al., 2011; Dal Sasso et al., 2018; Nobach et al., 2005). Typical tracer dimensions at 

laboratory and field scales motivated the choice of Dxp ≈10 (px) for image-velocimetry experiments (Tauro et al., 2016). 

Synthetic image sequences were generated varying the number of tracers in the spatial domain, allowing the consideration of 

14 different seeding densities ranging from 0.4E-05 particles per pixel (ppp) up to 1.0E-02 (ppp). The range of variability was 

established based on the typical values adopted in field surveys (Tauro and Grimaldi, 2017) and numerical studies (Dal Sasso 105 

et al., 2018). Tracer colour (in terms of greyscale intensity) and diameter were altered (introducing a Gaussian white noise 

with standard deviation equal to 0.05 and 0.3, respectively) to simulate environmental signal noises (possible changes in 

luminosity, brightness, and shadows). Figure 2 shows an example of synthetic image generations with different levels of 

aggregation and a fixed value of seeding density. In particular, the spatial distribution of tracers moves from an over-dispersed 

organisation (𝜐 = 0.5), through a Poisson random distribution (𝜐 = 1) and an under-dispersed one (𝜐 = 100), to a super under-110 

dispersed distribution (𝜐 = 200). Figure 2 (A, B, C and D) presents the original synthetic generation on the clear water 

background, while Figure 2 (E, F, G and H) shows the pre-processed images, enhancing the contrast between tracers and 

background (See Section 2.3). Furthermore, each numerical experiment contains 20 images, and each configuration was run 

10 times. 𝜐 ranges from 0.5 to 200 (12 different values), and in consequence, 33,600 synthetic images were generated (14 

different 𝜆, 12 different 𝜐, 20 images per configuration, and 10 times each configuration). 115 
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Figure. 2. Synthetic generations of spatial distribution of tracers assuming different values of the aggregation parameter 𝜈 = 0.5 

(over-dispersed distribution - Fig 2.A, E), 1.0 (Poisson random distribution - Fig 2.B, F), 100 (under-dispersed distribution - Fig 2.C, 

G), and 200 (super under-dispersed distribution - Fig 2.D, H). Fixed value of the seeding density 𝜆 = 2.02E-03. The generation was 

carried out adopting a background in the images to provide more realistic conditions (A, B, C, D). Thereafter, images have been 120 
pre-processed to increase the contrast and better visualise tracers (E, F, G, H). 

2.2 Proof-of-concept: The Basento case study 

A field survey on the Basento River (Basilicata region, southern Italy) was carried out to test the outcomes of numerical 

simulations under real natural conditions. The cross-section considered for the measurements is located in the upper portion 

of the basin (catchment area of about 127 km2) (Figure 3). The main river flow characteristics, at the moment of the video 125 

acquisition, were: i) river streamflow: 0.61 (m3/s); ii) maximum flow depth: 0.38 (m); iii) river width: 6.0 (m); iv) maximum 

surface flow velocity: 0.68 (m/s); and, v) average surface flow velocity: 0.40 (m/s). Data were acquired using a DJI Phantom 

3 Professional Quadcopter equipped with an integrated 4k UHD (ultra-high-definition) video recording camera and a 3-axis 

stabilised system. Video acquisition was performed using a Sony EXMOR 1/2.3” CMOS sensor and a greyscale video was 

captured from the UAS platform with a resolution of 1920x1080 (px) (i.e., FHD). The considered frame rate was set to 24 130 

frames per second (fps). Reference objects, useful for image scale calibration and stabilisation, were positioned at visible 

locations on the riverbanks. The calibration factor converting pixels to meters was estimated, taking into consideration those 

objects with a known-a-priori dimension. The ground sampling distance (GSD) was, therefore, computed as 0.005 (m/px). 

Benchmark velocity measurements were performed using a current meter, in the proximity of the water-free surface, at 11 

different locations across the river cross-section. The spanning distance between the respective measurements was 0.5 (m). 135 

Each measurement was made over a fixed acquisition period of 30 seconds. Artificial seeding was properly deployed onto the 

water surface, giving the possibility to create complex aggregated structures. Two operators were involved in the process, and 

artificial tracers made of wood chips were used to extra seed the region of interest (ROI). 

A) B) C) D)

H)G)F)E)
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The videos captured with the UAS were first stabilised using an automatic feature selection method that identifies features in 

frame pairs, matching them to compute possible values of translation and rotation. The Features from Accelerated Segment 140 

Test (FAST) detection algorithm was applied to identify features on an ad-hoc ROI. To improve the feature matching accuracy, 

at each step, the method utilises the Random Sample Consensus (RANSAC) filter for unacceptable correspondences. The 

application of the stabilisation algorithm has allowed the effects of camera movements to be reduced throughout the duration 

of the video. Planimetric errors considering differences in translation and rotation were computed taking the first frame as the 

reference target. On average, the reduction due to the stabilisation process goes from 64 to 7 (px) for the considered case study. 145 

Therefore, movement in the original video is reduced by around 89%. The stabilisation algorithm does not require Ground 

Control Points (GCPs) to be applied. Rather, it performs the detection of features automatically, and the stabilisation process 

is, therefore, a good alternative for non-experienced users. 

The Basento River presented low-flow conditions leading to subsampling the original video from 24 to 12 (fps). The choice 

of the appropriate frame rate was made to ensure, on the one hand, a frame-by-frame displacement bigger than particle 150 

dimension and, on the other hand, to minimise the effects of camera movement between frame pairs on the calculation of 

surface velocity. As already mentioned, the footage was acquired in greyscale. A pre-processing procedure was applied using 

the contrast stretching techniques to enhance the visibility of the artificial tracers against the background. For this purpose, 

GIMP (the GNU Image Manipulation Program) was utilised to adjust brightness and contrast. This procedure eliminated a 

large amount of noise caused by external reflections, improving the number of tracers identified and cross-correlation in the 155 

ROI. Figure 3.B shows an example of the original frames (grayscale) and the pre-processed using GIMP (darker area 

overlapping the original frame). 

 

Figure. 3. A) Basento river and drainage basin with an indication of the measurement location (Basento at Potenza). B) Grayscale 

footage acquired with a DJI Phantom 3 Pro and corresponding footage after the pre-processing aimed at enhancing contrast for 160 
particle identification. 

A) B)
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2.3 Image velocimetry analysis 

PTV analyses were carried out employing a command-line version of PTVLab software (Brevis et al., 2011) that have been 

automated in order to handle the number of synthetic images. Tracer detection was performed using the particle Gaussian mask 

correlation method (Ohmi and Li, 2000). Setting parameters in terms of particle diameter and reflectance intensity were set 165 

equal to 8 px and 70, respectively. Particle tracking was implemented using a cross-correlation algorithm (Wu and Pairman, 

1995). The Interrogation Area (IA) was set at 20 px, cross-correlation threshold at 0.7, and neighbour similarity percentage at 

25%. PIV analyses were performed employing a command-line version of PIVLab software (Thielicke and Stamhuis, 2014) 

written by the authors for the same purpose. The PIV algorithm was applied using the Fast Fourier Transform (FFT) with 

three-passes standard correlation method (SA and IA sizes of 128x64, 64x32 and 32x16 px). Additionally, the 2x3-point 170 

Gaussian fit was employed to estimate the sub-pixel displacement peak. These setting parameters were carefully chosen to 

assure the right identification and tracking of synthetic tracers. For instance, PTV used a particle diameter of 8 px, while the 

synthetic diameter had an average value of 10 px with a standard deviation of 0.3 px. In addition, tracer movements must be 

inside the IA (PTV) and SA (PIV) for their right identification. The theoretical velocity was set at 15 px/frame, while IA and 

SA were 20 and 32 px for PTV and PIV (minimum one of the three passes), respectively. 175 

PTV parameter settings were slightly modified under field conditions due to the differences between the numerical and field 

datasets. In particular, the average tracer dimension at field conditions was estimated as 5 px and therefore, the particle diameter 

was set equal to 4 and the IA at 25 (px). 

Finally, the quality of the results was determined by the magnitude of the errors that were computed as 

 𝜖 = 100 × (𝑢𝑐 − 𝑢𝑅 )𝑢𝑅 ,  

(2) 

 

where 𝑢𝐶 is the computed velocity and 𝑢𝑅 is the theoretical (numerical case) or measure (field case) velocity. 180 

3 Results and Discussion 

3.1 Numerical Analysis 

The performance of PTV and PIV tracking algorithms was assessed by the calculation of errors (considering the imposed 

theoretical surface velocity) to test how the seeding density and aggregation level influence on the final velocity results. PTV 

used 8 and 20 (px) for detection and tracking, respectively. PIV used FFT with three-passes (128x64, 64x32, 32x16). No post-185 

processing method was applied to filter the spatiotemporal velocity results. The ROI was taken as the original dimension of 

the synthetic image generation, i.e. 500x500 (px). The processing times, considering the 33,600 synthetic generated images, 

for PIV and PTV analyses were 4,736 and 18,548 seconds, respectively. The same hardware (Processor i7-8700 CPU @ 3.20 

GHz 3.19 GHz and RAM 32 GB) was used for both image-velocimetry analyses, leading to a fair comparison between them. 

https://doi.org/10.5194/hess-2020-188

Preprint. Discussion started: 12 May 2020

c© Author(s) 2020. CC BY 4.0 License.



8 

 

PTV computing time was almost four times higher than PIV under the circumstances considered in this study. For all the cases, 190 

PTV and PIV techniques systematically underestimated the theoretical velocity independently of the seeding density and 

aggregation level under consideration. Consequently, only negative errors were observed with numerical results, in agreement 

with previously published work (Dal Sasso et al., 2018). 

Figure 4 shows the PTV and PIV error results with different values of seeding densities and aggregation levels. A comparison 

between PTV and PIV is shown in Figure 4.A, where each data point is associated with a colour that is scaled based on the 195 

theoretical seeding density adopted in the generation of synthetic images. A strong dependence between image-velocimetry 

results and seeding density was observed: errors can be reduced by increasing the seeding density. In all cases, PTV 

outperformed PIV under the synthetic conditions analysed in this study. These findings also support those of Tauro, Piscopia, 

and Grimaldi (2017) who found that PTV outperformed PIV in two different field case studies (Brenta and Tiber Rivers). It is 

noteworthy that the obtained results refer to a single synthetic experiment that, although realistic, is not representative of any 200 

field condition. Therefore, further investigations with a larger set of idealised and field circumstances should be carried out to 

generalise the obtained results. 

 

Figure 4. Comparison of PTV and PIV results using synthetic images with different values of seeding density and aggregation level. 

A) PTV vs PIV errors (𝝐𝑷𝑻𝑽 and 𝝐𝑷𝑰𝑽, respectively). Each data point is associated with a colour that is scaled based on the theoretical 205 
seeding density adopted in the numerical generation of synthetic images. B) Envelope error curves and areas in function of seeding 

density and level of aggregation 𝝂. The blue and orange colours are associated with PTV and PIV results, respectively. Dashed and 

solid lines are associated with 𝝂 = 𝟎. 𝟓 and 𝝂 = 𝟐𝟎𝟎, respectively. C) Zoom of the right upper portion of B). 
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Figure 4.B shows the envelope error curves (and areas between them) for a range of seeding densities and level of aggregation 

ν. The blue and orange colours are associated with PTV and PIV error results, while dashed and solid lines are associated with 210 

ν = 0.5 and ν = 200, respectively. For the sake of simplicity, Figure 4.B only shows the extreme cases when ν = 0.5 and ν = 

200; nevertheless, all the other cases (with ν values between these extreme considered cases) were confined and within these 

envelope curves. Error results of both techniques were influenced by ν, with a higher aggregation level tending to deteriorate 

the accuracy of image-velocimetry results, producing higher errors and associated variability across the range of seeding 

densities. When the sensitivity of PIV and PTV to changes in ν are compared, it is clear that PIV is generally more sensitive 215 

than PTV, as demonstrated by the greater distance between ν = 0.5 and ν = 200 lines for a given seeding density, and by the 

orange shaded area being greater than the blue. The seeding density leading to the minimum converging error (around 2 – 3%) 

depended on ν. For instance, considering the PIV case, the converging seeding density values were 1.52E-03 and 1.02E-02 for 

ν = 0.5 and ν = 200, respectively. The converging seeding density values for PTV were 1.02E-03 and 2.02E-03 for ν = 0.5 and 

ν = 200, respectively. 220 

These numerical results are useful to visualise more-in-depth trends under controlled flow conditions, avoiding external 

disturbances. Results demonstrated that the minimum required seeding density to produce an error equal or lower than 3% 

differs slightly between the two techniques. We used this percentage as a reference error in order to derive a reference seeding 

density associated with a known error. It was observed that PIV required 1.52E-03 (ppp), while PTV needed about 1.02E-03 

(ppp) to reach the same error. Notably, seeding densities lower than 1.0E-03 produced larger errors (larger than 3%) and 225 

consequently, flows should be extra-seeded in field campaigns for optimal implementation of the methods. This practice should 

always be adopted since typical natural flows are not characterised for presenting elevated transiting features, with maybe the 

exception of high flows. Furthermore, the effective seeding density (defined as the seeding that the algorithms are genuinely 

able to identify, match, and track) is always lower than the one transiting onto the water surface and therefore, the extra seed 

practice is recommended. We are aware that this recommendation may not be practical in all conditions since fixed cameras 230 

can operate remotely without the necessity to be in-person at the field site. Furthermore, deploying material in wide channels 

or difficult-to-access areas can be challenging. 

Following dimensional considerations, a model of the image-based errors can be formulated. Since the only variables 

considered in this study were the aggregation level and the seeding density, it is hypothesised that these errors depend on only 

these variables. In functional form 235 

 𝑓(𝜖, 𝜈, 𝜌, 𝜌𝑐𝜈1) = 0,  

(3) 

 

where 𝑓 = function, and 𝜌 and 𝜌𝑐𝜈1 are the seeding density and the converging seeding density at 𝜈 = 1 (Poisson case taken 

as a reference). According to the Buckingham- 𝜋 theorem, Eq. (3) can be rewritten in terms of dimensionless parameters as 

follows 
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 𝜖 = 𝑓 ( 𝜈, 𝜌𝜌𝑐𝜈1).  

(4) 

 

The function 𝑓 is usually considered as a multiplication of power laws. In this study, we partially follow this approach and 

also hypothesise that the functional relationship 𝑓 is described by a two-parameter exponential function: 240 

 𝜖 = 𝑐1(1 − 𝑒−𝑐2𝜋),  

(5) 

 

where π = 𝜈𝑘1 ( 𝜌𝜌𝑐𝜈1)𝑘2
 is the multiplication of power laws; and,  𝑐1, 𝑐2, 𝑘1, 𝑘2 are fitting coefficients. Model performance was 

quantified by means of the root mean square error (RMSE) and the Nash-Sutcliffe efficiency (NSE) for prediction of the 

image-velocimetry errors. In turn, the fitting coefficients were calibrated using the MATLAB genetic algorithm optimising 

RMSE. Table 1 summarises the results of the calibration process for both PTV and PIV, while Figure 5 shows the image-

velocimetry errors in function of π, and observed versus computed errors. It is observed from Eq. (5) and π can correctly 245 

reproduced the main dynamics of the image-velocimetry errors, reporting low RMSE values in calibration (5.34 and 5.77% 

for PIV and PTV, respectively). A visual inspection of Figure 5.A1 and 5.B1 shows that increasing π values leads to higher 

errors for both image-velocimetry techniques. Figure 5.A2 and 5.B2 also show that the predictive capacity of Eq. (5) is higher 

at low PTV and PIV error values. 

Even though PIV and PTV work differently, the fitted values in Eq. (5) were similar. Remarkably, 𝑘1 and 𝑘2 showed that the 250 

dimensionless π parameter can be approximated and used in practice as π = 𝜈0.1/ ( 𝜌𝜌𝑐𝜈1). Furthermore, considering that the 

errors are minimised when π takes low values, π can be used in field conditions as a descriptor to choose the optimal portion 

of a video to analyse in order to minimise the errors in image-velocimetry estimates as a function of seeding density and 

aggregation level. This novel idea is explored in the next subsection, taking the Basento River as a proof-of-concept case study. 

 255 

Table 1. Calibrated values of 𝒄𝟏, 𝒄𝟐, 𝒌𝟏, 𝒌𝟐 and model performances in terms of RMSE (%) and NSE. PTV and PIV calibration 

results. 𝝆𝒄𝝂𝟏 values for PIV and PTV were taken from Figure 4 and are 1.52E-03 and 1.02E-03, respectively. 

 𝒄𝟏 𝒄𝟐 𝒌𝟏 𝒌𝟐 RMSE (%) NSE 

PTV -71.87 0.04 0.10 -1.09 5.77 0.92 

PIV -78.49 0.07 0.10 -1.06 5.34 0.97 
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Figure 5. Image-velocimetry errors in function of 𝛑 (A1 and B1) and observed versus computed errors (A2 and B2). Blue and orange 260 
colours are related to PTV and PIV numerical error results. Solid lines represent Eq. (5), while the dashed lines are the perfect 

agreement between observed and computed image-velocimetry errors. 

3.2 Field Campaign: The Basento case study 

Outcomes of the numerical analysis were tested on a real case study in order to identify the best temporal window for image 

velocimetry analyses. The case study was selected due to the spatial distribution of tracers varying significantly during the 265 

recording period, making it challenging to manually select the optimal frames for analysis. Figure 6 displays a pre-processed 

frame with the location of the measuring points using standard equipment (from L1 to L11). These surface flow velocity 

measurements were taken as reference velocities for PTV and PIV benchmarking. Figure 6.B and 6.C show a zoom of the ROI 

and the identification of transiting features, respectively. An example of identified features is presented in Figure 6.D. In this 

Figure, the number of features, their relative positions and associated areas were identified using an ad-hoc algorithm recently 270 

developed by the authors. This enables characterisation of the seeding properties (i.e., empirical seeding densities and 

aggregation levels) on a frame-by-frame basis even if shapes and dimensions of the tracers vary considerably. Using this 

approach, the empirical aggregation level (i.e., the empirical one equivalent to the used in the numerical simulations), was 

quantified through the dispersion index D.  D = σ2/µ, where σ2 and µ are the variance and mean values of the seeding density 
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computed in sub-patches of the same size. This metric is normally measured to quantify whether a set of events are clustered 275 

or dispersed. As in the numerical case, D = 1 means features follow a Poisson distribution, while D < 1 and D > 1 follow an 

over- and under-dispersed spatial distribution. 

 

Figure 6. A) Pre-processed frame indicating the ROI and the reference measuring locations for benchmark purposes. The isolation 

of the ROI is presented in B), while in C) an example of identified features on the water surface. D) Zoom of an arbitrary portion of 280 
the ROI with the identified features. 

Figure 7 shows a comprehensive overview of the seeding behaviour during the 200 frames considered for the analysis. Figure 

7.A and 7.B present the seeding density in ppp, and the dispersion index D computed as a function of the frame number. The 

minimum and maximum values for seeding density – and dispersion index – were 1.3E-04 and 2.9E-03 (ppp) – and 4.1 and 

57.3 –, respectively. Additionally, the estimated mean area of features (computed frame-by-frame and inside the ROI) varied 285 

between 1.5 and 3.5 cm2 approximately. 

 

Figure 7. Overview of seeding characteristics on the ROI of the Basento River during the acquisition time: A) Seeding density in 

ppp, B) Dimensionless dispersion index D. 

L2 L3 L4 L5 L6 L7 L8 L9 L10 L11L1

A) B)

C)

D)
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The approach mentioned above made it possible to compute π and correctly identify the worst and best part of the video for 290 

image velocimetry analysis. A moving window of 100 frames was arbitrarily chosen, on which an average dispersion index D 

and seeding density was computed. This decision was motivated to increase the odds of populating the entire ROI with features. 

The empirical π was then calculated as π = 𝐷̅0.1/ ( 𝜌̅𝜌𝑐𝜈1), where 𝐷̅ and 𝜌̅ are the average-in-100-frames dispersion index and 

seeding density, respectively. Figure 8.A depicts π in function of the frame windows. Triangle markers correspond with the 

minimum and maximum value of π and their respective locations (82-181 and 1-100, respectively). Figure 8.A shows the 295 

particular case of PTV; nevertheless, PIV presented similar results. The locations of the minimum and maximum π values was, 

therefore, unaffected by the image-velocimetry technique under consideration. 

 

Figure 8. A) π in function of the frame windows considering 100 frames. Triangle markers correspond with the minimum and 

maximum value of π. Their locations were 82-181 and 1-100, respectively. Particular case of PTV, whereas PIV showed similar 300 
results and the locations of the minimum and maximum π values were unaffected by the image-velocimetry technique. B) 

Comparison between PTV and PIV data for experiments on the Basento River. Values recorded with the current meter are also 

reported for a rapid visual assessment (green squares). Blue and orange colours represent PTV and PIV data. 

Image-based velocity results were averaged in a block of 30x30 cm2 for a fair comparison among PTV, PIV, and benchmark 

velocity values. The measuring locations corresponded with the centre of the blocks. Computed velocities across the cross-305 

section and reference velocities are reported in Figure 8.B. The blue and orange colours are associated with PTV and PIV 

results, respectively (same colours used within numerical results for consistency and fast visual comparison). Green squares 

are the velocities measured using the current meter. Notably, the measuring location L1 had no computed velocity values due 

to the lack of features transiting on this part of the ROI, whereas only PIV was able to compute velocities at L2. This issue can 

be explained due to the inherent property of PIV that is able to identify and track other features such as ripples and other 310 

https://doi.org/10.5194/hess-2020-188

Preprint. Discussion started: 12 May 2020

c© Author(s) 2020. CC BY 4.0 License.



14 

 

structures transiting on the water surface. Interestingly, and in agreement with numerical results, 80% (frames 1-100) and 75% 

(frames 82-182) of the computed velocity measuring locations underestimated the reference velocities using PTV. Similarly, 

results using PIV were 67 and 78%, respectively. Therefore, a close agreement was observed with the numerical results that 

systematically presented underestimations of computed velocities in comparison with the theoretical one. Interesting to 

mention is also the fact that considering the optimal frame window allowed the computation of velocities over more reference 315 

locations than using frames 1 - 100 (PTV: 72.7 vs 45.5%; PIV: 81.8 vs 81.8%). 

Both image-velocimetry approaches correctly captured the mean behaviour of velocities across the cross-section. Table 2 

presents summarised information of the average-in-100-frames seeding density and dispersion index as well as the initial and 

final frame used for image-velocimetry purposes. The π value is also presented as well as the absolute average error across the 

cross-section. As expected from numerical analyses, an error reduction of about 15.9% (PTV) and 16.1% (PIV) was found on 320 

the Basento case study by employing the optimal frame window that minimises π. It is therefore recommended that π is used 

as a descriptor of the optimal portion of a video to analyse. 

 

Table 2. Overview of features characteristics, minimum and maximum π values, and absolute errors using PTV and PIV. Values in 

parenthesis correspond with the error reduction using the optimal frame window. 325 

Frames 𝝆̅ 𝑫̅ 
π Absolute average Error (%) Absolute Error Eq. (5) (%) 

(from – to) (ppp) PTV PIV PTV PIV PTV PIV 

1 - 100 1.2E-03 26.1 1.16 1.72 27.72 28.74 3.70 8.91 

82 - 181 1.7E-03 18.2 0.81 1.21 23.31 (15.9) 24.11 (16.1) 2.61 (29.5) 6.36 (28.6) 

 

Finally, considering numerical findings, field image-based estimates presented larger errors in comparison with numerical 

results for the respective same values of π (last two columns of Table 2). This is despite the average seeding density being 

relatively high (~1.5E-03) and the average dispersion index relatively low (~20). Possible reasons for deteriorations in PTV 

and PIV estimates can be attributed to other variables such as video stabilisation issues, noise due to different environmental 330 

conditions (e.g., intermittent and different levels of illumination, water reflections, and presence of shadows), and different 

shapes and dimensions of features (stressing the matching and tracking process between consecutive frames). At this regard, 

Dal Sasso et al. (2020) recently introduced some metrics for the quantification of seeding characterisitics needed to enhance 

image-velocimetry performances in rivers. Among them, the seeding density, aggregation level, and coefficient of variation 

of tracers’ dimension were statistically significant to velocity estimation accuracy. These issues should be the subject of further 335 

investigation, along with the application of these ideas to case studies with very different field conditions to assess the 

uncertainty of computed surface velocities and remote river flow estimates. 

https://doi.org/10.5194/hess-2020-188

Preprint. Discussion started: 12 May 2020

c© Author(s) 2020. CC BY 4.0 License.



15 

 

4 Conclusions 

In this paper, we investigated the performances of PTV and PIV for surface flow velocity estimations. Synthetic generation of 

33,600 images was generated to test image-velocimetry techniques under different levels of tracer aggregation and seeding 340 

density. In all numerical cases, velocity results systematically underestimated the theoretical imposed velocity. A general trend 

was observed by increasing the seeding density and decreasing the level of aggregation, in which results were improved. The 

main advantage of the numerical proposed approach is the controlled conditions in which the analyses can be conducted, 

minimising the effects of external disturbances. This later helped to visualise the hidden trends that optimise image-based 

estimates. Based on numerical findings, seeding densities lower than 1.0E-03 produced larger errors and in consequence, flows 345 

should be extra-seeded in field campaigns for optimal implementation of image velocimetry methods. Additionally, the 

dimensionless π parameter was introduced as a descriptor of the optimal portion of the video to analyse using the studied 

image-based techniques. Based on numerical results, π can be approximated and used in practice as π = 𝜈0.1/ ( 𝜌𝜌𝑐𝜈1), where 𝜈, 𝜌, and 𝜌𝑐𝜈1 are the aggregation level, the seeding density, and the converging seeding density at 𝜈 = 1, respectively. A 

reduction of image-based errors was observed by decreasing the values of π. 350 

The Basento field case study (located in southern Italy) was considered as a proof-of-concept of the proposed framework. 

Seeding characteristics were empirically estimated through a novel algorithm recently developed by the authors, opening the 

possibilities of more refined analyses. The number of features, relative positions, and associated areas were saved for the 

computation of the empirical seeding densities and aggregation levels. The empirical π values were then computed, and two 

extreme cases were considered for velocimetry comparison purposes: i) the one considering the maximum value of π (worst 355 

case), and ii) the one related to the minimum π (best case). Field results corroborated numerical findings, and an error reduction 

of about 15.9 and 16.1% was then calculated - using PTV and PIV, respectively - on the Basento case study by employing the 

optimal frame window. The optimal frame window was defined as the one that minimises π. 

Interesting to note, field image-based estimates presented larger errors than numerical results for the respective same values 

of π. Possible reasons deteriorating PTV and PIV estimates can be attributed to other variables such as: i) video stabilisation 360 

issues; ii) intermittent and different levels of illumination, water reflections, and presence of shadows; and, iii) different shapes 

and dimensions of features, stressing the matching and tracking process between consecutive frames. The authors are keen to 

apply these ideas to further assess the uncertainty in remote flow velocities and river discharge estimates. 
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