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Abstract Physical and mathematical model of a three-

dimensional double physical pendulum being coupled by

two universal joints is studied. Upper joint of this pendu-

lum is periodically rotated in its axial direction. Damping

forces and torques inside joints as well as an influence of

the gravitational field and damping forces and torques inside

joints are taken into account during derivation of the ODEs

of this mechanical system. The work consists of mathemati-

cal modelling, computer simulation and parts of the experi-

mental analysis to confirm the numerical simulations. The

experimental setup realizes kinetic excitation by an non-

constant periodic torque of servomotor, controlled by the

computer. Four incremental encoders are mounted on pen-

dulum joints, so the angles of rotation of the pendulum are

measured in real-time and analysed by an originally devel-

oped acquisition software. Future plans of the mathematical

and experimental model are also discussed. Presented exem-

plary results showed a number of non-linear effects, includ-

ing chaos, quasi-periodic and periodic dynamics.
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1 Introduction

We consider the mathematical model of a simple three-

dimensional (3D) double physical pendulums system, under

specific conditions. The mechanism is physically excited by

a periodic torque in axial direction and linearly damped by

each joint. This excitation is applied to the suspension joint

of the mechanism. Such an approach (damping and excita-

tion) is often used in many pendulum analysis but rarely the

excitation has axial direction.

There are many examples of simple mechanical systems

that exhibit complex behavior under certain conditions. Com-

mon pendulum, e.g. a clock by Huygens [1], under typi-

cal situations, are not enough interesting in term of nonlin-

ear dynamics. It appears here that the conditions are more

important than the mechanisms itself. The pendulum became

highly fascinating under specific circumstances, e.g. influ-

ence of excitation and damping.

The evolution of pendulum analysis started from the mea-

surements and experiments, e.g. famous Foucault’s pendu-

lum, 1851 [2,3] or Kater’s reversible pendulum [4]. Nowa-

days pendulum mechanisms are more often used in theoret-

ical or practical mathematical modeling process, for exam-

ple, to develop more effective vibrations absorption methods

[5,6]. There are also advanced research about the pendulum

itself, including its experimental identification [7,8] or con-

trol algorithms [9].

Multiple pendulum systems are mostly simplified either

to planar vibrations [10,11] or they concern only mathemat-

ical pendulums [12]. Physical pendulums are examined in

their multiple configuration, e.g. [13,14] but also in some

simplified forms.

This paper presents the results of numerical computations,

as well as the possibilities of applications of the original sim-

ulation program. A wide range of nonlinear behavior of the
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Fig. 1 Coupled pendulums

system is noticed. Additionally, some results of simulations

for the ready built experimental setup are presented.

1.1 The Pendulum Model

The system to be considered here is shown in Fig. 1. It is build

of two cylindrical-shaped rigid bodies combined by universal

joint O2 and hung on a second universal joint O1. This joint is

externally driven and it actuates the entire mechanical system

axially with either constant or non-constant angular velocity.

Influence of the gravitational force is also included. The only

damping force that the model contains is inside joints and it

is characterized by a simple viscous damping function. Air

resistance is neglected due to low velocities of vibrations and

relatively large moments of inertia.

Angular positions of each universal joint’s shaft have

been described by three Euler angles ϕi , θi and ψi , where i

corresponds to an index of each joint. The rotation matri-

ces are found, as well as positions of each body cen-

ters. Also its linear and angular velocities and energy are

defined.

Analytically determined set of nonlinear ODEs governing

the pendulum dynamics follows

M(q)q̈ + A(q)a + (ω(t)B(q) + C)q̇ + rg(q)

+ω2(t)rω(q) = 0, (1)

where q = [θ1, ϕ1, θ2, ϕ2]
T , a = [θ̇2

1 , ϕ̇2
1 , θ̇2

2 , ϕ̇2
2 , θ̇1ϕ̇1,

θ̇1θ̇2, θ̇1ϕ̇2, θ̇2ϕ̇1, ϕ̇1ϕ̇2, θ̇2ϕ̇2]
T , and M, A, B, C, rg, rω

devote matrices and vectors (here not defined explicitly).

Analytical Wolfram Mathematica� computer package has

been carried out, during process of derivation of Eq. (1). Full

form results are too large and couldn’t be simplified enough

to show in this paper.

In the study, simple model of viscous damping of joints is

assumed in the following form:

Md =
[

Mdθ1 − Mdθ2 , Mdϕ1 − Mdϕ2 , Mdθ2 , Mdϕ2

]T
,

(2)

where Mi are corresponding damping torques proportional

to the angular velocities.

Angular velocity of the axial excitation of first joint fol-

lows:

ψ̇1 = ω(t) = ω0 + q sin(Ωt), (3)

where ω0 is a constant part of velocity (rad/s), q is the ampli-

tude (N m) and Ω states for frequency (rad/s).

Unlike experimental setup, the mathematical model does

not take into account impacts caused by the mechanical lim-

its of real double spatial pendulum rotation yet. That is why

the full comparison of the theoretical model and experi-

mental measurements can be performed for low amplitudes

only, smaller than about 90◦. However, this does not pre-

vent to achieve some really interesting simulations results

based on the experimental setup parameters (not measure-

ment), without angle limits. Full experimental analysis will

be performed after including impacts model to the equations

of the motion, increase damping coefficients in the exper-

imental joints to prevent such impact and/or preparing the

setup to hold out frequent impacts without the risk of fail-

ure.

2 Numerical computations

Results presented in this paper concern the following fixed

parameters (see Fig. 1) presented in Table 1. Values on the

left are theoretical ones, chosen for the purpose of exemplary

simulations. Two columns on the right presents simulation

parameters that corresponds to the measured values of built

experimental setup.

According to the User manual of Wolfram Mathematica�

package, its ODEs solving algorithm is based on higher order

Runge–Kutta methods with automatic step control. Results,

as well as the plots, are automatically interpolated to any

chosen time steps.

Analytically determined ODEs set (1) was simplified and

solved numerically for parameters values showed in Table

1. Every first 500 time steps of all numerical computations
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Table 1 Numerical

computation parameters Simulation example Experiment

First joint Second joint First joint Second joint

Weight of the pendulums (kg) m1 = 0.5 m2 = 0.5 m1 = 3.87 m2 = 2.12

Length (m) L1 = 0.2 L2 = 0.2 L1 = 0.22 L2 = 0.2

Position of the mass center (m) e1 = 0.1 e2 = 0.1 e1 = 0.11 e2 = 0.039

Moments of inertia (kg m) Ix1 = 0.002 Ix2 = 0.002 Ix1 = 0.032 Ix2 = 0.004

Iy1 = 0.002 Iy2 = 0.002 Iy1 = 0.025 Iy2 = 0.007

Iz1 = 0.0001 Iz2 = 0.0001 Iz1 = 0.009 Iz2 = 0.005

Viscous damping coefficient (N s/m) c1 = 0.1 c2 = 0.1 c1 = 0.1 c2 = 0.1

Fig. 2 Number of full 360◦ rotations map for angle ϕ1 and ω0 = 0; a exemplary simulation, and b simulation of built experimental setup

were ignored as transient motion and next 500 or more if

needed were qualified as significant for the analysis.

2.1 Results and analysis

To find globally how much these two systems (example and

experiment, see Table 1) are different, 2D maps of maximum

numbers of full 360◦ rotations were computed (Fig. 2) for the

same range of control parameters q and Ω, while ω0 equals

0 rad/s (pure periodic excitation).

One can see some similarities between them the maps,

especially in the shape of the regions where the number of

full rotations are low. These maps need a very long time

of computing (here about 31 h) but it reveals some general

information about the system itself, faster than the bifurcation

diagrams.

Using the classical methods of analysis of dynamic sys-

tems, the bifurcation diagrams, Poincaré maps and phase

plots were produced numerically. In Fig. 3, three nonlinear

phenomena are presented. Amplitude of excitation q was set

to 12 N m to cover all three regions of different value of full

rotations (see Fig. 2).

While changing value of the control parameter Ω, several

types of nonlinear behaviour can be observed, including sim-

ple periodic vibrations, e.g. for Ω = 5.7 rad/s (see Fig. 3c),

quasi-periodic vibrations, e.g. Ω = 5.5 rad/s (see Fig. 3a) or

wide window of chaotic movement for Ω around 5.49 rad/s

(see Fig. 3b).

Similar analysis were performed for the parameters that

corresponds to built experimental setup. This time, the sys-

tem also showed a number of interesting non-linear phe-

nomena, reported in Fig. 4. During the simulation process, it

appeared that the system is less sensitive to exhibit nonlin-

ear phenomena than the exemplary one. The reason for this

is probably a large moments of inertia of the experimental

pendulum, and a small damping of motion. Apart from this,

it can be seen here also periodic, quasi-periodic and chaotic

behaviour of our investigated system.
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Fig. 3 Bifurcational diagram regarding angle ϕ1 in range Ω ∈ 〈5.42, 5.72〉 rad/s with step 0.0006 rad/s for ω0 = 0 rad/s and q = 12 N m (a), three

sets of phase trajectories (b) and Poincaré maps (c) corresponding to three different nonlinear phenomena (for exemplary system parameters)

3 Experimental rig

In Fig. 5 one can see the photography and construction

scheme of the experimental rig. The original control and

acquisition software has been developed, using Java pro-

gramming language. It can perform in real-time, parallel

measurements of values of all four angles of rotation simul-

taneously. The program can control the parameters of the

external excitation and at the same time record each pendu-

lums link position.

The orientation of each pendulum link is measured by four

precise incremental encoders and the dedicated PC acquisi-

tion card. To transmit signals between rotating pendulums

equipped with the encoders and mounting frame, without the

risk of the wiring damage, special slip ring is used. It consists

of motor-like brushes, which provides a continuous electrical
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Spatial double physical pendulum with axial excitation 5

Fig. 4 Bifurcational diagram regarding angle ϕ1 in range Ω ∈ 〈7, 7.75〉 rad/s with step 0.05 rad/s for ω0 = 0 rad/s and q = 12 N m (a), three sets

of phase trajectories (b) and Poincaré maps (c) corresponding three different nonlinear phenomena (for experimental setup system parameters)

connection both of measurement signals and of power sup-

plied to the encoders. The external angular velocity excitation

is provided by the PC-controlled servomotor.

Some preliminary measurements have been performed.

Figure 6 shows a time series measurement under constant

angular velocity of excitation equals 3.7 rad/s.

Presented plot of angular positions of each link shows

that as the higher frequency vibrations disappears, all

four links oscillate simultaneously. Afterwards, because of

the influence of the constant axial excitation, the ampli-

tude of vibration increases gradually to reach its construc-

tional limits, and takes place an impact. This impact sce-
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Fig. 5 A part of the designed experimental rig

Fig. 6 Time series of angular positions of all two links measured under constant angular velocity of excitation ω0 = 3.7 rad/s, before impacts

nario is presented in Fig. 7. However, the build exper-

imental setup is not prepared for frequent collisions of

its links and has to be modified to prevent its dam-

age.

As showed in Fig. 8, the measurement equipment is

enough fast to make some draft phase plots. It should be

noted that there is no direct information about the angu-

lar velocities of the links, and they have to be calculated

numerically. Applied numerical differentiation algorithm

makes the plot quite discrete but sufficiently suitable for fur-

ther generation of bifurcation diagrams or other data analy-

sis.

4 Conclusions

As it was presented before, double physical pendulum with

axial excitation, either in exemplary and experimental con-

figuration, exhibits a wide spectrum of nonlinear effects.

Periodic, quasi-periodic and chaotic orbits have been found

and discussed, among others. Preliminary measurement data

plots have been also showed and shortly discussed. Numer-

ically generated full 360◦ rotation maps of the pendulum

links show that both configurations reveals some similarity,

despite of the fact that its geometrical and mechanical para-

meters differ significantly.
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Fig. 7 Time series of angular

positions of all two links

measured under constant

angular velocity of excitation

ω0 = 3.7 rad/s, ended with

impacts

Fig. 8 Phase trajectories of the second link measured under constant

angular velocity of excitation ω0 ≈ 3.7 rad/s, for low amplitudes, before

impacts

Presented figures and the carried out study confirm that

performed analytical and numerical calculations can be used

to analyse and simulate multiple pendulum systems and other

similar multiple rigid body mechanical systems.

The next step of this project is to extend the mathe-

matical model to include impacts. Additionally, the exper-

imental setup has to be upgraded, to make possibility

of modifying the damping coefficient of all pendulums

links (ball bearings) and to automatically detect all poten-

tial impacts occurrence. Rapid responsible impacts detec-

tion is necessary to make a long-time measurements guid-

ing to Poincaré maps and bifurcation diagrams genera-

tion. That will make possibility to perform full identifi-

cation of built system with no other mechanical limita-

tions.
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