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As a fundamental component in material and energy circulation, precipitation with high resolution and accuracy is of great
signi
cance for hydrological, meteorological, and ecological studies. Since satellite measured precipitation is o�en too coarse for
practical applications, it is essential to develop spatial downscaling algorithms. In this study, we investigated two downscaling
algorithms based on the Multiple Linear Regression (MLR) and the Geographically Weighted Regression (GWR), respectively.
	ey were employed to downscale annual and monthly precipitation obtained from the Global Precipitation Measurement (GPM)
Mission in HengduanMountains, Southwestern China, from 10 km × 10 km to 1 km × 1 km. Ground observations were then used to
validate the accuracy of downscaled precipitation. 	e results showed that (1) GWR performed much better than MLR to regress
precipitation on Normalized Di�erence Vegetation Index (NDVI) and Digital Elevation Model (DEM); (2) coecients of GWR
models showed strong spatial nonstationarity, but the spatial mean standardized coecients were very similar to standardized
coecients of MLR in terms of intra-annual patterns: generally NDVI was positively related to precipitation when monthly
precipitation was under 166mm; DEM was negatively related to precipitation, especially in wet months like July and August;
contribution of DEM to precipitation was greater than that of NDVI; (3) residuals’ correction was indispensable for the MLR-
based algorithm but should be removed from the GWR-based algorithm; (4) the GWR-based algorithm rather than theMLR-based
algorithm produced more accurate precipitation than original GPM precipitation.	ese results indicated that GWR is a promising
method in satellite precipitation downscaling researches and needed to be further studied.

1. Introduction

As a fundamental component in material and energy circu-
lation, precipitation is of great signi
cance for hydrological,
meteorological, and ecological studies (e.g., [1–3]). Tradition-
ally, spatial distribution of precipitation is obtained through
rain gauge data interpolation [4]. However, interpolation
methods are greatly limited over mountainous regions due
to the sparse rain gauge network [5, 6]. Satellite precipitation
datasets based on remote sensing technology have devel-
oped rapidly since the 1980s, such as the Global Precipita-
tion Climatology Project (GPCP, [7]), the Tropical rainfall
Measuring Mission (TRMM, [8, 9]), the Global Satellite
Mapping of Precipitation (GSMaP, [10]), and the Global

Precipitation Measurement (GPM) mission [11–13]. Gridded
satellite precipitation datasets provide reliable estimations of
precipitation re�ecting more spatial distribution than rain
gauge data. However, for regional scale applications, they are
o�en too coarse to be used in hydrological, meteorological,
or ecological studies [14, 15]. Taking TRMMas an example, its
spatial resolution is only 0.25∘× 0.25∘.	erefore, it is essential
to develop downscaling algorithms for satellite datasets to
improve their resolutions as well as accuracy.

Relationships between precipitation and other environ-
mental factors such as vegetation and topography have been
widely investigated in the literature [16–21]. Meanwhile,
available resolutions of gridded data of these factors are
o�en higher than those of satellite precipitation products.
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For instance, the SPOT Normalized Di�erence Vegetation
Index (NDVI) is available at 1 km × 1 km resolution. 	ere-
fore, it is a feasible approach to downscale precipitation
through establishing statistical models of precipitation and
these factors, and this is termed as statistical downscaling
algorithms. 	eir fundamental statistical theories could be
classi
ed into regression analysis [14, 15, 22–24] andmachine
learning methods such as Arti
cial Neural Network [25, 26]
and random forests [27–29].

In this article, regression-based downscaling algorithms
were mainly concerned and investigated. Immerzeel et al.
[23] established exponential regression (ER) models between
annual TRMM precipitation and NDVI at di�erent spatial
resolution from 0.25∘ to 1.50∘, among which who with the

optimal coecient of determination (�2) was eventually
selected to downscale the TRMM precipitation from 0.25∘

to 1 km. Jia et al. [14] introduced both NDVI and Digital
Elevation Model (DEM) as the explanatory variables in
a Multiple Linear Regression (MLR) model. Independent
station validation in the two studies and later studies [15,
22, 24, 30] showed that the downscaled precipitation based
on ER or MLR a�er residual correction was comparable
with the original TRMM product but at much improved
resolution.

Nevertheless, there are several limitations of the above
downscaling algorithms. Firstly, downscaled precipitation
would inevitably inherent errors in the original satellite pre-
cipitation [14, 23]. 	is indicates that it is not likely to obtain
accurate downscaled precipitation from inaccurate satellite
datasets. 	erefore, the next generation GPM product with
higher quality and resolution (0.1∘ × 0.1∘) was used as the
original satellite precipitation to partly overcome this prob-
lem. As far as our information goes, most previous studies
were based on TRMM, and downscaling algorithms based on
GPM product were short of research. Secondly, performance
of downscaling these algorithms relies on goodness-of-
t of
regression models. 	e above two algorithms are both glob-
ally regression models which assume that the relationships
among precipitation, NDVI, and DEM are spatially station-
ary. Against their assumption, however, precipitation-NDVI
and precipitation-DEM relationships were both reported to
be spatially nonstationary [17, 18, 21]. Brunsdont et al. [31]
put forward a local regression model called Geographically
Weighted Regression (GWR) to handle the problem of spatial
nonstationary. GWR-based satellite precipitation downscal-
ing algorithm was found to perform better than the two
global-regression-based algorithms over various regions on
TRMM product, at both annual scale and monthly scale
[15, 30, 32].

	is study aims to investigate the e�ectiveness of the
MLR-based and GWR-based downscaling algorithms on
GPM annual and monthly precipitation. To this end, NDVI
and DEM were employed as the explanatory variables in
the MLR-based and GWR-based downscaling algorithms
to downscale GPM monthly and annual precipitation from
10 km × 10 km to 1 km × 1 km over Hengduan Mountains,
Southwestern China.	eir performances were validatedwith
observed precipitation from 71 rain gauge stations.

2. Study Area and Datasets

2.1. Hengduan Mountains. Hengduan Mountains (24∘40�–
34∘00�N; 96∘20�–104∘30�E) locates in the southwestern of
China and the southeastern of Tibetan Plateau, with an
area of ∼500,000 km2. 	e study region possesses a complex
topography with plenty of high mountains and deep-cutting
gorges which run north to south. 	e climate of Hengduan
Mountains is mainly controlled by southwest Asian mon-
soon, the southeast Asianmonsoon, and the winter monsoon
as well as local circulation of Tibetan Plateau. Meanwhile,
due to its wide range of altitude from 300m to over 7000m,
the climate also varies vertically. Mean annual precipitation
of Hengduan Mountains is about 800mm and more than
75% comes from the summer monsoon (May to October).
To weaken the in�uence of edge e�ect of the downscaling
algorithms, a 100 kilometers wide bu�er area was added to
the study area during calculation and validation.

2.2. Precipitation Datasets. 	e Global Precipitation Meas-
urement (GPM) Mission, as a successor of the Tropical
rainfall Measuring Mission (TRMM), aims to provide a new
generation of global rainfall and snowfall observations. 	e
Core Observatory satellite was launched in February 2014 by
the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace and Exploration Agency (JAXA)
carrying the GPM Microwave Imager (GMI) and the Dual-
frequency Precipitation Radar (DPR).	is study selected the
GPM-3IMERGMproduct (GPM for short, downloaded from
https://pmm.nasa.gov/data-access/downloads/gpm)which es-
timated global monthly precipitation at resolution of 0.1∘×
0.1∘ by combining GPM with several other satellite pre-
cipitation datasets. Since GPM dataset starts from March
2014, the 
rst year with complete months (i.e., 2015) was
therefore selected to investigate GPM annual precipitation
downscaling algorithms. Annual precipitation (Figure 2(a))
was obtained by summing up monthly GPM precipitation in
the year.

	e ground observed precipitation of 71 rain gauge
stations (Figure 1) located in Hengduan Mountains and the
bu�er area was provided by the National Meteorological
InformationCenter of ChinaMeteorological Administration.
Since the function of ground data was to validate the results
of downscaling algorithms independently, it was not used to
correct GPM precipitation.

2.3. NDVI and DEM Datasets. 	e MOD13A3 monthly
NDVIproductwith a spatial resolution of 1 km× 1 kmderived
from atmospherically corrected re�ectance in the red and
near-infrared wavebands of the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) on the Terra satellite was
used in this study. Annual NDVI (Figure 2(b)) was obtained
by averaging monthly NDVI in the year. 	e Shuttle Radar
Topography Mission (STRM) DEM product was provided
by the National Geospatial-Intelligence Agency (NGA) and
the National Aeronautics and Space Administration (NASA).
	e original DEM data was at resolution of 90m × 90m and
resampled to resolution of 1 km × 1 km (Figure 1) and 10 km× 10 km.

https://pmm.nasa.gov/data-access/downloads/gpm
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Figure 1: 	e Digital Elevation Model of Hengduan Mountains and locations of rain gauge stations.
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Figure 2: GPM annual precipitation at resolution of 10 km × 10 km and annual NDVI in the Hengduan Mountains in 2015 at resolution of
1 km × 1 km.
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Figure 3: Gaussian kernel function used in the GWR model. Here�� is weight of the �th observation point; �� is the Euclidean distance
between the �th observation and the center point; and � is the kernel
bandwidth.

3. Method

3.1. Multiple Linear Regression. Jia et al. [14] proposed a
downscaling algorithm based on Multiple Linear Regression
(MLR), which is expressed as

�LR = 	NDVINDVILR + 	DEMDEMLR + 	0 + 
LR, (1)

where �LR, NDVILR, and DEMLR are the GPM annual
precipitation, NDVI, and elevation at low resolution (LR).	NDVI and 	DEM are slope of precipitation to NDVI and
precipitation to DEM, respectively. 	0 is the intercept, and
LR is residual of the regression model. 	e three coecients
are calibrated with the Ordinary Least Square (OLS) method.
Standardized coecients could be calibrated if the variables
are standardized with (2) in advance.

��,std = �� − �
√(�� − �) /�. (2)

3.2. Geographically Weighted Regression. Geographically
Weighted Regression (GWR) proposed by Brunsdont et
al. [31] is a local regression method that can be used
to investigate spatially nonstationary correlational relation-
ships. Contrast to the MLR model, the GWR model assumes
the coecients to vary with geographical locations, and it is
expressed as

�LR = 	NDVI (�)NDVILR + 	DEM (�)DEMLR + 	0 (�)
+ 
LR, (3)

where � is the geographical location. 	e coecients are as
same as those in the MLR method, except that they are local
rather than global coecients and can be estimated by

	 (�) = (��
LR
�(�)�LR)−1��LR�(�) �LR, (4)

where �LR is matrix of the explanatory variable at low
resolution composed of NDVILR, DEMLR, and vector of

constant one and ��
LR

is transposition of �LR. �(�) is the
weightmatrix that putmoreweights on observations closer to
the center point and can be calculated with kernel functions
like Gaussian kernel and bisquare kernel. Gaussian kernel
(Figure 3) was adopted in this study, and�(�) is the diagonal
matrix of ��(�)

�� (�) = exp(−�2� (�)�2 ) , (5)

where ��(�) is the Euclidean distance between the �th obser-
vation and the center point and � is the kernel bandwidth that
can be estimated with the cross validation (CV) technique.

3.3. Procedure of Downscaling Algorithms

Step 1 (data preparation). Resample annual or monthly
NDVI and DEM 
elds to the low (10 km × 10 km) and
high (1 km × 1 km) resolution. And resample the GPM
annual precipitation 
eld to 10 km × 10 km resolution. It
should be noted that all the 
elds must be projected to the
same projection coordinate system (China Albers Equal Area
Conic), and 
elds at the same resolution should share the
same raster.

Step 2 (model establishment). Using sample data at low
resolution to calibrate the coecients of regression functions
in the downscaling algorithms. For GWR-based algorithm,
the bandwidth � should be estimated with cross validation
(CV) technique before calibration of the coecients.

Step 3. Prediction of high resolution precipitation (�̂HR)
before residuals correction: put high resolution NDVI
(NDVIHR) and DEM (DEMHR) into the MLR models and
GWR models, respectively, to predict �HR. 	e downscaled
results before residuals correction were termed as MLRBRC
and GWRBRC, respectively, in this study.

Step 4 (residuals correction). Interpolate low resolution
residuals (
LR) of the regression methods to high resolu-
tion residuals (
HR) with simple spline tension interpolator,
respectively. 	e 
nal downscaled precipitation (�HR) is
calculated as

�HR = �̂HR + 
HR. (6)

And the downscaled results a�er residuals corrections were
termed as MLRARC and GWRARC, respectively.

3.4. Validation Criteria. Observed precipitation from rain
gauges was used to validate the precipitation downscaled by
the two di�erent algorithms. In the validation, we employed
three widely used criteria, namely, the Mean absolute error
(MAE), the Root Mean Square Error (RMSE), and the
coecient of determination (�2), which are calculated as

MAE = ∑��=1 ������ − ������� ,

RMSE = √∑��=1 (�� − ��)2� ,
�2 = ∑��=1 [(�� − �) (�� − �)]

√∑��=1 (�� − �)2√∑��=1 (�� − �)2
,

(7)
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Figure 4: Standardized coecients of MLR models of annual and
monthly GPM precipitation against NDVI and DEM in Hengduan
Mountains.

where � is precipitation predicted by regression models or
downscaling algorithms and� is observed precipitation from
rain gauge stations.

4. Results and Discussion

4.1. Results of Regression Models

4.1.1. Results of MLR Models. Multiple linear regression
(MLR) models were established to explore the global rela-
tionships of annual and monthly GPM precipitation against
NDVI and DEM in HengduanMountains at lower resolution
of 10 km. 	e calibrated coecients including the constant
coecients, slopes of NDVI and DEM, and the correspond-
ing coecients of determination and ! values were shown
in Table 1. First of all, ! values of all the MLR models were
smaller than 0.001, which meant all the MLR models were
extremely signi
cant and therefore to be valid. However, !
values of February to June were relatively larger, and the

corresponding �2 was smaller than 0.06, indicating that no
more than 6% of variances of GPM precipitation could be
interpreted by MLR models from February to June. Among

the other months, July had the highest �2 of 0.39, and annual�2 was 0.35. For annual GPM precipitation, slope of NDVI
was 390.93mm/1, which meant as NDVI increased per unit,
annual precipitation would increase 390.93mm averagely.
Similarly, slope of DEM was −124.06mm/km, which meant
as DEM increased per kilometer, annual precipitation would
decrease 124.06mm averagely. For monthly precipitation,
slopes of NDVI ranged from−64.37 to 75.79mm/1 and slopes
of DEM ranged from −49.16 to 0.01mm/km.

We further calculated standardized regression coe-
cients of theMLRmodels to investigate the intra-annual vari-
ation of standardized coecients and compare the relative
contributions of NDVI and DEM. As shown in Figure 4, for
monthly precipitation, standardized slopes of NDVI changed

periodically for three times in the year. 	e 
rst cycle was
from January to June, the second was from June to October,
and the third was from October to January. 	e peak values
were positive and the valley values were slightly negative,
except that the valley value reached −0.12 in August, when
monthly precipitation reached its peak of 195.22mm in the
year. 	e reasons for such the complicated periodicity might
be the combined e�ect of the following facts: (1) Hengduan
Mountains is controlled by southwest Asian monsoon, the
southeast Asianmonsoon, the wintermonsoon, and local cir-
culation of Tibetan Plateau in turn and/or simultaneously; (2)
there are time lags between vegetation growth withering and
precipitation increase/decrease; (3) vegetation is restricted by
both water and temperature during dry season, but much
less restricted bywater than temperature during �ood season.
Standardized slopes of DEM were negative and smaller than−0.2 all the year except for February, May, and June.

	e relative contributions of NDVI and DEM could be
estimated through comparing absolute values of their stan-
dardized coecients. For annual precipitation, standardized
slopes of NDVI were 0.20, which meant as NDVI increased
per standardized unit, annual precipitation would increase
0.20 standardized units averagely. Meanwhile, standardized
slopes of DEM were −0.44, which meant as DEM increased
per standardized unit, annual precipitation would decrease
0.44 standardized units averagely. 	e relative contribution
to annual precipitation of DEM was about twice of that of
NDVI. For monthly precipitation, contribution of DEM was
also larger than that of NDVI all the year except for January,
February, and June.

Finally, we investigated relationships between standard-
ized coecients of NDVI and DEM in MLR models against
regionally averaged GPM monthly precipitation (Figure 5).
Both insigni
cant (p ∼= 0.20) decreasing trends were found
for NDVI and DEM. Standardized coecients of NDVI
trended from positive to zero, when monthly precipitation
increased below 166mm, and trended from zero to negative
when monthly precipitation increased over 166mm. To a
certain degree, this feature precipitation of 166mm could be
regarded as the water saturation point of Hengduan Moun-
tains, if neglecting time lags betweenNDVI andprecipitation.
Standardized coecients of DEM trended more negative as
monthly precipitation increased, indicating that the stronger
southwest and southeast monsoons [33] were, the stronger
relationships between precipitation and DEM were.

4.1.2. Results of GWR Models. Geographically Weighted
Regression (MLR) models were established to explore the
local relationships of annual and monthly GPM precipi-
tation against NDVI and DEM in Hengduan Mountains

at lower resolution of 10 km. As Figure 6 showed, �2 of
GWR models ranged from 0.82 to 0.98, except that �2 of
November was 0.65, which were much greater than those
of MLR models. Obviously, GWR models were much more
e�ective on explaining the original GPM annual andmonthly
precipitation than MLR models. Meantime, the intra-annual
variation pattern of �2 of GWR was very similar to that of
MLR, indicating that the local relationships of precipitation
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Figure 5: Relationships between standardized coecients of (a) NDVI and (b) DEM in the MLR models against regionally averaged GPM
monthly precipitation.
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Figure 6: Coecients of determination of estimated precipitation
with the MLR and GWR models against annual and monthly GPM
precipitation in Hengduan Mountains in 2015.

against NDVI and DEM were positively related to the global
ones within a year.

Unlike the MLR model, calibrated coecients in GWR
models were not spatially stationary. As an example, Figure 7
showed the spatial distribution of coecients of the GWR
model for annual GPM precipitation in Hengduan Moun-
tains. 	e intercepts varied from −1666 to 4106mm, and the
spatial pattern was similar to that of annual GPM precip-
itation with a �2 of 0.56. 	e coecients of NDVI varied
from −1674 to 1581mm/1, with no obvious spatial pattern.
	e coecients of DEMvaried from−657 to 435mm/km and
were slightly positively related to elevation (�2 = 0.097).

We also calculated standardized coecients of NDVI
and DEM when establishing the GWR model of annual
GPM precipitation. Like coecients of determination, mean
standardized coecients of NDVI and DEM of the GWR
models (Figure 8) showed very similar intra-annual pattern
with those of the MLR models. It revealed that although
coecients in the GWR models were estimated locally, but
their spatial distribution could re�ect the global relationships
of precipitation against NDVI and DEM. However, it should

be noted that the standard deviations of standardized coef-

cients were quite large, emphasizing the great di�erence
between local coecients in the GWR model and global
coecients in the MLR model.

4.2. Downscaled Precipitation and Ground Validation

4.2.1. Downscaled Precipitation before/a�er Residuals Correc-
tion. Monthly and annual precipitation at high resolution
before residual correction (MLRBRC and GWRBRC) were
predicted by putting the calibrated coecients, high res-
olution NDVI, and DEM into the MLR and GWR mod-
els, respectively. A�er adding the high resolution residu-
als interpolated with spline tension method to MLRBRC
and GWRBRC, MLRARC and GWRARC were eventually
obtained. As an example, Figure 9 showed the downscaled
annual precipitation before residuals correction, interpolated
residuals, and the downscaled annual precipitation a�er
residuals correction, from which a qualitative comparison
of downscaled annual precipitation of the MLR-based and
GWR-based algorithms was made as below.

Basically, MLRBRC annual precipitation was only able
to capture the global trend that “south wetter than north”
rather than the spatial distribution of original GPM, and its
absolute residuals were very large, especially in extremely
wet regions like the Gaoligong Mountains and middle and
lower reaches of the Nu River. While GWRBRC annual
precipitation distributed very similar with original GPM
spatially, the former was a little smoother. Meanwhile, the
range of GWRBRC (269–1703mm) was a little wider than
that of original GPM (394–1625mm), which was reasonable
for the averaging e�ecting of low resolution precipitation.
Absolute residuals of GWRBRCwere also much smaller than
those of MLRBRC in most regions. As for MLRARC and
GWRARC annual precipitation, they were also very similar
with the original GPM like GWRBRC, so the di�erences
among themwere analyzed based on ground validation in the
next two sections.

4.2.2. Is Residuals Correction Helpful? Observations from 71
rain gauge stations within Hengduan Mountains (including
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Figure 7: Spatial distribution of coecients of the GWR model for annual GPM precipitation in Hengduan Mountains in 2015: (a) for the
intercepts, (b) for the coecients of NDVI, and (c) for the coecients of DEM.

Table 2: Averaged accuracy for monthly precipitation and accuracy for annual precipitation of theMLR-based and GWR-based downscaling
algorithms with Root Mean Square Error, Mean Absolute Error, and coecients of determination as criteria. BRC represents before residuals
correction and ARC represents a�er residual correction.

Mean of monthly Annual

RMSE/mm MAE/mm �2 RMSE/mm MAE/mm �2
GPM 29.47 19.63 0.56 230.97 156.76 0.59

MLRBRC 38.20 29.72 0.21 252.46 205.85 0.45

MLRARC 28.80 20.06 0.56 214.54 151.97 0.62

GWRBRC 27.23 18.61 0.62 199.85 143.18 0.67

GWRARC 28.89 19.67 0.57 206.85 150.29 0.64
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Figure 8: Regional means and standard deviations of standardized
coecients of GWRmodels of annual and monthly GPM precipita-
tion against NDVI and DEM in Hengduan Mountains.

bu�er area) were used to validate the accuracy of the MLR-
based and GWR-based downscaling algorithms using Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Coecient of determination (�2).

To investigate whether residuals correction was helpful
to MLR-based and GWR-based downscaling algorithms,
we compared the accuracy of monthly (Figure 10) and
annual (Table 2) precipitation downscaled byMLR-based and
GWR-based algorithms between before residuals correction
(termed as MLRBRC or GWRBRC) and a�er residuals
correction (termed as MLRARC or GWRARC). Average
accuracy of monthly downscaled precipitation was also sum-
marized in Table 2.

Compared to MLRBRC, MLRARC had smaller RMSE
and MAE as well as higher �2 in each month of the year.
For monthly precipitation, averagely speaking, ΔRMSE =
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Figure 10: Comparison of the accuracy of monthly precipitation downscaled by MLR-based and GWR-based algorithms between before
residuals correction (termed as MLRBRC or GWRBRC) and a�er residuals correction (termed as MLRARC or GWRARC) using Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and coecient of determination (�2).

−9.39mm, ΔMAE = −9.66mm, and Δ�2 = 0.35. And for
annual precipitation in 2015, the changes were ΔRMSE =−37.91mm, ΔMAE = −53.87mm, and Δ�2 = 0.18.
Obviously, the step of residuals correction improved the
accuracy of precipitation predicted by MLR signi
cantly and
hence was indispensable for MLR-based algorithm.

However, GWRARChad slightly greater RMSE andMAE

as well as lower �2 compared to GWRBRC in each month
exceptMarch of the year. Formonthly precipitation, averagely
speaking, ΔRMSE = 1.66mm, ΔMAE = 1.06mm, andΔ�2 = −0.05. And for annual precipitation in 2015, the

changes were, ΔRMSE = 7.00mm, ΔMAE = 7.12mm,

and Δ�2 = −0.03. 	is indicated that the step of residuals
correction degraded the accuracy of precipitation predicted
by the GWR models. 	erefore, the step of residuals correc-
tion was recommended to be removed from the procedure
of the GWR-based downscaling algorithm and as a result,
GWRBRC rather than GWRARC was adopted as the 
nal
downscaled precipitation.

4.2.3. Accuracy of theMLR-Based and GWR-Based Downscal-
ingAlgorithms. In Section 4.2.2, we concluded thatMLRARC
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Figure 11: Comparison of the accuracy of monthly precipitation downscaled by MLR-based algorithm a�er residuals correction (termed as
MLRARC) and GWR-based algorithm between before residuals correction (termed as GWRBRC) using Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and coecient of determination (�2).

and GWRBRC should be adopted as the 
nal results of
MLR-based and GWR-based algorithms. In this section
we compared the accuracy of MLRARC, GWRBRC, and
the original GPM monthly and annual precipitation. 	e
accuracy of monthly precipitation was presented in Figure 11
and those on annual precipitation and summary of average
accuracy of monthly precipitation were shown in Table 2.

MLRARC performed better than original GPM monthly
precipitation in 7 out of 12 months with RMSE as evaluation
criterion and 6 out of 12monthswithMAEor�2 as evaluation
criteria. Averagely speaking, MLRARC had almost the same
accuracy as GPM monthly precipitation, with ΔRMSE =−0.67mm, ΔMAE = 0.43mm, and Δ�2 = 0.00, indicat-
ing that it was no better than the Nearest Neighborhood
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(NN) method, which is the simplest interpolation method.
	erefore, the e�ectiveness of MLR-based downscaling algo-
rithm on monthly precipitation over Hengduan Mountains
was unsatisfactory. For annual precipitation, performance
of MLRARC was better than that of GPM dataset, withΔRMSE = −16.43mm,ΔMAE = −4.79mm, and Δ�2 = 0.03.

GWRBRC performed better than original GPMmonthly

precipitation in 11 out of 12 months with RMSE or �2
as evaluation criteria and 10 out of 12 months with MAE
as evaluation criterion. Averagely speaking, GWRBRC had
much better accuracy than GPMmonthly precipitation, withΔRMSE = −2.24mm, ΔMAE = −1.02mm, and Δ�2 =0.06. For annual precipitation, performance ofMLRARCwas
also much better than that of GPM dataset, with ΔRMSE =−31.13mm, ΔMAE = −13.59mm, and Δ�2 = 0.08. 	e
signi
cant improvement should be attributed to that the
complicated relationships among precipitation, vegetation
and topography were better interpreted by local regression
methods considering spatially heterogeneity of regression
coecients than global regression methods.

5. Conclusion

Precipitation dataset with high resolution and accuracy is
crucial for regional hydrological researches. Satellite precipi-
tation could be downscaled based on statistical relationships
among precipitation, vegetation, and topography. In this
study, to downscale GPM annual and monthly precipitation
over Hengduan Mountains from 10 km × 10 km to 1 km ×
1 km, the Multiple Linear Regression (MLR) based algorithm
and the Geographically Weighted Regression (GWR) based
algorithmwere employed. Downscaled precipitation was val-
idated with ground observations from 71 rain gauge stations.
A�er analyzing the results, it could be concluded that one has
the following:(1) Regression model is a fundamental component of
statistical downscaling algorithms; hence it is important to
establish an appropriate regression model. Results of this
study showed that the GWR model was much more suitable
than theMLRmodel to describe the complicate relationships
among precipitation, vegetation, and topography in Heng-

duan Mountains, with much higher �2 and lower RMSE
and MAE against the original GPM annual and monthly
precipitation.(2) A�er analyzing the coecients and standardized
coecients of the MLR models, we found that generally
NDVI was positively related to precipitation when monthly
precipitation was under 160mm; DEMwas negatively related
to precipitation, especially in wet months like July and
August; contribution of DEM to precipitation was greater
than that of NDVI. Spatial mean standardized coecients of
GWR showed very similar intra-annual patterns with those
of MLR but had strong spatial nonstationarity.(3) Residuals correction greatly improved accuracy of the
MLRmodel but reduced those of GWRmodel.	erefore it is
an indispensable step for the MLR-based downscaling algo-
rithm but not recommended for the GWR-based algorithm.(4) Validation results with ground observations showed
that, compared with the original GPM data, downscaled

precipitation (before residual correction) based on the
GWR-based algorithm not only possessed 
ner resolution
but also higher accuracy, indicating it is a promising algo-
rithm for satellite precipitation downscaling. Meanwhile,
accuracy of precipitation downscaled by the MLR-based
algorithm was only about the same with the original GPM
precipitation.

Satellite precipitation downscaling might be improved
through introducing more appropriate explanatory variables
like the Enhanced Vegetation Index (EVI) and Land Sur-
face Temperature (LST). Similarly, considering temporally
correlation and autocorrelation in regression models might
also be e�ective. Moreover, downscaling of daily and hourly
precipitation is more signi
cant for practical application and
should be paid more e�ort.
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